PAGES 216 TO 231 OF http://www.cse.iitb.ac.in/~ cs709/notes/BasicsOfConvexOptimiz ation.pdf, interspersed with pages between 239 and 253 and summary of material thereafter, which extend univariate <u>concepts to generic spaces</u>

Maximum and Minimum values of univariate functions

Let f be a function with domain \mathcal{D} . Then f has an absolute maximum (or global -maximum) value at point $c \in \mathcal{D}$ if

$$f(x) \le f(c), \ \forall x \in \mathcal{D}$$

and an absolute minimum (or global minimum) value at $c \in \mathcal{D}$ if

$$f(x) \ge f(c), \ \forall x \in \mathcal{D}$$

If there is an open interval \mathcal{I} containing c in which $f(c) \geq f(x), \ \forall x \in \mathcal{I}$, then we say that f(c) is a local maximum value of f. On the other hand, if there is an open interval \mathcal{I} containing c in which $f(c) \leq f(x), \ \forall x \in \mathcal{I}$, then we say that f(c) is a local minimum value of f. If f(c) is either a local maximum or local minimum value of f in an open interval \mathcal{I} with $c \in \mathcal{I}$, the f(c) is called a local extreme value of f.

Theorem 39 If f(c) is a local extreme value and if f is differentiable at x = c, then f'(c) = 0. $\rightarrow 1$ f all pods of fexot at $\chi = COD \subseteq R^n$ 4 If f(c) is local extreme, $\nabla f(c) = 0$

Theorem 40 A continuous function f(x) on a closed and bounded interval [a,b] attains a minimum value f(c) for some $c \in [a,b]$ and a maximum value f(d) for some $d \in [a,b]$. That is, a continuous function on a closed, bounded interval attains a minimum and a maximum value.

Note: [a, ∞) is closed but NoT bounded So both conditions are needed Keplace with sets fork

Theorem 60 If $f(\mathbf{x})$ defined on a domain $\mathcal{D} \subseteq \mathbb{R}^n$ has a local maximum or minimum at \mathbf{x}^* and if the first-order partial derivatives exist at \mathbf{x}^* , then $f_{x_i}(\mathbf{x}^*) = 0$ for all $1 \le i \le n$.

Definition 27 [Critical point]: A point \mathbf{x}^* is called a critical point of a function $f(\mathbf{x})$ defined on $\mathcal{D} \subseteq \mathbb{R}^n$ if

- 1. If $f_{x_i}(\mathbf{x}^*) = 0$, for $1 \le i \le n$.
- 2. OR $f_{x_i}(\mathbf{x}^*)$ fails to exist for any $1 \leq i \leq n$.

A procedure for computing all critical points of a function f is:

- 1. Compute f_{x_i} for $1 \le i \le n$.
- Determine if there are any points where any one of f_{xi} fails to exist. Add such points (if any) to the list of critical points.
- 3. Solve the system of equations $f_{x_i} = 0$ simultaneously. Add the solution points to the list of saddle points.

Figure 4.17: The paraboloid $f(x_1, x_2) = 9 - x_1^2 - x_2^2$ attains its maximum at (0,0). The tanget plane to the surface at (0,0,f(0,0)) is also shown, and so is

Figure 4.18: Plot illustrating critical points where derivative fails to exist.

Definition 28 [Saddle point]: A point \mathbf{x}^* is called a saddle point of a function $f(\mathbf{x})$ defined on $\mathcal{D} \subseteq \Re^n$ if \mathbf{x}^* is a critical point of f but \mathbf{x}^* does not correspond to a local maximum or minimum of the function.

Figure 4.19: The hyperbolic paraboloid $f(x_1, x_2) = x_1^2 - x_2^2$, which has a saddle point at (0, 0).

Figure 4.20: The hyperbolic paraboloid $f(x_1, x_2) = x_1^2 - x_2^2$, when viewed from the x_1 axis is concave up.

Figure 4.21: The hyperbolic paraboloid $f(x_1, x_2) = x_1^2 - x_2^2$, when viewed from the x_2 axis is concave down.

(6)

Note: For LP's, Ax>b is closed and bounded D& f(x)=c7x atrains

global max/min on bdry of D.: This thm

Theorem 41 A continuous function f(x) on a closed and bounded interval [a,b] attains a minimum value f(c) for some $c \in [a,b]$ and a maximum value f(d) for some $d \in [a,b]$. If a < c < b and f'(c) exists, then f'(c) = 0. If a < d < b and f'(d) exists, then f'(d) = 0. If f(c) = 0 is closed f(c) = 0 bounded f(c) = 0 is also at f(c) = 0 and f(c) = 0 is also at f(c) = 0 and f(c) = 0 are also at f(c) = 0 and f(c) = 0 and f(c) = 0 are also at f(c) = 0 and f(c) = 0 are also at f(c) = 0 and f(c) = 0 are also at f(c) = 0 and f(c) = 0 are also at f(c) = 0.

Theorem 42 If f is continuous on [a,b] and differentiable at all $x \in (a,b)$ and if f(a) = f(b), then f'(c) = 0 for some $c \in (a,b)$.

Figure 4.1 illustrates Rolle's theorem with an example function $f(x) = 9 - x^2$ on the interval [-3, +3].

Figure 4.1: Illustration of Rolle's theorem with $f(x) = 9 - x^2$ on the interval [-3, +3]. We see that f'(0) = 0.

Q: What is a more general version of Rolle's than?

Ans. Mean value than

Theorem 43 If f is continuous on [a,b] and differentiable at all $x \in (a,b)$, then there is some $c \in (a,b)$ such that, $f'(c) = \frac{f(b) - f(a)}{b - a}$.

If DER" is closed & bounded & fiscts on D & diff on ont(D) then:

Figure 4.2: Illustration of mean value theorem with $f(x) = 9 - x^2$ on the interval [-3, 1]. We see that $f'(-1) = \frac{f(1) - f(-3)}{4}$.

Figure 4.4: The mean value theorem can be violated if f(x) is not differentiable at even a single point of the interval. Illustration on $f(x) = x^{2/3}$ with the