PAGES 216 TO 231 OF

http://www.cse.iitb.ac.in/~ cs709/notes/BasicsOfConvexOptimiz
ation.pdf, interspersed with pages between 239 and 253 and
summary of material thereafter, which extend univariate
lconcepts to generic spaces

Maximum and Minimum wvalues of univariate functions

Let f be a function with domain D. Then [ has an absolute maximum (or global
maximum) value at point ¢ € D if

flz) < f(c), Vz €D

and an absolute mintmum (or global minimum) value at ¢ € D if

f(z) > fle), Yz €D

If there is an open interval I containing ¢ in which f(¢) = f(z), Vo € T,
then we say that f(c) is a local maximum value of f. On the other hand, if
there is an open interval 7 containing ¢ in which f(¢) < f(x), Vx € I, then we
say that f(c) is a local minimum value of f. If f(e) is either a local maximum
or local minimum value of f in an open interval 7 with ¢ € Z, the f(c) is called
a local extreme value of f.

- Theorem 39 If f(c) is a local extreme value and if f is differentiable at © =g, b

then f'(c) =0. — ‘g, el ‘7&5 ¢ ,f exdt arv yHzCeD eRﬁ
AW F@Q) ¥ \ow| “eslleme, Y5(6) =0

Theorem 40 A continuous function f(x) on a closed and bounded interva
la, b attains a minimum value f(c) for some ¢ € [a,b] and a mazimum value

fld) for some d € |a,b]. That s, a continuous function on a closed, bounded
interval attains a mantmum and a marimum value.
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Theorem 60 If f(x) defined on a domain D C R"™ has a local maxrimum
or minimum at X* and if the first-order partial derivatives exist at x*, then

fo(x®) =0 foralll <i<n. \gﬂg(gx) =0

Definition 27 [Critical point]: A point x* is called a eritical point of a fune-
tion f(x) defined on D C R™ if

1 If fo(x®) =10, for 1 <i < n.
2. OR f, (x") fails to exist for any 1 <i <mn.

A procedure for computing all critical points of a function f is:

1. Compute f, for 1 <i<n.

2. Determine if there are any points where any one of f, fails to exast. Add
such points (if any) to the list of eritical points.

3. Solve the system of equations f,. = 0 simultaneously. Add the solution
points to the list of saddle points.

Figure 4.17: The paraboloid f(xy,x2) = 9 — &7 — x5 attains its maximum at
(0.0, The tancet plane to the surface at (0.0, F(0.0V) 15 also shown. and so 1s |




Figure 4.18: Plot illustrating critical points where derivative fails to exist.

Definition 28 [Saddle point|: A point x* is called a saddle point of a func-
tion f(x) defined on D C R" if Xx* is a critical point of [ but x* does not

correspond to a local marimum or minimum of the function.
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Figure 4.19: The hyperbolic paraboloid f(r;,x2) = 7 — 23, which has a saddle
point at (0, 0).




Figure 4.20: The hyperbolic paraboloid f(xy,x5) = % — 3, when viewed from
the @y axis is concave up.

Figure 4.21: The hyperbolic paraboloid f(ry,r2) = x7 — 3, when viewed from

the ro axis i1s concave dowr.
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Theorem 41 A continuous function f(x) on a closed and E:m.r,mjf’c.-f mtr—*rvuf a, b]
attains a minimum value f(e¢) for some ¢ € [a,b] and a mazimum value f(d)

for somed € [a,b]. Ifa<c<b rm,uff () E.m.atz-.. then f'(c¢) =0. Ifa<d ij
and f'(d) exists, then f'(d) = 0. . [g D R s ) Osd 4 bduﬂa
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Theorem 42 If { is continuous on |a, b] and differentiable at all x € (a,b) and
if fla)= f(b), then f'(c) = 0 for some c € (a,b).

Figure 4.1 illustrates Rolle’s theorem with an example function f(z) = 9—
on the interval [—3,+3|.
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Figure 4.1: Tlustration of Rolle’s theorem with f(x) = 9 — = on the interval
[—3, +3]. We see that f'(0) = 0.
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Theorem 43 If f is continuous on la, b] and differentiable at all x € (a,b),

~then there is some c € (a, b) such that, f'(c) = M.
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Figure 4.2: [Mustration of mean value theorem with f

 [~3,1]. We see that f/(—1) = {BD==8)
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Figure 4.4: The mean value theorem can be violated if f(x) is not differentiable —

at even a single point of the interval.
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The mean value theorem in one variable generalizes to several variables by applying the
theorem in one variable via parametrization. Let G be an open subset of R", and letf: G = R be
a differentiable function. Hx points x, ¥y = G such that the interval x y lies in G, and define

glt) = f{{1 — f)x + ty). 5ince g Is a differentiable function in one variable, the mean value
theorem gives:

g(1) — g(0) = g'(c)

for some c between 0 and 1. But since g(1) = fiy) and g{0) = fix). computing g’'(c) explicitly we
ave:

fy) = fle)=Vf(l-c)z+cy)-(y—z)
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Corollary 44 Let f be continuous on [a,b] and differentiable on (a,b) with
m < fiz) £ M, Yz € (a,b). Then, it ey i/

a<i<z<bh ~—— AT ,.[a\lu(,’“ﬂm
AW] \yied MEOVY \M‘\"‘a‘.\%

Let D be the domain of function f. We define & su'bsfwtu)fm '

1. the linear approximation of a differentiable function f(x) as L,(x) =
fla) + f'(a)(x — a) for some a € D. We note that L,(x) and its first
é derivative at a agree with f(a) and f'(a) respectively. A
2. the quadratic approximatin of a twice differentiable function f(x) as the
parabola Q). (x) = f(a) + f'(a){x — a) + %f”[ﬂ.}(ﬂ: — a)?. We note that
(. () and its first and second derivatives at a agree with f(a), f'(a) mid
L . )
f"(a) respectively. PQ@C) - C\ X (21'({)'12' SV ?a(a) 5&6\) ?a(a)f“’;&) d
,;Ca)‘-f(a)

3. the cubic approximation of a thrice differentiable function f(x)is C,(x) =
fla)+ f'la)(x—a)+ 51" (a)(x—a)* + 2 f"(a)(x —a)’. Cu(x) and its first,
second and third derivatives at a agree with f(a), f'(a), f"(a) and f"'(a)

4 \ '
respectively. Rm(’i ) - (‘ +( tm. ¢ (51 2‘{— C X.g s'b Rnc q') ’fg\ (\“‘) fa‘ (a) - f&/
C (@)=
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Figure 4.3: Plot of f(x) = % and its linear, quadratic and cubic approximations.
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1c vesenation
Theorem 45 The Taylor's thmrf’m states that if f and its first'n aelibvatives /gog
For o f™ are continuous on the closed interval la,b], and differentiable on /

(a,b), fhﬁn there exists a number ¢ € (a, b) such that

f(b) = fla)+f'(a) h—rj}—l—zrf "(a)(b—a)*+.. +— rf{”}[ﬁ.}[t[}—ﬂ.j}”—l- Frt @y n—
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(n+1)!

Consider the function ¢(f) = f(x + th) considered in theorem 71, defined on
the domain D, = [0, 1]. Using the chain rule,

P . i dTi e .
qﬁ{t}_;fm{x—l—th} - =h".Vf(x+th)

Since f has partial and mixed partial derivatives, ¢’ is a differentiable function
of t on Dy and
¢"(t) = hTV2f(x +th)h

Since ¢ and ¢ are continous on Dy and ¢’ is differentiable on int(Dy), we

can make use of the Taylor’s theorem (45) with n = 3 to obtain:

o(t) = ¢(0) +t.¢'(0) + t2. %m”{ﬂ} < G{t

lectd §
a:\g gsded :;FW'*'

fx £ th) = f(x)+th! Vf(x x) + 75 LTy f() 11+D{t3)
4 Fov @™ pedev Tafor exense®

Teplace V'f[ﬁ MY f[xfcﬁ) for CE(oit)

Writing this equation in terms of f gives
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We will introduce some definitions at this point:

e A function f is said to be increasing on an interval 7 in its domain D if
f(t) < f(x) whenever t < .

e The function f is said to be decreasing on an interval T € D if f(t) > f(x)
whenever ¢t < .

These definitions help us derive the following theorem:



