


Subdifferential 0[@ >/§ ()4 32[3 1) Y Y€ Amag’

e set of all subgradients of f at x is called the subdifferential of f at z,

denoted O f(x)
e Of(z) is a closed convex set (can be empty) _ 'DSY @) ¥(j>
if fis convex, ////7/// D

e Of(x) is nonempty, for = € relint dom f
e Of(x) ={Vf(x)}, if f is differentiable at x
o if Of(x) ={g}, then f is differentiable at x and g = V f(x)
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Example

f(z) = |=| 0f (x)

righthand plot shows | J{(x,9) | € R, g € 0f(x)}

Prof. S. Boyd, EE364b, Stanford University



Subgradient calculus

e weak subgradient calculus: formulas for finding one subgradient

geof(x)

e strong subgradient calculus: formulas for finding the whole
subdifferential df(x), i.e., all subgradients of f at x

e many algorithms for nondifferentiable convex optimization require only

one subgradient at each step, so weak calculus suffices — g4 n (3% °§ 0550
we W\ ce
e some algorithms, optimality conditions, etc., need whole subéifferential

e roughly speaking: if you can compute f(x), you can usually compute a

gecof(x)

e we'll assume that f is convex, and z € relint dom f

Prof. S. Boyd, EE364b, Stanford University 7
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o 0f(x) = {V{(x)} if f is differentiable at = /X@w

x@_k‘ﬂ\ ’YS("‘ Uﬁ\)
L\ T e

Some basic rules  {a D
AW X@\

W

e scaling: J(af) = adf (if a > 0) ((me )l
'\(\\Ib\éj
e addition: O(f; + f2) = 0f1 + Of2 (RHS is addition of sets)
Sj 97%&0
e affine transformation of variables: if g(x) = f(Ax +b), then A)
dg(x) = ATOf(Azx + b) 3 Xi
e finite pointwise maximum: if f = max fi, then

i=1,...,

0f(x) = Co| J{ofi(x) | filx) = f(2)},

1.e., convex hull of union of subdifferentials of ‘active’ functions at «

Prof. S. Boyd, EE364b, Stanford University 8



f(x) = max{fi(x),..., fm(x)}, with fi,..., f,, differentiable

0f (x) = CoVfi(z) | filz) = f(2)} @)

AR
: @(3
A%\
example: f(z) = ||z||; = max{slz|s; € {~1,1}}
1 1] (1)
STk |
1]
1
df(x) at x = (0,0) at x = (1,0) atx = (1,1)

Prof. S. Boyd, EE364b, Stanford University
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First-order condition

f is differentiable if dom f is open and the gradient

V50 = (G g e )

exists at each x € dom f

1st-order condition: differentiable f with convex domain is convex iff

fly) > f(z) + Vf(x)T(y —x) forall x,y € dom f

f(y)
f(x) + V() (y — )
(z, f(z))
first-order approximation of f is global underestimator
Convex functions 3-7

Second-order conditions

f is twice differentiable if dom f is open and the Hessian VZf(z) € S",

_ *f(=)
N 8:13‘1'8]3]"

V2 ()5

,j=1,...,n,

exists at each x € dom f

2nd-order conditions: for twice differentiable f with convex domain

e f is convex if and only if

V2f(xz) =0 forall z € dom f

o if V2f(z) = 0 for all x € dom f, then f is strictly convex

Convex functions 3-8



Theorem 61 Let f: D — R where D CR™. Let f(x) have continuous partial
derivatives and continuous mized partial derivatives in an open ball R containing
a point x* where Vf(x*) = 0. Let V*f(x) denote an n X n matriz of mized
partial derivatives of f evaluated at the point x, such that the ijt" entry of the
matriz s fr,.;. The matriz V2f(x) is called the Hessian matriz. The Hessian
matriz is symmetric®. Then,

o [fV?f(x*) is positive definite, x* is a local minimum.

o If V2f(x*) is negative definite (that is if —=V2f(x*) is positive definite),
x* is a local maximum.

Proof: Since the mixed partial derivatives of f are continuous in an open ball
containing R containing x* and since V* f(x*) > 0. it can be shown that there
exists an € > 0, with B(x*,€) C R such that for all ||h|| <€, VZf(x* +h) = 0.
Consider an increment vector h such that (x* + h) € B(x*,¢). Define g(t) =
f(x* +th) : [0,1] — R. Using the chain rule,

d

Ii_ T *
L =hT.V[(x" + th)

g (t) = fr(x*+th)

=1

Since f has continuous partial and mixed partial derivatives, ¢’ is a differ-
entiable function of ¢ and

¢"(t) = h'V?f(x* + th)h

Since g and ¢’ are continous on [0, 1] and ¢’ is differentiable on (0, 1), we can
make use of the Taylor’s theorem (45) with n = 1 and a = ( to obtain:

9(1) = 9(0) +4'(0) + 54"(¢



for some ¢ € (0,1). Writing this equation in terms of f gives

f(x*+h) = f(x*)+hTVf(x*) + %hT?Ef[x* +ch)h

We are given that V f(x*) = (. Therefore,

f(x*+h) — f(x*) = %hi"vzf(x* + ch)h

The presence of an extremum of f at x* is determined by the sign of f(x™ +
h) — f(x*). By virtue of the above equation, this is the same as the sign of
H(c) = hTV2f(x* + ch)h. Because the partial derivatives of f are continuous
in R, if H(0) # 0, the sign of H(e) will be the same as the sign of H(0) =
h?'V?f(x*)h for h with sufficiently small components (i.e., since the function
has continuous partial and mixed partial derivatives at (x*, the hessian will
be positive in some small neighborhood around (x*). Therefore, if V*f(x*)
is positive definite, we are guaranteed to have H(0) positive, implying that f
has a local minimum at x*. Similarly, if —V*f(x*) is positive definite, we are
guaranteed to have H(0) negative, implying that f has a local maximum at x*.
[

Theorem 61 gives sufficient conditions for local maxima and minima of func-
tions of multiple variables. Along similar lines of the proof of theorem 61, we
can prove necessary conditions for local extrema in theorem 62.

Theorem 62 Let f : D — R where D C R™. Let f(x) have continuous par-
tial derivatives and continuous mized partial derivatives in an open region R
containing a point x* where Vf(x*) = 0. Then,

o Ifx* is a point of local minimum, V2 f(x*) must be positive semi-definite.

o Ifx* is a point of local mazimum, V* f(x*) must be negative semi-definite
(that is, =V? f(x*) must be positive semi-definite).



Theorem T9 A twice differential function f : D — R for a nonempty open
conver set D

1. is conver if and only if its domain is conver and its Hessian matric is
positive semidefinite at each point in D. That is

Vif(x) =0 VYxeD (4.62)

2. is strictly convex if its domain is conver and its Hessian matriz is positive
definite at each point in D. That is

Vif(x) -0 ¥YxeD (4.63)

3. is uniformly convex if and only if its domain is conver and its Hessian
matriz is uniformly positive definite at each point in D. That is, for any
v € R" and any x € D, there exists a ¢ > 0 such that

vIVEf(x)v = cf|v]]? (4.64)

In other words
?Ef{x) = clpxn

where Inyn 18 the n x n identity matriz and = corresponds to the pos-
itive semidefinite inequality. That is, the function f is strongly convez
iff V2f(x) — clnxn is positive semidefinite, for all x € D and for some
constant ¢ > 0, which corresponds to the positive minimum curvature of

f.



Proof: We will prove only the first statement in the theorem: the other two
statements are proved in a similar manner.

Necessity: Suppose f is a convex function, and consider a point x € D.
We will prove that for any h € 8", hY V*f(x)h > 0. Since f is convex, by
theorem 75, we have

flx+th) > f(x)+tV7 f(x)h (4.65)

Consider the function &(t) = f(x + th) considered in theorem 71, defined on
the domain Dy = [0.1]. Using the chain rule,

@'(t) =) fr(x+th) '{;

=1

=h¥. ¥V f(x+th)

Since [ has partial and mixed partial derivatives, ¢’ is a differentiable function
of t on Dy and
#"(t) = h' V¥ f(x+ th)h

Since ¢ and ¢ are continous on Py and ¢’ is differentiable on int(Dy ). we
can make use of the Taylor's theorem (45) with n = 3 to obtain:

; Y, 1 T :
o(t) = @(0) + t.¢'(0) + E:’.Em (0) + O(t)
Writing this equation in terms of f gives

f(x+th) = f(x) +th? V f(x) + r?%hf‘vﬂ flx)h + Ot

In conjunction with (4.65), the above equation implies that
2 :
EhT?E_f{x}h + 0t =0

Dividing by t? and taking limits as t — 0, we get

W92 f(x)h =0

Sufficiency: Suppose that the Hessian matrix is positive semidefinite at
each point x € D. Consider the same function ¢(t) defined above with h = y—x
for v, x € D. Applying Taylor's theorem (45) with n = 2 and a = ), we obtain,

#1) = 6(0) +£.6'(0) + 2. 56"(c)

for some ¢ € (0.1). Writing this equation in terms of f gives

1
flx) = fly) + (x =)' Vfly) + 5(x - y) Vf(z)(x - y)
where 2 = y +e{x —y). Since D is convex, z € D. Thus, V2 f(z) = 0. It follows
that
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