
Iterative Soft Thresholding Algorithm (Proximal Subgradient Descent) for
Lasso

Let f(x) =∥Ax− y∥22, c(x) = ∥x∥1 and F(x) = f(x) + c(x)
Proximal Subgradient Descent Algorithm:
Initialization: Find starting point x(0)

▶ Let z(k+1) be a next gradient descent iterate for f(xk)

▶ Compute prox∥x∥1

(
z(k+1)

)
= x(k+1) = argmin

x
1
2t∥x− z(k+1)∥22 + λ∥x∥1 as follows:

1 If z(k+1)
i > λt, then x(k+1)

i = −λt + z(k+1)
i

2 If z(k+1)
i < −λt, then x(k+1)

i = λt + z(k+1)
i

3 0 otherwise.
▶ Set k = k+ 1, until stopping criterion is satisfied (such as no significant changes in xk w.r.t

x(k−1))

October 26, 2018 214 / 427

min f(x) + c(x)

Tables for the Proximal Operator

proxc(z) = argmin
x

1

2t ||x− z||2 + c(x)

For x ∈ ℜ, c(x) = For z ∈ ℜ & t = 1, proxc(z) =
Simplified Lasso: λ|x| [|z|− λ]+sign(z)
λx x ≥ 0
∞ x < 0

[z− λ]+

λx3 x ≥ 0
∞ x < 0

−1 +
√

1 + 12λ[z]+
6λ

−λ log x x > 0
∞ x ≤ 0

z+
√
z2 + 4λ

2
λx 0 ≤ x ≤ α
∞ otherwise min{max{z− λ, 0},α}

October 26, 2018 215 / 427

we have already derived this
first entry in the table

Since x^3 is differentiable, the
penalization of \lambda on z
is much softer

Tables for the Proximal Operator

proxc(z) = argmin
x

1

2t ||x− z||2 + c(x)

For x ∈ ℜ, c(x) = For z ∈ ℜ & t = 1, proxc(z) =
Simplified Lasso: λ|x| [|z|− λ]+sign(z)
λx x ≥ 0
∞ x < 0

[z− λ]+

λx3 x ≥ 0
∞ x < 0

−1 +
√

1 + 12λ[z]+
6λ

−λ log x x > 0
∞ x ≤ 0

z+
√
z2 + 4λ

2
λx 0 ≤ x ≤ α
∞ otherwise min{max{z− λ, 0},α}

For x ∈ ℜ, c(x) = For z ∈ ℜ & t = 1, proxc(z) =
Constant: c z
Affine: aTx + b z− a
Convex quadratic: 1

2xTAx + bTx + c (A+ I)−1(z− b)
(where A ∈ Sn+,b ∈ ℜn)

Tables for the Proximal Operator

proxc(z) = argmin
x

1

2t ||x− z||2 + c(x)

For x ∈ ℜ, c(x) = For z ∈ ℜ & t = 1, proxc(z) =
Simplified Lasso: λ|x| [|z|− λ]+sign(z)
λx x ≥ 0
∞ x < 0

[z− λ]+

λx3 x ≥ 0
∞ x < 0

−1 +
√

1 + 12λ[z]+
6λ

−λ log x x > 0
∞ x ≤ 0

z+
√
z2 + 4λ

2
λx 0 ≤ x ≤ α
∞ otherwise min{max{z− λ, 0},α}

For x ∈ ℜ, c(x) = For z ∈ ℜ & t = 1, proxc(z) =
Constant: c z
Affine: aTx + b z− a
Convex quadratic: 1

2xTAx + bTx + c (A+ I)−1(z− b)
(where A ∈ Sn+,b ∈ ℜn)

Sum over components: c(x) =
n∑

i=1

ci(xi) ???

c(λx + a) ??
λc

(
1
λx

)
??

c(x) + aTx + β
2 ∥x∥2 + γ ??

c(Ax + b) ??
c(∥x∥) ??

October 26, 2018 215 / 427

Can we recover the prox of
the composition of function
as a composition of prox operations

Calculus for the Proximal Operator: See https://archive.siam.org/books/mo25/mo25_ch6.pdf

proxc(z) = argmin
x

1

2t ||x− z||2 + c(x)

c(x) = For t = 1, proxc(z) =

Sum over components: c(x) =
n∑

i=1

ci(xi) Product over components: proxc(z) =
n∏

i=1

proxci(zi)

where x = [x1,x2, . . . ,xn] where z = [z1, z2, . . . , zn]
c(λx + a) 1

λ

[
proxλ2c(λz + a)− a

]

where λ ̸= 0 and c is proper
λc

(
1
λx

)
λproxc/λ

(
1
λz

)

where λ ̸= 0 and c is proper
c(x) + aTx + β

2 ∥x∥2 + γ prox 1
β+1

c

(
z−a
γ+1

)

where β > 0, γ ∈ ℜ, c is proper
c(Ax + b) z + 1

αAT
(
proxαc (Az + b)− Az− b

)

where c is proper closed and convex, b ∈ ℜn, AAT = αI, α > 0

c(∥x∥) proxc(∥z∥) z
∥z∥ z ̸= 0

{u|∥u∥ = proxc(0)} z = 0
where b ∈ ℜn, AAT = αI, α > 0

October 26, 2018 216 / 427

Generalized Gradient Descent and its Special Cases

Recall
proxc(z) = argmin

x
1

2t ||x− z||2 + c(x)

It’s special cases are:
1 Gradient Descent ⇒

October 26, 2018 217 / 427

c(x) = constant

Generalized Gradient Descent and its Special Cases

Recall
proxc(z) = argmin

x
1

2t ||x− z||2 + c(x)

It’s special cases are:
1 Gradient Descent ⇒ c(x) = 0

2 Projected Gradient Descent ⇒

October 26, 2018 217 / 427

c(x) = Indicator function of the constraint
function g(x) <=0

Generalized Gradient Descent and its Special Cases

Recall
proxc(z) = argmin

x
1

2t ||x− z||2 + c(x)

It’s special cases are:
1 Gradient Descent ⇒ c(x) = 0

2 Projected Gradient Descent ⇒ c(x) = IC(x) (Example:

October 26, 2018 217 / 427

Generalized Gradient Descent and its Special Cases

Recall
proxc(z) = argmin

x
1

2t ||x− z||2 + c(x)

It’s special cases are:
1 Gradient Descent ⇒ c(x) = 0

2 Projected Gradient Descent ⇒ c(x) = IC(x) (Example: =
∑

i Igi(x))
3 Alternating Projection/Proximal Minimization: f(x) = 0

4 Alternating Direction Method of Multipliers
5 Special Cases for Specific Objectives

▶ LASSO: (Fast) Iterative Shrinkage Thresholding Algorithm (ISTA/FISTA)

October 26, 2018 217 / 427

and c(x) = sum
of indicators

Case 2: Projection Methods

October 26, 2018 218 / 427

Demystifying the Projection Step

x(k+1)
p = proxIC(x

(k+1)
u) = argmin

x

x(k+1)
u − x

2

2
+ IC(x)

= argmin
x∈C

x(k+1)
u − x

2

2
=

October 26, 2018 219 / 427

this term
dominatesProj_C(z)

Demystifying the Projection Step

x(k+1)
p = proxIC(x

(k+1)
u) = argmin

x

x(k+1)
u − x

2

2
+ IC(x)

= argmin
x∈C

x(k+1)
u − x

2

2
= PC(x(k+1)

u)

October 26, 2018 219 / 427

Projected Gradient Descent: Illustrated

October 26, 2018 220 / 427

x^k

x^(k+1)_u

C

x^(k+1)_p

Algorithm: Projected Gradient Descent (We use xk
u instead of zk)

Find a starting point x0
p ∈ C.

Set k = 1
repeat
1. Choose a step size tk ∝ 1/

√
k.

2. Set xku = xk−1
p − tk∇f(xk−1

p).
3. Set xkp = argmin

z∈C

xku − z

2

2
.

4. Set k = k+ 1.
until stopping criterion (such as ||xkp − xk−1

p || ≤ ϵ or f(xkp) > f(xk−1
p)) is satisfieda

aBetter criteria can be found using Lagrange duality theory, etc.

Figure 12: The projected gradient descent algorithm.

October 26, 2018 221 / 427

Table of Orthogonal Projections: See https://archive.siam.org/books/mo25/mo25_ch6.pdf

PC(z) = proxIC(z) = argmin
x

1

2t ||x− z||2 + IC(x) = argmin
x∈C

1

2t ||x− z||2

Set C = For t = 1, PC(z) = Assumptions
ℜn+ [z]+
Box[l,u] PC(z)i = min{max{zi, li}, ui} li ≤ ui
Ball[c, r] c +

r
max{∥z− c∥2, r}

(z− c) ∥.∥2 ball, centre c ∈ ℜn & radius r > 0

{x|Ax = b} z− AT(AAT)−1(Az− b) A ∈ ℜm×n, b ∈ ℜm, A is full row rank
{x|aTx ≤ b} z− [aTx−b]+

∥a∥2 0 ̸= a ∈ ℜn b ∈ ℜ
∆n [z− µ∗e]+ where µ∗ ∈ ℜ satisfies eT[z− µ∗e]+ = 1

Ha,b ∩ Box[l,u] PBox[l,u](z− µ∗a) where µ∗ ∈ ℜ satisfies
aTPBox[l,u](z− µ∗a) = b 0 ̸= a ∈ ℜn b ∈ ℜ

H−a,b ∩ Box[l,u]
PBox[l,u](z) aTPBox[l,u](z) ≤ b
PBox[l,u](z− λ∗a) aTPBox[l,u](z) > b
where λ∗ ∈ ℜ satisfies aTPBox[l,u](z− λ∗a) = b & λ∗ > 0

0 ̸= a ∈ ℜn b ∈ ℜ

B∥.∥1 [0,α]
z ∥z∥1 ≤ α
[z− λ∗e]+ ⊙ sign(z) ∥z∥1 > α
where λ∗ > 0, & [z− λ∗e]+ ⊙ sign(z) = α

α > 0

October 26, 2018 222 / 427

if max = r, P(z) = z

Observation: All expressions are about dropping perpendicular from z to the constaint set

hyperplane

halfspace

derived on subsequent slides

Easy to Project Sets C (with closed form solutions)

Solution set of a linear system C = {x ∈ ℜn : ATx = b}
Affine images C = {Ax + b : x ∈ ℜn}
Nonnegative orthant C = {x ∈ ℜn : x ⪰ 0}. It may be hard to project on arbitrary
polyhedron.
Norm balls C = {x ∈ ℜn : ∥x∥p ≤ 1}, for p = 1, 2,∞

October 26, 2018 223 / 427

Projected Gradient Descent for Affine Constraint Set C

Solution set of a linear system C = {x ∈ ℜn : ATx = b}

x(k+1)
p = PC(x(k+1)

u)= arg min
ATz=b

1

2

x(k+1)
u − z

2

2

For z,x ∈ ℜn, A as an n×m matrix, b is a vector of size m, consider the slightly more general
problem (50) with B as an n× n matrix:

min
x∈ℜn

1
2(x− z)TB(x− z)

subject to ATx = b
(50)

For projected gradient descent, B =

October 26, 2018 224 / 427

I

Projected Gradient Descent for Affine Constraint Set C

Solution set of a linear system C = {x ∈ ℜn : ATx = b}

x(k+1)
p = PC(x(k+1)

u)= arg min
ATz=b

1

2

x(k+1)
u − z

2

2

For z,x ∈ ℜn, A as an n×m matrix, b is a vector of size m, consider the slightly more general
problem (50) with B as an n× n matrix:

min
x∈ℜn

1
2(x− z)TB(x− z)

subject to ATx = b
(50)

For projected gradient descent, B = I. Further, if n = 2 and m = 1, the minimization problem
(50) amounts to finding a point x∗ on a line a11x1 + a12x2 = b that is closest to z.

October 26, 2018 224 / 427

Projected Gradient Descent for Affine Constraint Set C
Consider minimization of the modified objective function
L(z,λ) = 1

2(x− z)TB(x− z) + λT(ATz− b).

min
x∈ℜn,λ∈ℜm

1
2(x− z)TB(x− z) + λT(ATx− b) (51)

The function L(x,λ) is called the lagrangian and involves the lagrange multiplier λ ∈ ℜm.
A sufficient condition for optimality of L(x,λ) at a point L(x∗,λ∗) is that ∇L(x∗,λ∗) = 0
and ∇2L(x∗,λ∗) ≻ 0. For this specific problem:

∇L(x∗,λ∗) =

[
Bx∗ − 1

2(B+ BT)z + Aλ∗

ATx∗ − b

]
=

[
0
0

]

and

∇2L(x∗,λ∗) =

[
B A
AT 0

]
≻ 0

October 26, 2018 225 / 427

Projected Gradient Descent for Affine Constraint Set C
The point (x∗,λ∗) must therefore satisfy, ATx∗ = b and Aλ∗ = −Bx∗ + 1

2(B+ BT)z.
Recap: If B is taken to be the identity matrix, n = 2 and m = 1, the minimization problem
(50) amounts to finding a point x∗ on a line a11x1 + a12x2 = b that is closest to z.
From geometry, the point on a line closest to z is the point of intersection p∗ of a
perpendicular (or least possible10 obtuse angle) from z to the line. However, the solution
for the minimum of (51), for these conditions coincide with p∗ and are given by:

x∗1 = z1 − a11(a11z1+a12z2−b
(a11)2+(a12)2 x∗2 = z2 − a12(a11z1+a12z2−b)

(a11)2+(a12)2

That is, for n = 2 and m = 1, the solution to (51) is the same as the solution to (50)
For general n and m, with z ≡ x(k+1)

u ,

x∗ = x(k+1)
p = PC(x(k+1)

u) = arg min
ATx=b

1

2

x(k+1)
u − x

2

2
= x(k+1)

u − A(ATA)−1(ATx(k+1)
u − b

10See following slides for some elaboration on geometry of the projection
October 26, 2018 226 / 427

Projected Gradient Descent: Illustrated and Summarized

Illustration of Projected Gradient Descent on
Quadratic Objective with bounded affine
(Polyhedral) constraint set
The line joining point of projection xkp = PC(xku) to
xku forms least possible obtuse anglea with line
joining xkp = PC(xku) to any point y ∈ C.

aSee following slides for some elaboration on geometry of the projection

October 26, 2018 227 / 427

Table of Orthogonal Projections: See https://archive.siam.org/books/mo25/mo25_ch6.pdf

PC(z) = proxIC(z) = argmin
x

1

2t ||x− z||2 + IC(x) = argmin
x∈C

1

2t ||x− z||2

Set C = For t = 1, PC(z) = Assumptions
ℜn+ [z]+
Box[l,u] PC(z)i = min{max{zi, li}, ui} li ≤ ui
Ball[c, r] c +

r
max{∥z− c∥2, r}

(z− c) ∥.∥2 ball, centre c ∈ ℜn & radius r > 0

{x|Ax = b} z− AT(AAT)−1(Az− b) A ∈ ℜm×n, b ∈ ℜm, A is full row rank
{x|aTx ≤ b} z− [aTx−b]+

∥a∥2 0 ̸= a ∈ ℜn b ∈ ℜ
∆n [z− µ∗e]+ where µ∗ ∈ ℜ satisfies eT[z− µ∗e]+ = 1

Ha,b ∩ Box[l,u] PBox[l,u](z− µ∗a) where µ∗ ∈ ℜ satisfies
aTPBox[l,u](z− µ∗a) = b 0 ̸= a ∈ ℜn b ∈ ℜ

H−a,b ∩ Box[l,u]
PBox[l,u](z) aTPBox[l,u](z) ≤ b
PBox[l,u](z− λ∗a) aTPBox[l,u](z) > b
where λ∗ ∈ ℜ satisfies aTPBox[l,u](z− λ∗a) = b & λ∗ > 0

0 ̸= a ∈ ℜn b ∈ ℜ

B∥.∥1 [0,α]
z ∥z∥1 ≤ α
[z− λ∗e]+ ⊙ sign(z) ∥z∥1 > α
where λ∗ > 0, & [z− λ∗e]+ ⊙ sign(z) = α

α > 0

October 26, 2018 228 / 427

Elaboration on the Geometry of the Projected
Gradient Descent

Right angle FOR Affine Set/Unbounded sets
Least possible obtuse angle FOR
Polyhedron/Bounded Sets

October 26, 2018 229 / 427

Claim: If PC(z) is a projection of z, then
(
y− PC(z)

)T (z− PC(z)
)
≤ 0, ∀y ∈ C

That is, the angle between
(
y− PC(z)

)
and

(
z− PC(z)

)
is obtuse (or right-angled for

the projected point), ∀y ∈ C

October 26, 2018 230 / 427

Proof of this claim is on following slides for your reading

Claim: If PC(z) is a projection of z, then
(
y− PC(z)

)T (z− PC(z)
)
≤ 0, ∀y ∈ C

That is, the angle between
(
y− PC(z)

)
and

(
z− PC(z)

)
is obtuse (or right-angled for

the projected point), ∀y ∈ C
For the more general proxC operator,

(
y− proxC(z)

)T (z− proxC(z)
)
≤ 0, ∀y (52)

October 26, 2018 230 / 427

Claim: If PC(z) is a projection of z, then
(
y− PC(z)

)T (z− PC(z)
)
≤ 0, ∀y ∈ C

That is, the angle between
(
y− PC(z)

)
and

(
z− PC(z)

)
is obtuse (or right-angled for

the projected point), ∀y ∈ C
For the more general proxC operator,

(
y− proxC(z)

)T (z− proxC(z)
)
≤ 0, ∀y (52)

In fact, the conditions in (53), (54) and (55) can be
proved to be equivalenta

(
y− z∗

)T (z− z∗
)
≤ 0, ∀y (53)

z∗ = proxc(z) (54)

z− z∗ ∈ ∂c(z∗) (55)
aTheorem 6.39 of https://archive.siam.org/books/mo25/mo25_ch6.pdf

October 26, 2018 230 / 427

(when c is assumed to be
convex)

Proof for
⟨
y− PC(z), z− PC(z)

⟩
≤ 0

To be more general, let us consider an inner product ⟨a,b⟩ instead of aTb
Let y∗ = (1− α)PC(z) + αy, for some α ∈ (0, 1), and y ∈ C
=⇒ y∗ = PC(z) + α(y− PC(z)), y∗ ∈ C

PC(z) = argminy∈C∥z− y∥22
⇒

October 26, 2018 231 / 427

Proof for
⟨
y− PC(z), z− PC(z)

⟩
≤ 0

To be more general, let us consider an inner product ⟨a,b⟩ instead of aTb
Let y∗ = (1− α)PC(z) + αy, for some α ∈ (0, 1), and y ∈ C
=⇒ y∗ = PC(z) + α(y− PC(z)), y∗ ∈ C

PC(z) = argminy∈C∥z− y∥22
⇒

z− PC(z)

2 ≤∥z− y∗∥2

October 26, 2018 231 / 427

Proof for
⟨
y− PC(z), z− PC(z)

⟩
≤ 0

∥z− y∗∥2

=

z−

(
PC(z) + α(y− PC(z))

)

2

=

z− PC(z)

2 + α2

y− PC(z)

2 − 2α
⟨
z− PC(z),y− PC(z)

⟩

≥

z− PC(z)

2

=⇒
⟨
z− PC(z),y− PC(z)

⟩
≤ α

2

y− PC(z)

2 , ∀α ∈ (0, 1)

Thus, the LHS can either be 0 or a negative value. Any positive value of the LHS will
lead to a contradiction for some small α→ 0

Hence, we proved that
⟨
y− PC(z), z− PC(z)

⟩
≤ 0

October 26, 2018 232 / 427

Proof for
⟨
y− PC(z), z− PC(z)

⟩
≤ 0

We can also prove that if ⟨z− z∗,y− z∗⟩ ≤ 0, ∀y ∈ C s.t. y ̸= z∗, and z∗ ∈ C, then

z∗ = PC(z) = argmin
ȳ∈C
∥z− ȳ∥22

Consider ∥z− y∥2 −∥z− z∗∥2
=

z− z∗ + (z∗ − y)

2 −∥z− z∗∥2
=∥z− z∗∥2 +∥y− z∗∥2 − 2 ⟨z− z∗,y− z∗⟩ −∥z− z∗∥2
=∥y− z∗∥2 − 2 ⟨z− z∗,y− z∗⟩
> 0

=⇒ ∥z− y∥2 >∥z− z∗∥2, ∀y ∈ C s.t. y ̸= z∗

This proves that z∗ = PC(z)

October 26, 2018 233 / 427

Case 1: Projected (Gradient) Descent

We can find ∆x as the change in x along some steepest descent direction of f without
constraints
Thus, let xk+1

u = zk+1 = xk +∆x iterate reduces f(x) without constraints
To find the proximal update when c(x) = IC(x), we

October 26, 2018 234 / 427

Case 1: Projected (Gradient) Descent

We can find ∆x as the change in x along some steepest descent direction of f without
constraints
Thus, let xk+1

u = zk+1 = xk +∆x iterate reduces f(x) without constraints
To find the proximal update when c(x) = IC(x), we project xk+1

u onto C to get the
projected point xk+1

p by solving:

October 26, 2018 234 / 427

Case 1: Projected (Gradient) Descent

We can find ∆x as the change in x along some steepest descent direction of f without
constraints
Thus, let xk+1

u = zk+1 = xk +∆x iterate reduces f(x) without constraints
To find the proximal update when c(x) = IC(x), we project xk+1

u onto C to get the
projected point xk+1

p by solving:

x(k+1)
p = PC

(
zk+1

)
= argmin

x

z(k+1) − x

2

2
+ IC(x) = argmin

x∈C

z(k+1) − x

2

2
= proxIC(z)

Thus, the projected point x(k+1)
p is the point in C that is the closest to the unbounded

optimal point x(k+1)
u if C is a non-empty closed convex set

October 26, 2018 234 / 427

Recall a necessary condition for descent direction: Dot product of update step with
 gradient <= 0

Recall: Descent direction for a convex function

For a descent in a convex function f, we must have
f(xk+1) ≥ Value at xk+1 obtained by linear interpolation from xk

ie. f(xk+1) ≥ f(xk) +∇Tf(xk)(xk+1 − xk)
Thus, for ∆xk to be a descent direction, it is necessary that
∇Tf(xk)∆xk ≤ 0
(where ∆xk = xk+1 − xk)

October 26, 2018 235 / 427

Question: Descent Direction and Projected Gradient Descent

We want that the point obtained after the projection of xk+1
u be a descent from xkp for

the function f
∇f(xk) ·∆xp ≤ 0

(where ∆x(k+1)
p = PC(xk+1

u)− xkp = x(k+1)
p − xkp)

Are we guaranteed this?

October 26, 2018 236 / 427

Algorithm: Projected Gradient Descent

Find a starting point x0
p ∈ C.

Set k = 1
repeat
1. Choose a step size tk ∝ 1/

√
k.

2. Set xku = xk−1
p − tk∇f(xk−1

p).
3. Set xkp = argmin

z∈C

xku − z

2

2
.

4. Set k = k+ 1.
until stopping criterion (such as ||xkp − xk−1

p || ≤ ϵ or f(xkp) > f(xk−1
p)) is satisfieda

aBetter criteria can be found using Lagrange duality theory, etc.

Figure 13: The projected gradient descent algorithm.

October 26, 2018 237 / 427

Option 1: Generalized Gradient Descent
Recall

proxc(z) = argmin
x

1

2t ||x− z||2 + c(x)

1 Gradient Descent ⇒

11Else we just treat this as another minimization problem and obtain an approximate solution. Practical
convergence rate can be very slow. Exceptions are partial proximation minimization [Bertsekas and Tseng ’94]

October 26, 2018 238 / 427

Option 1: Generalized Gradient Descent
Recall

proxc(z) = argmin
x

1

2t ||x− z||2 + c(x)

1 Gradient Descent ⇒ c(x) = 0
2 Projected Gradient Descent ⇒

11Else we just treat this as another minimization problem and obtain an approximate solution. Practical
convergence rate can be very slow. Exceptions are partial proximation minimization [Bertsekas and Tseng ’94]

October 26, 2018 238 / 427

Option 1: Generalized Gradient Descent
Recall

proxc(z) = argmin
x

1

2t ||x− z||2 + c(x)

1 Gradient Descent ⇒ c(x) = 0
2 Projected Gradient Descent ⇒ c(x) =

∑
i ICi(x)

3 Proximal Minimization ⇒ f(x) = 0

We will discuss these specific cases after a short discussion on convergence

11Else we just treat this as another minimization problem and obtain an approximate solution. Practical
convergence rate can be very slow. Exceptions are partial proximation minimization [Bertsekas and Tseng ’94]

October 26, 2018 238 / 427

Option 1: Generalized Gradient Descent
Recall

proxc(z) = argmin
x

1

2t ||x− z||2 + c(x)

1 Gradient Descent ⇒ c(x) = 0
2 Projected Gradient Descent ⇒ c(x) =

∑
i ICi(x)

3 Proximal Minimization ⇒ f(x) = 0

We will discuss these specific cases after a short discussion on convergence
Convergence: If f(x) is convex, differentiable, and ∇f is Lipschitz continuous with
constant L > 0 AND c(x) is convex and proxc(z) can be solved exactly11 then

11Else we just treat this as another minimization problem and obtain an approximate solution. Practical
convergence rate can be very slow. Exceptions are partial proximation minimization [Bertsekas and Tseng ’94]

October 26, 2018 238 / 427

Option 1: Generalized Gradient Descent
Recall

proxc(z) = argmin
x

1

2t ||x− z||2 + c(x)

1 Gradient Descent ⇒ c(x) = 0
2 Projected Gradient Descent ⇒ c(x) =

∑
i ICi(x)

3 Proximal Minimization ⇒ f(x) = 0

We will discuss these specific cases after a short discussion on convergence
Convergence: If f(x) is convex, differentiable, and ∇f is Lipschitz continuous with
constant L > 0 AND c(x) is convex and proxc(z) can be solved exactly11 then
convergence result (and proof) is similar to that for gradient descent

f(xk)− f(x∗) ≤ 1

k

k∑

i=1

(
f(xi)− f(x∗)

)
≤

x(0) − x∗

2

2tk
11Else we just treat this as another minimization problem and obtain an approximate solution. Practical

convergence rate can be very slow. Exceptions are partial proximation minimization [Bertsekas and Tseng ’94]
October 26, 2018 238 / 427

Recall sublinear
rate of convergence

Summary results for Generalized Gradient Descent:
(Details at https://archive.siam.org/books/mo25/mo25_ch10.pdf

For one of three backtracking procedures B1, B2 and B3
With no convexity assumption: Convergence can be proved using B1 (Theorem 10.15)
With convexity of f: O(1/k) rate of convergence using B2 (Theorem 10.21)
With strong convexity of f: Linear rate of convergence using B2 (Theorem 10.29)
Assuming upper bound on norm of gradient ∇f (that is, Lipschitz continuitu of f), we get
weaker O(1/

√
k) convergence rate (Extra optional slides at the end)

October 26, 2018 239 / 427

Recommended optional reading

Algorithms: Generalized Gradient Descent
Goal: x∗ = argminx f(x) + c(x)

Find a starting point x(0) ∈ D
repeat
1. Set ∆x(k) = −∇f(x(k)).
2. Choose a step size t(k) > 0 using exact or backtracking ray search to obtain bx(k+1) =
x(k) + t(k)∆x(k)

3. Obtain x(k+1) = proxc
(
bx(k+1)

)
.

4. Set k = k+ 1.
until stopping criterion (such as ||x(k+1) − xk||2 ≤ ϵ) is satisfied

The steepest descent method can be thought of as changing the coordinate system in a
particular way and then applying the gradient descent method in the changed coordinate
system.

October 26, 2018 240 / 427

Convergence Rate: Generalized Gradient Descent vs. Subgradient Descent

Recap: For Subgraident Descent: The subgradient method has convergence rate
O(1/

√
k); to get f(x(k)

best)− f(x∗) ≤ ϵ, we need O(1/
√
ϵ2) iterations.

This is actually the best we can do; e.g., we can’t do better than O(1/
√
k).

October 26, 2018 241 / 427

Convergence Rate: Generalized Gradient Descent vs. Subgradient Descent

Recap: For Subgraident Descent: The subgradient method has convergence rate
O(1/

√
k); to get f(x(k)

best)− f(x∗) ≤ ϵ, we need O(1/
√
ϵ2) iterations.

This is actually the best we can do; e.g., we can’t do better than O(1/
√
k).

For generalized Gradient Descent: If f(x) is convex, differentiable, and ∇f is Lipschitz
continuous with constant L > 0 AND c(x) is convex and proxc(x) can be solved exactly
then convergence result (and proof) is similar to that for gradient descent

f(xk)− f(x∗) ≤ 1

k

k∑

i=1

(
f(xi)− f(x∗)

)
≤

x(0) − x∗

2

2tk

Better convergence (O(1/k)) because of assuming (i) Differentiability of f(x) and
(ii) Lipschitz continuity of ∇f(x).
Can we do even better without strong convexity (which is not possible for c(x))?

October 26, 2018 241 / 427

We appreciate that
we do better than
subgradient
descent by making
use of differentiability
of f(x) part of the objective

(Nesterov) Accelerated Generalized Gradient Descent

October 26, 2018 242 / 427

(Nesterov) Accelerated Generalized Gradient Descent
The problem is:

min
x∈Rn

f(x) + c(x)

where f(x) is convex and differentiable, c(x) is convex and not necessarily differentiable.
Initialize x(0)

u ∈ Rn

repeat for k = 1, 2, 3, . . .

y = x(k−1) +
k− 2

k+ 1
(x(k−1) − x(k−2))

x(k) = proxtk(y− tk∇f(y))
Or Equivalently,

y = (1− θk)x(k−1) + θkx(k−1)
u

xk = proxtk(y− tk∇f(y))

x(k)
u = x(k−1) +

1

θk
(x(k) − x(k−1))

where θk = 2/(k+ 1).
October 26, 2018 243 / 427

y is update after adding
velocity

compute prox on update after
 adding velocity

Steps for implementing

Algorithm: (Nesterov) Accelerated Generalized Gradient Descent

Initialize x(0)
u ,x(0) ∈ ℜn

Initialize k = 1
repeat
1. θk = 2/(k+ 1)

2. y = (1− θk)x(k−1) + θkx(k−1)
u .

3. Choose a step size tk > 0 using exact or backtracking ray search.
4. xk = proxtk(y− tk∇f(y))
5. x(k)

u = x(k−1) + 1
θk
(x(k) − x(k−1))

6. Set k = k+ 1.
until stopping criterion (such as ||xk − xk−1|| ≤ ϵ or f(xk) > f(xk−1)) is satisfieda

aBetter criteria can be found using Lagrange duality theory, etc.

Figure 15: The gradient descent algorithm.

October 26, 2018 244 / 427

(Nesterov) Accelerated Generalized Gradient Descent
1 First step k = 1 is just usual generalized gradient update: x(1) = proxt1(x(0)− t1∇f(x(0)))
2 Thereafter, the method carries some ”momentum” from previous iterations
3 c(x) = 0 gives accelerated gradient method
4 The method accelerates more towards the end of iterations

October 26, 2018 245 / 427

(Nesterov) Accelerated Generalized Gradient Descent
Examples showing the performance of accelerated gradient descent compared with usual
gradient descent.

Figure 17: Example 1: Performance of accelerated gradient descent compared with usual gradient
descent

October 26, 2018 246 / 427

(Nesterov) Accelerated Generalized Gradient Descent: Convergence

Minimize f(x) = f(x) + c(x) assuming that:
f is convex, differentiable, ∇f is Lipschitz with constant L > 0, and
c is convex, the prox function can be evaluated.

Theorem
Accelerated generalized gradient method with fixed step size t ≤ 1/L satisfies:

f(x(k))− f(x∗) ≤ 2||x(0) − x∗||2
t(k+ 1)2

Accelerated generalized gradient method can achieve the optimal O(1/k2) rate for first-order
method, or equivalently, if we want to get f(x(k))− f(x∗) ≤ ϵ, we only need O(1/√ϵ)
iterations. Now we prove this theorem.

October 26, 2018 247 / 427

(Nesterov) Accelerated Generalized Gradient Descent: Proof
Proof:
First we bound both the convex functions f(xk) and c(xk).

Since t ≤ 1/L and ∇f is Lipschitz with constant L > 0, we have

f(xk) ≤ f(y)+∇Tf(y)(xk−y)+ L
2
||xk−y||2 ≤ f(y)+∇f(y)T(xk−y)+ 1

2t ||x
k−y||2 (56)

In xk = proxt(y− t∇f(y)), let h = xk and w = y− t∇f(y). Then

h = proxt(w) = argmin
h

1

2t ||w− h||2 + c(h)

For this, we must have

0 ∈ ∂(
1

2t ||w− h||2 + c(h)) = −1

t (w− h) + ∂c(h) ⇒ −1

t (w− h) ∈ ∂c(h)

According to the definition of subgradient, we have for all z,

October 26, 2018 248 / 427

(Nesterov) Accelerated Generalized Gradient Descent: Proof
Proof:
First we bound both the convex functions f(xk) and c(xk).

Since t ≤ 1/L and ∇f is Lipschitz with constant L > 0, we have

f(xk) ≤ f(y)+∇Tf(y)(xk−y)+ L
2
||xk−y||2 ≤ f(y)+∇f(y)T(xk−y)+ 1

2t ||x
k−y||2 (56)

In xk = proxt(y− t∇f(y)), let h = xk and w = y− t∇f(y). Then

h = proxt(w) = argmin
h

1

2t ||w− h||2 + c(h)

For this, we must have

0 ∈ ∂(
1

2t ||w− h||2 + c(h)) = −1

t (w− h) + ∂c(h) ⇒ −1

t (w− h) ∈ ∂c(h)

According to the definition of subgradient, we have for all z,

c(z) ≥ c(h)− 1

t (h−w)T(z− h) ⇒ c(h) ≤ c(z) + 1

t (h−w)T(z− h)

for all z,w and h = proxt(w).
October 26, 2018 248 / 427

(Nesterov) Accelerated Generalized Gradient Descent: Proof (contd.)
Substituting back for both h and w in the above inequality we get for all z,

c(xk) ≤ c(z)+ 1

t (x
k−y+t∇f(y))T(z−xk) = c(z)+ 1

t (x
k−y)T(z−xk)+∇f(y)T(z−xk) (57)

Adding inequalities (56) and (57) we get for all z,

f(xk) ≤ f(y) + c(z) + 1

t (x
k − y)T(z− xk) + 1

2t ||x
k − y||2 +∇f(y)T(z− y)

Since f is convex,

October 26, 2018 249 / 427

(Nesterov) Accelerated Generalized Gradient Descent: Proof (contd.)
Substituting back for both h and w in the above inequality we get for all z,

c(xk) ≤ c(z)+ 1

t (x
k−y+t∇f(y))T(z−xk) = c(z)+ 1

t (x
k−y)T(z−xk)+∇f(y)T(z−xk) (57)

Adding inequalities (56) and (57) we get for all z,

f(xk) ≤ f(y) + c(z) + 1

t (x
k − y)T(z− xk) + 1

2t ||x
k − y||2 +∇f(y)T(z− y)

Since f is convex, using f(z) ≥ f(y) +∇f(y)T(z− y), we further get

f(xk) ≤ f(z) + 1

t (x
k − y)T(z− xk) + 1

2t ||x
k − y||2

Now take z = x(k−1), multiply both sides by (1− θ) and for z = x∗ multiply both sides by θ,

(1− θ)f(xk) ≤ (1− θ)f(x(k−1)) +
1− θ

t (xk − y)T(x(k−1) − xk) + 1− θ

2t ||xk − y||2

θf(xk) ≤ θf(x∗) +
θ

t (x
k − y)T(x∗ − xk) + θ

2t ||x
k − y||2

October 26, 2018 249 / 427

(Nesterov) Accelerated Generalized Gradient Descent: Proof (contd.)
Adding these two inequalities together, we get

f(xk)−f(x∗)−(1−θ)(f(x(k−1))−f(x∗)) ≤ 1

t (x
k − y)T((1− θ)x(k−1) + θx∗ − xk)+ 1

2t ||x
k − y||2

(58)

Using xku = x(k−1) + 1
θ (xk − x(k−1)) and y = (1− θ)x(k−1) + θx(k−1)

u , we have
(1− θ)x(k−1) + θx∗ − xk = θ(x∗ − xku) and using this again in the second equation,
xk − y = θ(xku − x(k−1)

u)

Substituting these equations into the RHS of inequality (58) we have

f(xk)− f(x∗)− (1− θ)(f(x(k−1))− f(x∗)) ≤ θ

2t(x
k
u − x(k−1)

u)
T
[2θ(x∗ − xku) + θ(xku − x(k−1)

u)]

October 26, 2018 250 / 427

(Nesterov) Accelerated Generalized Gradient Descent: Proof (contd.)
Adding these two inequalities together, we get

f(xk)−f(x∗)−(1−θ)(f(x(k−1))−f(x∗)) ≤ 1

t (x
k − y)T((1− θ)x(k−1) + θx∗ − xk)+ 1

2t ||x
k − y||2

(58)

Using xku = x(k−1) + 1
θ (xk − x(k−1)) and y = (1− θ)x(k−1) + θx(k−1)

u , we have
(1− θ)x(k−1) + θx∗ − xk = θ(x∗ − xku) and using this again in the second equation,
xk − y = θ(xku − x(k−1)

u)

Substituting these equations into the RHS of inequality (58) we have

f(xk)− f(x∗)− (1− θ)(f(x(k−1))− f(x∗)) ≤ θ

2t(x
k
u − x(k−1)

u)
T
[2θ(x∗ − xku) + θ(xku − x(k−1)

u)]

=
θ2

2t (x
∗ − x(k−1)

u)− (x∗ − x(k−1)
u)]

T
[(x∗ − xku) + (x∗ − x(k−1)

u)]

= dfracθ22t(||x(k−1)
u − x∗||2 − ||xku − x∗||2)

October 26, 2018 250 / 427

(Nesterov) Accelerated Generalized Gradient Descent: Proof (contd.)

t
θ2k

(f(x(k))− f(x∗)) +
1

2
||x(k)

u − x∗||2 ≤ t(1− θk)

θ2k
(f(x(k−1))− f(x∗)) +

1

2
||x(k−1)

u − x∗||2

Since θ = 2/(k+ 1), using 1−θk
θ2k
≤ 1

θ2k−1
, we have

t
θ2k

(f(x(k))− f(x∗)) +
1

2
||x(k)

u − x∗||2 ≤ t
θ2k−1

(f(x(k−1))− f(x∗)) +
1

2
||x(k−1)

u − x∗||2

Iterating this inequality and using θ1 = 1 we get
t
θ2k

(f(x(k))−f(x∗))+
1

2
||x(k)

u −x∗||2 ≤ t(1− θ1)

θ21
(f(x(0))−f(x∗))+

1

2
||x(0)

u −x∗||2 ≤ 1

2
||x(0)−x∗||2

Hence we conclude

f(x(k))− f(x∗) ≤θ2k
2t ||x

(0) − x∗||2 = 2||x(0) − x∗||2
t(k+ 1)2

October 26, 2018 251 / 427

Generalized Gradient Descent and its Special Cases

Recall
proxc(z) = argmin

x
1

2t ||x− z||2 + c(x)

It’s special cases are:
1 Gradient Descent: c(x) = 0

2 Projected Gradient Descent: c(x) = IC(x) (Example:

October 26, 2018 252 / 427

Generalized Gradient Descent and its Special Cases

Recall
proxc(z) = argmin

x
1

2t ||x− z||2 + c(x)

It’s special cases are:
1 Gradient Descent: c(x) = 0

2 Projected Gradient Descent: c(x) = IC(x) (Example: =
∑

i Igi(x))
3 Alternating Projection/Proximal Minimization: f(x) = 0

4 Alternating Direction Method of Multipliers
5 Special Cases for Specific Objectives

▶ LASSO: (Fast) Iterative Shrinkage Thresholding Algorithm (ISTA/FISTA)

October 26, 2018 252 / 427

Convergence of Projected Gradient Descent (even
under weaker assumptions)

October 26, 2018 253 / 427

Convergence of Projected Gradient Descent: Weaker assumptions
Recall: Assuming Lipschitz continuity on gradient ∇f and convexity of f and assuming
bounded iterates and assuming convexity of C (and therefore of IC) we obtained O(1/k)
convergence rate for (Generalized and hence for) Projected Gradient Descent
Assuming upper bound on norm of gradient ∇f (that is, Lipschitz continuitu of f), we get
weaker O(1/

√
k) convergence rate for Projected Gradient Descent

October 26, 2018 254 / 427

Convergence of Projected Gradient Descent: Weaker assumptions
Recall: Assuming Lipschitz continuity on gradient ∇f and convexity of f and assuming
bounded iterates and assuming convexity of C (and therefore of IC) we obtained O(1/k)
convergence rate for (Generalized and hence for) Projected Gradient Descent
Assuming upper bound on norm of gradient ∇f (that is, Lipschitz continuitu of f), we get
weaker O(1/

√
k) convergence rate for Projected Gradient Descent

Proof: To project xk+1
u = xk − t∇f(xk) onto the non-empty closed convex set C to get

the projected point xk+1
p , we solve:xk+1

p = PC(xk+1
u) = argminz∈C

xk+1
u − z

2

2

∥x∗ − xk+1
u ∥2 = ∥x∗ − xk∥2 − 2t∇f(xk)(xk − x∗) + t2|∇f(xk)|2 (59)

If: (i) d is diameter of C, i.e., ∀x,y ∈ C, ∥x− y∥ ≤ d (ii) l is upper bound on norm of
gradients, i.e., ∥∇f(x)∥ ≤ l and (iv) step size t = d

l
√
K , then substituting for l into (59)

∥x∗ − xk+1
u ∥2 ≤ ∥x∗ − xk∥2 − 2t∇f(xk)(xk − x∗) + t2l2 (60)

October 26, 2018 254 / 427

Convergence of Proj. Grad. Descent: Weaker assumptions (contd.)
Further, based on (60)

2t∇f(xk)(xk − x∗) ≤ ∥x∗ − xk∥2 − ∥x∗ − xk+1
u ∥2 + t2l2 (61)

As per definition of convexity:

f


 1

K

K∑

k=1

xk

− f(x∗) ≤ 1

K

K∑

k=1

(
f(xk)− f(x∗)

)
≤ 1

K

K∑

k=1

∇f(xk)(xk − x∗) (62)

Substituting for ∇f(xk)(xk − x∗) from (61) into (62), we get (63):

f


 1

K

K∑

k=1

xk

− f(x∗) ≤ 1

2tK

K∑

k=1

(
∥x∗ − xk∥2 − ∥x∗ − xk+1

u ∥2 + t2l2
)

(63)

October 26, 2018 255 / 427

Convergence of Proj. Grad. Descent: Weaker assumptions (contd.)

Expanding the summation over ∥x∗ − xk∥2, all terms get canceled except for the first and
last:

f


 1

K

K∑

k=1

xk

− f(x∗) ≤ 1

2tK
(
∥x∗ − x0∥2 − ∥x∗ − xK+1

u ∥2
)
+

tl2
2

(64)

Since d is diameter of C, i.e., ∥x∗ − x0∥2 ≤ d2 and since −∥x∗ − xK+1
u ∥2 ≤ 0,

f


 1

K

K∑

k=1

xk

− f(x∗) ≤ 1

2tK
(
d2
)
+

tl2
2
≤ dl√

K
(65)

Therefore, if t = d
l
√
K , f


 1

K

K∑

k=1

xk

 ≤ min

x∈C
f(x) + dl√

K

October 26, 2018 256 / 427

Convergence of Proj. Grad. Descent: Weaker assumptions (contd.)

To get solution that is ϵ approximate with ϵ = dg√
K , you need number of gradient

iterations that is K =
(

dg
ϵ

)2
= O

(
1
ϵ

)2

October 26, 2018 257 / 427

Extra and Optional: Alternative Projection
Method

October 26, 2018 258 / 427

Figure 19: Alternating Projection from Boyd Notes

October 26, 2018 259 / 427

Example: Subgradients and Alternating Projections
Problem: Given m closed convex sets C1,C2, . . . ,Cm, we want to find x∗ ∈ ∩m

i Ci.
First, we define

f(x) = max
i=1,...,m

dist(x,Ci)

where
dist(x,C) = min

u∈C
∥x− u∥

is the closest we can get to x if we have to stay in the set C.
Also,

f(x∗) = 0 ⇐⇒ x∗ ∈
m∩

i
Ci

Therefore, the optimization problem is to minimize

min
x∈Rn

f(x)

which, when equal to 0 is the point we are looking for.
October 26, 2018 260 / 427

Example: Subgradients and Alternating Projections (contd.)
Since C is closed and convex, there is a unique point u∗ = PC(x). This unique point is the
projection of x onto C, and it minimizes ∥x− u∥ over u ∈ C. We can thus write

dist(x,C) = ∥x− PC(x)∥

Finding subgradient of fi
We want to calculate the subgradient of f because if we can do so, we can apply subgradient
methods and obtain an algorithm to solve our problem.
First, we consider fi(x) of Ci. It turns out that fi(x) is differentiable. For each i, if we take a
point not in Ci, i.e x /∈ Ci and ∥x− PC(x)∥ ̸= 0, it turns out that

x− PC(x)
∥x− PC(x)∥

(66)

is a subgradient of fi(x). We obtain this by just taking the projected point and finding the
gradient without the chain rule.
Show that (123) is a subgradient of fi at x.

October 26, 2018 261 / 427

Example: Subgradients and Alternating Projections (contd.)
Finding subgradients of f:
Using a rule we learnt from earlier on in the course, if

f(x) = max
i=1,...,m

fi(x)

then,

∂f(x) = conv




∪

j:fj(x)=f(x)
∂fj(x)




What this means is that the subgradient of f(x) is equal to the convex hull of the union of all
maximal fj(x)’s, and take the respective subdifferentials.
If fi(x) = f(x) ̸= 0 (when it is 0, we are done), then

x− PC(x)
∥x− PC(x)∥

∈ ∂f(x)

This gives us a prescription for finding the subgradients.
October 26, 2018 262 / 427

Example: Subgradients and Alternating Projections
Subgradient descent:
We will use a particular stepsize, known as the Polyak stepsize, because this particular choice
will give us a famous algorithm that is a special case of the subgradient method. For the
purpose of illustration, the Polyak stepsize is

tk = f(x(k−1))

and the subgradient descent update rule is
x(k) = x(k−1) − tk∂f(x(k−1))

= x(k−1) − f(x(k−1))
x− PCi(x)
∥x− PCi(x)∥

where x(k−1) is farthest from Ci

= x(k−1) − x(k−1) + PCi(x)
= PCi(x)

So the update rule is just to take x(k−1) and project it to the set it is farthest from.
This is also known as the alternating projections algorithm. By using the subgradient method,
we can now use what we know about subgradients to say things about the alternating
projections algorithm (such as convergence rate and guarantees, etc). October 26, 2018 263 / 427

Extra and Optional: Nesterov’s Theorem
Theorem
Nesterov’s Theorem: For any k ≤ n− 1 and starting point x(0), there is a function in the
problem class such that any nonsmooth first-order method satisfies

f(x(k))− f(x∗) ≥ RG
2(1 +

√
k+ 1)

Proof.
Let k = n− 1 and x(0) = 0.

f(x) = max
i=1...n

xi +
1

2
||x||2

The optimal x∗ here = (−1/n, . . . ,−1/n), with the optimal function value f(x∗) = − 1
2n . If

R = 1√n , then f is Lipschitz with G = 1 + 1√n .
Claim: At any iteration i from 1 to n, all of the elements of x from xi+1 to xn are 0. To show
this, let us assume we have some oracle that gives us g = ej + x, where j is the smallest index
of x’s maximum value, xj. ej is the basis vector: October 26, 2018 264 / 427

