
(Log) Barrier methods

November 9, 2018 339 / 429

Barrier Methods for Constrained Optimization
Consider a more general constrained optimization problem

min
x∈Rn

f(x)

s.t.gi(x) ≤ 0 i = 1...m
and Ax = b

Possibly reformulations of this problem include:
min
x

f(x) + λB(x)

where B is a barrier function like
1 B(x) = ρ

2∥Ax− b∥2 (in Augmented Langragian - for a specific type of strong convexity wrt ∥.∥2))
2 B(x) =

∑
Igi(x) (Projected Gradient Descent: built on this & a linear approximation to f(x))

3 B(x) = ϕgi(x) = −1
t log

(
−gi(x)

)
▶ Here, − 1

t is used instead of λ. Lets discuss this in more details
November 9, 2018 340 / 429

Barrier Method: Example

As a very simple example, consider the following inequality constrained optimization problem.

minimize x2
subject to x ≥ 1

The logarithmic barrier formulation of this problem is

minimize x2 − µ ln (x− 1)

The unconstrained minimizer for this convex logarithmic barrier function is
bx(µ) = 1

2 + 1
2

√
1 + 2µ. As µ→ 0, the optimal point of the logarithmic barrier problem

approaches the actual point of optimality bx = 1 (which, as we can see, lies on the boundary of
the feasible region). The generalized idea, that as µ→ 0, f(bx)→ p∗ (where p∗ is the optimal
for primal) will be proved next.

November 9, 2018 341 / 429

Barrier Method and Linear Program

Recap:

Problem type Objective Function Constraints L∗(λ) Dual constraints Strong duality
Linear Program cTx Ax ≤ b −bTλ ATλ+ c = 0 Feasible primal

What are necessary conditions at primal-dual optimality?
..
..

November 9, 2018 342 / 429

Log Barrier (Interior Point) Method

The log barrier function is defined as

B(x) = ϕgi(x) = −
1

t log
(
−gi(x)

)

Approximates
∑

Igi(x) (better approximation as t→∞)
f(x) +

∑
i ϕgi(x) is convex if f and gi are convex

Why? ϕgi(x) is negative of monotonically increasing concave function (log) of a concave
function −gi(x)
Let λi be lagrange multiplier associated with inequality constraint gi(x) ≤ 0

We’ve taken care of the inequality constraints, lets also consider an equality constraint
Ax = b with corresponding langrage multipler (vector) ν

November 9, 2018 343 / 429

Log Barrier Method (contd.) (KKT based intepretation)

Our objective becomes
min
x

f(x) +
∑

i

(
−1

t

)
log

(
−gi(x)

)

s.t. Ax = b

At different values of t, we get different x∗(t)
Let λ∗

i (t) =
First-order necessary conditions for optimality (and strong duality)17 at x∗(t),λ∗

i (t):
1 ..
2 ..
3 ..
4 ..

⋆ ..

17of original problem
November 9, 2018 344 / 429

Our objective becomes
min
x

f(x) +
∑

i

(
−1

t

)
log

(
−gi(x)

)

s.t. Ax = b

At different values of t, we get different x∗
Let λ∗

i (t) = −1
t gi(x∗(t))

First-order necessary conditions for optimality (and strong duality)18 at x∗(t),λ∗
i (t):

1 gi
(
x∗(t)

)
≤ 0

2 Ax∗(t) = b
3 ∇f

(
x∗(t)

)
+
∑m

i=1 λ
∗
i (t)∇gi

(
x∗(t)

)
+ ν∗(t)⊤A = 0

4 λ∗
i (t) ≥ 0
⋆ Since gi

(
x∗(t)

)
≤ 0 and t ≥ 0

All above conditions hold at optimal solution x(t), ν(t), of barrier problem ⇒(
λ∗
i (t), ν∗(t)

)
are dual feasible.

18of original problem
November 9, 2018 345 / 429

(onlt complementary slackness is violated)

Log Barrier Method & Duality Gap (KKT based intepretation)

If necessary conditions are satisfied and if f and gi’s are convex, and gi’s strictly
feasible, the conditions are also sufficient. Thus,

(
x∗(t),λ∗

i (t), ν∗(t)
)
form a critical point

for the Lagrangian

L(x,λ, ν) = f(x) +
m∑

i=1

λigi(x) + ν⊤(Ax− b)

Lagrange dual function
L∗(λ, ν) = min

x
L(x,λ, ν)

L∗
(
λ∗(t), ν∗(t)

)
= f

(
x∗(t)

)
+

m∑

i=1

λ∗
i (t)gi

(
x∗(t)

)
+ ν∗(t)⊤

(
Ax∗(t)− b

)

=

▶ is the duality gap
▶ As t→∞, duality gap→ . . .

November 9, 2018 346 / 429

f(x*(t)) - m/t

m/t upperbound
0

Log Barrier Method & Duality Gap (KKT based intepretation)
If necessary conditions are satisfied and if f and gi’s are convex, and gi’s strictly
feasible, the conditions are also sufficient. Thus,

(
x∗(t),λ∗

i (t), ν∗(t)
)
form a critical point

for the Lagrangian

L(x,λ, ν) = f(x) +
m∑

i=1

λigi(x) + ν⊤(Ax− b)

Lagrange dual function
L∗(λ, ν) = min

x
L(x,λ, ν)

L∗
(
λ∗(t), ν∗(t)

)
= f

(
x∗(t)

)
+

m∑

i=1

λ∗
i (t)gi

(
x∗(t)

)
+ ν∗(t)⊤

(
Ax∗(t)− b

)

= f
(
x∗(t)

)
− m

t

▶ m
t here is called the duality gap

▶ As t→∞, duality gap→ 0, but computing optimal solution x(t) to barrier problem will be
that harder

November 9, 2018 347 / 429

Log Barrier Method & Duality Gap (KKT based intepretation)

At optimality, primal optimal = dual optimal
i.e. p∗ = d∗

From weak duality,
f
(
x∗(t)

)
− m

t ≤ p∗

=⇒ f
(
x∗(t)

)
− p∗ ≤ m

t

▶ The duality gap is always ≤ m
t

▶ The more we increase t, the smaller will be the duality gap

November 9, 2018 348 / 429

Log Barrier method: Start with small t (conservative about feasibility set)
Iteratively solve the barrier formulation (start with solution to prev iteration)

increase value of t

The Log Barrier Method
Also known as sequential unconstrained minimization technique (SUMT) & barrier method &
path-following method

1 Start with t = t(0), µ > 1, and consider ϵ tolerance
2 Repeat

1 Solve

x∗(t) = argmin
x

f(x) +
m∑

i=1

(
−1

t

)
log

(
−gi(x)

)

s.t. Ax = b
2 If m

t < ϵ, Quit
else, set t = µt

November 9, 2018 349 / 429

Scale up the value of t multiplicatively in every
outer iteration

INNER ITERATION: (solved using Dual Ascent or Augment Lagrangian)
Newton algo especially good for this

for solving for x*(t), initialize
using x*(t-1)

The Log Barrier Method
Also known as sequential unconstrained minimization technique (SUMT) & barrier method &
path-following method

1 Start with t = t(0), µ > 1, and consider ϵ tolerance
2 Repeat

1 Solve

x∗(t) = argmin
x

f(x) +
m∑

i=1

(
−1

t

)
log

(
−gi(x)

)

s.t. Ax = b
2 If m

t < ϵ, Quit
else, set t = µt

Note: Computing x∗(t) exactly is not necessary since the central path has no significance
other than that it leads to a solution of the original problem for t→∞;
Also small µ ⇒ faster inner iterations. Large µ ⇒ faster outer iterations.

November 9, 2018 349 / 429

Since x*(t-1) will not be far from x*(t) Upper bound on duality gap will shrink quickly

Central path for an LP with n = 2 and m = 6. The dashed curves show three contour
lines of the logarithmic barrier function φ. The central path converges to the optimal point
x* as t → ∞. Also shown is the point on the central path with t = 10.
[Figure source: Boyd & Vandenberghe]

In the process, we can also obtain λ∗(t) and ν∗(t)
Convergence of outer iterations:

We get ϵ accuracy after




log
(

m
ϵt(0)

)

log(µ)


 updates of t

November 9, 2018 350 / 429

Log Barrier Method & Strictly Feasible Starting Point

The inner optimization in the iterative algorithm using a barrier method,

x∗(t) = argmin
x

f(x) +
∑

i

(
−1

t

)
log

(
−gi(x)

)

s.t. Ax = b

can be solved using (sub)gradient descent starting from older value of x from previous
iteration
We must start with a strictly feasible x, otherwise
− log

(
−gi(x)

)
→∞

November 9, 2018 351 / 429

How to find a strictly feasible x(0)?

November 9, 2018 352 / 429

How to find a strictly feasible x(0)?

Basic Phase I method
x(0) = argmin

x
Γ

s.t. gi(x) ≤ Γ

We solve this using the barrier method, and thus will also need a strictly feasible starting
x̂(0)

Here,
Γ = max

i=1...m
gi(x̂(0)) + δ

where, δ > 0
▶ i.e. Γ is slightly larger than the largest gi(x̂(0))

November 9, 2018 353 / 429

On solving this optimization for finding x(0),
▶ If Γ∗ < 0, x(0) is strictly feasible
▶ If Γ∗ = 0, x(0) is feasible (but not strictly)
▶ If Γ∗ > 0, x(0) is not feasible

A slightly ‘richer’ problem can consider different Γi for each gi, to improve numerical
precision

x(0) = argmin
x

Γi

s.t. gi(x) ≤ Γi

November 9, 2018 354 / 429

min over i

Choice of a good x̂(0) or x(0) depends on the nature/class of the problem, use domain
knowledge to decide it

November 9, 2018 355 / 429

Log Barrier Method & Strictly Feasible Starting Point

We need not obtain x∗(t) exactly from each outer iteration

If not solving for x∗(t) exactly, we will get ϵ accuracy after more than




log
(

m
ϵt(0)

)

log(µ)




updates of t
▶ However, solving the inner iteration exactly may take too much time
▶ Fewer inner loop iterations correspond to more outer loop iterations

November 9, 2018 356 / 429

TRADEOFFS

Log Barrier Method & Strictly Feasible Starting Point

We need not obtain x∗(t) exactly from each outer iteration

If not solving for x∗(t) exactly, we will get ϵ accuracy after more than




log
(

m
ϵt(0)

)

log(µ)




updates of t
▶ However, solving the inner iteration exactly may take too much time
▶ Fewer inner loop iterations correspond to more outer loop iterations

Second order descent algorithms (such as Newton Descent) found effective in such
settings for following reasons:

November 9, 2018 356 / 429

Log Barrier Method & Strictly Feasible Starting Point

We need not obtain x∗(t) exactly from each outer iteration

If not solving for x∗(t) exactly, we will get ϵ accuracy after more than




log
(

m
ϵt(0)

)

log(µ)




updates of t
▶ However, solving the inner iteration exactly may take too much time
▶ Fewer inner loop iterations correspond to more outer loop iterations

Second order descent algorithms (such as Newton Descent) found effective in such
settings for following reasons:

▶ Accounts for curvature of the function; useful to converge to x(µt) quickly from x(t).
▶ Quadratic convergence when close to x∗(t)
▶ Less (or no) dependence on step size tk

November 9, 2018 356 / 429

Recall: Curvature naturally characterized by the Hessian

Proved in Boyd
Accouting for curvature reduces sensitivity to
step size

Second Order Descent and Approximations
Sections 4.5.2 - 4.5.6 of

BasicsOfConvexOptimization.pdf

November 9, 2018 357 / 429

November 9, 2018 358 / 429

Gradient descent (roundabout)

Newton algo

Newton’s Algorithm as a Steepest Descent Method
This choice of ∆xk+1 corresponds to the direction of steepest descent under the matrix
norm19 induced by the Hessian ∇2f(xk):
∆x(k) = argmin

{
∇Tf(x(k))v | ||v||∇2f(xk) = 1

}
.

Equivalently, based on approximating a function around the current iterate x(k) using a
second degree Taylor expansion.

Q(x) ≈ef(x) = f(x(k)) +∇Tf(x(k))(x− x(k)) +
1

2
(x− x(k))T∇2f(x(k))(x− x(k))

Convex f ⇒

19
(

vT∇2f(xk)v
) 1

2

November 9, 2018 358 / 429

Hessian is positive semi-definite
Q(x) will ALSO be convex

November 9, 2018 358 / 429

Second order information through hessian
gives an ellipsoid which is aligned with the
curvature in that specific region (Europe)

Newton’s Algorithm as a Steepest Descent Method
This choice of ∆xk+1 corresponds to the direction of steepest descent under the matrix
norm19 induced by the Hessian ∇2f(xk):
∆x(k) = argmin

{
∇Tf(x(k))v | ||v||∇2f(xk) = 1

}
.

Equivalently, based on approximating a function around the current iterate x(k) using a
second degree Taylor expansion.

Q(x) ≈ef(x) = f(x(k)) +∇Tf(x(k))(x− x(k)) +
1

2
(x− x(k))T∇2f(x(k))(x− x(k))

Convex f ⇒ convex quadratic approximation. Newton’s method is based on solving the
approximation exactly
Setting gradient of quadratic approximation (with respect to x) to 0 gives

∇Tf(x(k)) +∇2f(x(k))(x(k+1) − x(k)) = 0

Assuming ∇2f(xk) is invertible, next iterate is x(k+1) = x(k) −
(
∇2f(x(k))

)−1
∇f(x(k))

19
(

vT∇2f(xk)v
) 1

2

November 9, 2018 358 / 429

Newton’s Algorithm as a Steepest Descent Method

Find a starting point x(0) ∈ D.
Select an appropriate tolerance ϵ > 0.
repeat
1. Set ∆x(k) = −

(
∇2f(x(k))

)−1
∇f(x).

2. Let λ2 = ∇Tf(x(k))
(
∇2f(x(k))

)−1
∇f(x(k)) ⇔ Directional derivative in the Newton Direction

3. If λ2

2 ≤ ϵ, quit.
4. Set step size t(k) = 1. Obtain x(k+1) = x(k) + t(k)∆x(k).
5. Set k = k+ 1.

until

Figure 32: The Newton’s method which typically uses a step size of 1. ∆x(k) can be shown to be
always a Descent Direction (Theorem 83 of notes). For x ∈ ℜn, each Newton’s step takes O(n3) time
(without using any fast matrix multiplication methods).

November 9, 2018 359 / 429

Most expensive step: Computing
Hessian inverse

Gradient descent (roundabout)

Newton algo

Variants of Newtons’s Method

Special Cases: When Objective function is a composition of two functions (such as Loss
l over some Prediction function m): Gauss Newton Approximation (Section 4.5.4 of
BasicsOfConvexOptimization.pdf) and Levenberg-Marquardt (Section 4.5.5)

Quasi-Newton Algorithms: When Hessian inverse
(
∇2f(xk+1)

)−1
is approximated by a

matrix Bk+1 such that
▶ gradient of quadratic approximation Q(xk) agrees at xk and xk+1

▶ Bk+1 is as close as possible to Bk in some norm (such as the Frobenius norm)
See BFGS (Section 4.5.6), LBFGS etc.

November 9, 2018 360 / 429

Cutting Plane Algorithm
(Invoking Linear Programs for Non-linear constraints)

November 9, 2018 361 / 429

Cutting Plane Algorithm

Consider amother general formulation of convex optimization problems20:

minimize cTx
subject to gj(x) ≤ 0 for j = 1, 2, . . . ,m (92)

where gj(x) are convex functions.
How can every convex optimization problem be presented in this form?

20All convex optimization problems of the form discussed so far can be cast in this form.
November 9, 2018 362 / 429

Cutting Plane Algorithm

Consider amother general formulation of convex optimization problems20:

minimize cTx
subject to gj(x) ≤ 0 for j = 1, 2, . . . ,m (92)

where gj(x) are convex functions.
How can every convex optimization problem be presented in this form? For objective
function f(x), translate it into a constraint f(x)− c ≤ 0 and minimize c
Let sj(xi) be a subgradient for gj at xi. By definition of subgradient

20All convex optimization problems of the form discussed so far can be cast in this form.
November 9, 2018 362 / 429

Cutting Plane Algorithm

Consider amother general formulation of convex optimization problems20:

minimize cTx
subject to gj(x) ≤ 0 for j = 1, 2, . . . ,m (92)

where gj(x) are convex functions.
How can every convex optimization problem be presented in this form? For objective
function f(x), translate it into a constraint f(x)− c ≤ 0 and minimize c
Let sj(xi) be a subgradient for gj at xi. By definition of subgradient
gj(x) ≥ gj(xi) + sTj (xi)(x− xi) for all x ∈ dom(gj). [Eg: sj(xi) could be ∇gj(xi)]

20All convex optimization problems of the form discussed so far can be cast in this form.
November 9, 2018 362 / 429

Cutting Plane Algorithm (contd.)

Since we are restricting the search to x such that gj(x) ≤ 0,

November 9, 2018 363 / 429

The tangent hyperplane lower bound to g_j shopuld necessarily be also <= 0

Cutting Plane Algorithm (contd.)

Since we are restricting the search to x such that gj(x) ≤ 0, 0 ≥ gj(xi) + sTj (xi)(x− xi)
for all x ∈ dom(gj)
When the last inequality is enumerated for all values of i and j, we get several linear
constraints:
sTj (xi)x ≤ sTj (xi)xi − gj(xi) for fixed i and all j and x ∈ dom(gj) ≡ Aix ≤ Aixi − gi

Ai =




s1(xi)
s2(xi)
.
.
sm(xi)




gi =




g1(xi)
g2(xi)
.
.
gm(xi)




(93)

November 9, 2018 363 / 429

Cutting Plane Algorithm (contd.)
Stacking all the Ai’s and gi’s together

Ak =




A0

A1

.

.
Ak




bk =




A0x0 − g0

A1x1 − g1

.

.
Akxk − gk




(94)

With this, the necessary feasible conditions are: Akx ≤ bk.
Idea: Solve the following LP iteratively, until all original constraints are respected:

xk∗ = argmin
x

cTx
subject to Akx ≤ bk

November 9, 2018 364 / 429

x^0 --> x^1 --> x^2... --> x^k

As k increases, number
of constraints increases
making it more and more likely
that the original constraints are satisified

Kelly’s Cutting Plane Algorithm (contd.)

Step 1
Input an initial feasible point, x0 and set k = 0.
Step 2: Evaluate Ak and bk

Step 3
Solve the LP problem

xk∗ = argmin
x

cTx
subject to Akx ≤ bk

Step 4
If max{gj(xk∗), 1 ≤ j ≤ m} < ϵ output x∗ = xk∗ as the point of optimality and stop.
Otherwise, set k = k + 1, xk+1 = xk∗, update Ak and bk from (94) using (93) and repeat
from Step 3.

Figure 33: Optimization for the convex problem in (92) using Kelly’s cutting plane algorithm.

November 9, 2018 365 / 429

Primal Active-Set Algorithm
(Lazy Projection Methods)

November 9, 2018 366 / 429

Interior point algo forced feasibility at every step
Projection methods force projection at every step
Active set==> Keep track of set of active and inactive constraints and be lazy in projection

Quadratic Optimization: Primal Active-Set Algorithm

minimize f(x) = 1
2xTQx + cTx + β

subject to Ax ≥ b (95)

where Q ≻ 0. The KKT conditions are:

November 9, 2018 367 / 429

Quadratic Optimization: Primal Active-Set Algorithm

minimize f(x) = 1
2xTQx + cTx + β

subject to Ax ≥ b (95)

where Q ≻ 0. The KKT conditions are:

Qbx + c−
m∑

i=1

bλiai = 0

bλi(aTi bx− bi) = 0 for i = 1..m
bλi ≥ 0 for i = 1..m
Abx ≥ b...

November 9, 2018 367 / 429

Quadratic Optimization: Primal Active-Set Algorithm

minimize f(x) = 1
2xTQx + cTx + β

subject to Ax ≥ b (95)

where Q ≻ 0. The KKT conditions are:

Qbx + c−
m∑

i=1

bλiai = 0

bλi(aTi bx− bi) = 0 for i = 1..m
bλi ≥ 0 for i = 1..m
Abx ≥ b... If bx lies in interior of feasible region then

November 9, 2018 367 / 429

corresponding lambdas should be 0

Quadratic Optimization: Primal Active-Set Algorithm

minimize f(x) = 1
2xTQx + cTx + β

subject to Ax ≥ b (95)

where Q ≻ 0. The KKT conditions are:

Qbx + c−
m∑

i=1

bλiai = 0

bλi(aTi bx− bi) = 0 for i = 1..m
bλi ≥ 0 for i = 1..m
Abx ≥ b... If bx lies in interior of feasible region then

1 bλ = 0
2 bx = −Q−1c

November 9, 2018 367 / 429

Quadratic Optimization: Primal Active-Set Algorithm

minimize f(x) = 1
2xTQx + cTx + β

subject to Ax ≥ b (96)

where Q ≻ 0. The KKT conditions are:

Qbx + c−
m∑

i=1

bλiai = 0

bλi(aTi bx− bi) = 0 for i = 1..m
bλi ≥ 0 for i = 1..m
Abx ≥ b... If some aTi x∗ = bi for some i ∈ I∗ (index set of active constraints) then

November 9, 2018 368 / 429

Quadratic Optimization: Primal Active-Set Algorithm

minimize f(x) = 1
2xTQx + cTx + β

subject to Ax ≥ b (96)

where Q ≻ 0. The KKT conditions are:

Qbx + c−
m∑

i=1

bλiai = 0

bλi(aTi bx− bi) = 0 for i = 1..m
bλi ≥ 0 for i = 1..m
Abx ≥ b... If some aTi x∗ = bi for some i ∈ I∗ (index set of active constraints) then, one
needs to iteratively solve xk and Ik

November 9, 2018 368 / 429

Basic idea: Assume that the only tests one needs
to prepare for are the tests happening tomorrow
(that is, the index set I_k) and that tests thereafter
I_k complement) will be dealt with when one
gets to them!!

Quadratic Optimization: Primal Active-Set Algorithm

minimize f(x) = 1
2xTQx + cTx + β

subject to Ax ≥ b (96)

where Q ≻ 0. The KKT conditions are:

Qbx + c−
m∑

i=1

bλiai = 0

bλi(aTi bx− bi) = 0 for i = 1..m
bλi ≥ 0 for i = 1..m
Abx ≥ b... If some aTi x∗ = bi for some i ∈ I∗ (index set of active constraints) then, one
needs to iteratively solve xk and Ik

3 xk+1 = xk + αkdk

4 Simplified objective: Find dk = argmin
d

fk(d)

November 9, 2018 368 / 429

How much are we allowed to move so
that the active constraints are not
violated!

Quadratic Optimization: Primal Active-Set Algorithm

dk = argmin fk(d) = 1
2dTQd + gTk d + ck

subject to aid = 0 for all i ∈ Ik
(97)

where gk = Qxk + c and ck = (xk)TQxk + cTxk. The idea behind the active set algo is:
1 dk = 0 ⇒ xk satisfies first order necessary conditions:

▶ gk −
∑

i∈Ik
λiai = 0 which is the same as rank[AT

Ik gk] = rank[AT
Ik]

We already know that aTi xk − bi > 0 ∀i /∈ Ik and aTi xk − bi = 0 ∀i ∈ Ik. Set λi = 0 ∀i /∈ Ik
1 If λi ≥ 0∀i ∈ Ik, by KKT sufficient conditions, xk will be point of global minimum.
2 If λi < 0 for some i ∈ Ik, then it can be shown that if i is dropped from Ik, the active set and

(97) is solved then dk will be a descent direction ∇Tf(xk)dk < 0 and reduce objective
2 dk ̸= 0 ⇒ we need to further determine αk such that xk+1 = xk + αkdk remains

feasible: αk = min




1, min

j/∈Ik
aTj dk<0

aTj xk−bj
−aTj dk





November 9, 2018 369 / 429

Quadratic Optimization: Primal Active-Set Algorithm
Step 1
Input a feasible point, x0, identify the active set I0, form matrix AI0 , and set k = 0.
Step 2
Compute gk = Qxk + c.
Check the rank condition rank[ATIk gk] = rank[ATIk]. If it does not hold, go to Step 4.
Step 3
Solve the system ATIkbλ = gk. If bλ ≥ 0, output xk as the solution and stop; otherwise,
remove the index that is associated with the most negative Lagrange multiplier (some bλt)
from Ik.
Step 4
Compute the value of dk:

dk = argmin
d

1
2dTQd + (gk)Td

subject to aTi d = 0 for i ∈ Ik
(98)

November 9, 2018 370 / 429

Quadratic Optimization: Primal Active-Set Algorithm
Step 5

αk = min




1, min

j/∈Ik
aTj dk<0

aTj xk − bj
−aTj dk





(99)

Set xk+1 = xk + αkdk.
Step 6
If αk < 1, construct Ik+1 by adding the index that yields the minimum value of αk in (99).
Otherwise, let Ik+1 = Ik.
Step 7
Set k = k+ 1 and repeat from Step 2.

Figure 34: Optimization for the quadratic problem in (96) using Primal Active-set Method.
November 9, 2018 371 / 429

