
HW: In ℜn, why ∥u∥p may not have an inner product for p ̸= 2?
Motivation:

Consider the following inner product on ℜ2: For any x,y ∈ ℜ2, let
< x,y >= 2x1y1 − x1y2 − x2y1 + 4x2y2. It can be easily verified that this in an inner
product (by checking for linearity, symmetry and positive definiteness by expressing it as a
sum of squares).
This inner product is certainly different from the conventional (Eucledian) dot product
< x,y >E= x1y1 + x2y2 which corredponds to the ∥.∥2 norm.
Is it possible that the < x,y > defined in step 1 (or some other such inner product)
corresponds to ∥.∥p norm for p ̸= 2?
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In ℜn, it can be proved that for any inner product vector space (V , < ., . >), the inner product
< ., . > (including the Eucledian one) can be represented as

< u,v >=
n∑

i=1

n∑

j=1

aibj < ei, ej >=
n∑

i=1

n∑

j=1

aTEb =< aT,b >E
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Convex Sets
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Convex sets

affine and convex sets.
some important examples
operations that preserve convexity
generalized inequalities
separating and supporting hyperplanes
dual cones and generalized inequalities
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Affine set
In 2D, a line through any two distinct points x1,x2: That is, all points x s.t.

x = αx1 + βx2 where α+ β = 1,α ≥ 0,β ≥ 0

In general, A is affine iff ∀u,v ∈ A: θu + (1− θ)v ∈ A, ∀ θ ∈ ℜ.
For some vector space V ⊆ ℜn, A is affine iff:
A(= V shifted by u) = { u + v|u ∈ ℜn is fixed and v ∈ V }.
For some P with rank = n − dim(V) and b, A is affine iff:
A = {x|Px = b} i.e. solution set of linear equations represented by Px = b.

▶ No Solution: x = ϕ. Is that affine?
▶ Unique Solution: x is a point.
▶ Infinitely Many Solutions: x is a line, or a plane, etc.

(conversely every affine set can be expressed as solution set of system of linear equations )
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Homework: Making use of 
the basic idea of solving 
linear system of equations,
show the following



Convex set

In 2D, a line segment between distinct points x1,x2: That is, all points x s.t.

x = αx1 + βx2
where α+ β = 1, 0 ≤ α ≤ 1(also, 0 ≤ β ≤ 1).

Convex set : x1,x2 ∈ C, 0 ≤ α ≤ 1 ⇒ αx1 + (1− α)x2 ∈ C

▶ Convex set is connected. Convex set can but not necessarily contains ’O’

Is every affine set convex? Is the reverse true?
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Cone, conic combination and convex cone

Cone A set C is a cone if ∀x ∈ C, αx ∈ C for α ≥ 0.
Conic (nonnegative) combination of points x1,x2 is any point x of the form

x = αx1 + βx2

with α,β ≥ 0.

Example : Diagonal vector of a parallelogram is a conic combination of the two vectors
(points) x1 and x2 forming the sides of the parallelogram.
Convex cone: The set that contains all conic combinations of points in the set.
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Homework: Structure of Mathematical Spaces Discussed (arrow means
‘instance’)
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Closed under convex combinations

Closed under 
conic combinations

Has 0 mandated

Open set



Convex combination and convex hull
Convex combination of points x1,x2, ...,xk is any point x of the form

x = θ1x1 + θ2x2 + ...+ θkxk = conv({x1,x2, ...,xk})
with θ1 + θ2 + ...+ θk = 1, θi ≥ 0.

Convex hull or conv(S) is the set of all convex combinations of point in the set S.

▶

Should S be always convex?
What about the convexity of conv(S)?
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No
Yes



Convex combination and convex hull
Convex combination of points x1,x2, ...,xk is any point x of the form

x = θ1x1 + θ2x2 + ...+ θkxk = conv({x1,x2, ...,xk})
with θ1 + θ2 + ...+ θk = 1, θi ≥ 0.

Convex hull or conv(S) is the set of all convex combinations of point in the set S.

▶

Should S be always convex? No.
What about the convexity of conv(S)? It’s always convex.
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More Convex Sets (illustrated in ℜn)
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More Convex Sets (illustrated in ℜn)

Euclidean balls and ellipsoids.
Norm balls and norm cones.
Compact representation of vector space.
Dual Representation.
Different Representations of Affine Sets
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Euclidean balls and ellipsoids
Euclidean ball with center xc and radius r is given by:
B(xc, r) = {x | ∥x − xc∥2 ≤ r} = {xc + ru | ∥u∥2 ≤ 1 }
Ellipsoid is a set of form:
{x | (x − xc)TP−1(x − xc) ≤ 1 }, where P ∈ Sn

++ i.e. P is SPD matrix.
▶ Other representation: {xc + A u | ∥u∥2 ≤ 1} with A square and non-singular(i.e. A−1 exists).
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Show that this set is 
convex



Norm balls
Recap Norm: A function6 ∥.∥ that satisfies:

1 ∥x∥ ≥ 0, and ∥x∥ = 0 iff x = 0.
2 ∥αx∥ = |α|∥x∥ for any scalar α ∈ ℜ.
3 ∥x1 + x2∥ ≤ ∥x1∥+ ∥x2∥ for any vectors x1 and x2.

Norm ball with center xc and radius r: {x|∥x − xx∥ ≤ r} is a convex set. Why?
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ANS: triangle inequality that is used to prove that
Eucledian ball is convex set... can be simply reused
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Norm ball with center xc and radius r: {x|∥x − xx∥ ≤ r} is a convex set. Why?
▶ Eg 1: Ellipsoid is defined using ∥x∥2P = xTPx.
▶ Eg 2: Euclidean ball is defined using ∥x∥2.

Matrix Norm induced by vector norm N: MN(A) = sup
x̸=0

N(Ax)
N(x)

Here, sup
s∈S

f(s) =bf if bf is the minimum upper bound for f(s) over s ∈ S.
▶ Eg: MN(I) =
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N(Ax)
N(x)

Here, sup
s∈S

f(s) =bf if bf is the minimum upper bound for f(s) over s ∈ S.
▶ Eg: MN(I) = MN(A) = 1 irrespective of N

▶ If N = ∥.∥1,
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Homework: Try and make some sense of vector induced matrix norms


