Norm balls

e Recap Norm: A function® ||.|| that satisfies:
Q |x]| >0, and ||x|| = 0 iff x = 0.
Q |ax|| = |al||x]|| for any scalar @ € R.

Q [x1 +x2 < |[[x1 + [[x2]| for any vectors x; and x2.

e Norm ball with center x. and radius r: {x|||x — xx|| < r} is a convex set. Why?
» Eg 1: Ellipsoid is defined using ||x||3 = xPx.
» Eg 2: Euclidean ball is defined using ||x]|2.

@ Matrix Norm induced by vector norm N: My(A) = sup N(Ax)
(A) = sup Ay
Here, sup f(s) = fif fis the minimum upper bound for f{s) over s € S.

seS
» Eg: My(l) = My(A) = 1 irrespective of N

n
S 1N = [ My(4) = max Y [a
i=1

> 1N =]z,
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U= 5, Mu(A) = max > [a
i=1
» If N=|.|]2, Mn(A) = /51 , where o is the dominant eigenvalue of ATA

> IfN=|] oo,
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e Recap Norm: A function® ||.|| that satisfies:
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seS
» Eg: My(l) = Mn(A) =1 irrespective of N

n
U= 5, Mu(A) = max > [a
i=1
» If N=|.|]2, Mn(A) = /51 , where o is the dominant eigenvalue of ATA

> 1f N = ||.]|oe, Mn(A) = ml_aXZ\a,-jl Homework
j=1

Prof. Ganesh Ramakrishnan (IIT Bombay) Convex Sets : CS709 26/12/2016 90 / 152



N =|.ll, Mu(A) = sup G
x#0
Q If N(x Z\x,\ then N(Ax) = > | ajx| < ZZ|3UHXJ|
i=1 =1 j=1 i=1 j=1

@ Changing the order of summation:
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A
N =|.ll, Mu(A) = sup G
x#0
n m

Q If N(x Z\xj\ then N(Ax) Z|Zauxj| < Zz|a,,|p9|

i=1 =1 j=1 i=1 j=1
@ Changing the order of summation: N(Ax) < Z Z |lajj|[xj| = Z [l il Z |ajj]

j=1 i=1 = =
n n

Q Let C= maxz laj| = Z |aik|. Then

I i=1
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_ N(Ax)
x#0
n m
0 If N(x Z\xj\ then N(Ax) Z|Zauxj| < Zz|a,,|p9|
i=1 =1 j=1 i=1 j=1
@ Changing the order of summation: N(Ax) < Z Z |lajj|[xj| = Z [l il Z |ajj]
=1 i=1 j= j=
; ] J J
Ax

Q Let C= mjax;\a,-j] = ;\a,ﬂ. Then [|Ax[|; < (x| = Al = sup ﬂmﬂ- <C

© Now consider a x
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A
N =, M(A) = sup 55
n m
Q If N(x Z\xj\ then N(Ax) Z|Zauxj|<zz\au|\xj|
i=1 =1 j=1 i=1 j=1
@ Changing the order of summation: N(Ax) < Z Z |lajj|[xj| = Z [l il Z |ajj]
j=1 i=1 = -

n n
@ Let C=maxy_|ag/ =Y |aul. Then [|Ax|l; < Cllx]ly = [|All; = sup 12 < ¢
= i=1 x#0
@ Now consider a x = [0,0..1,0...0] which has 1 only in the k' position and a 0 everywhere
else. Then

The upper bound in (3) is indeed attained at this choice
of X
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_ N(Ax)
x#0
0 If N(x Z\xj\ then N(Ax) Z|Za,1x,y < Zz\auw
i=1 =1 j=1 i=1 j=1
@ Changing the order of summation: N(Ax) < Z Z |lajj|[xj| = Z [l il Z |ajj]
=1 i=1 = =
n n ’
Ax
Q Let C= mjjax;\a;j] = Z;\a,-k\. Then ||Ax||; < C|lx|1 = || Al = sup I < ¢

@ Now consider a x = [0,0..1,0...0] which has 1 only in the k' position and a 0 everywhere
else. Then ||x|l; =1 and ||Ax||; = C

@ Thus, there exists x = [0,0..1,0...0] for which the inequalities in steps (2) and (3)
become equalities! That is,
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Q Let C= mjjax;\a;j] = Z;\a,-k\. Then ||Ax||; < C|lx|1 = || Al = sup I < ¢

@ Now consider a x = [0,0..1,0...0] which has 1 only in the k' position and a 0 everywhere
else. Then ||x|l; =1 and ||Ax||; = C

@ Thus, there exists x = [0,0..1,0...0] for which the inequalities in steps (2) and (3)
become equalities! That is,

Mn(A) = || Ax|1 = mJaXZ |aij|
i=1
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If N =1|. ]}, Mn(A) = sup 7
x#0
@ Mn(A) = sup 152 We know that || x|, = /(Ax) T(Ax) = vVxTATAx.

x#0
@ (From basic notes on Linear Algebra’): ) .
( & ) we know that A~TA is positive

semi-definite

"https://www.cse.iitb.ac.in/~cs709/notes/LinearAlgebra.pdf
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N(Ax
= . My(4) = sup 20

@ Mn(A) = sup 152 We know that || x|, = /(Ax) T(Ax) = vVxTATAx.

x#0
@ (From basic notes on Linear Algebra’): ATA € ST is symmetric positive semi-definite
© By spectral decomposition,

"https://www.cse.iitb.ac.in/~cs709/notes/LinearAlgebra.pdf
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If N =1|.]}, Mn(A) = sup S75.

x#0
@ Mn(A) = sup 152 We know that || x|, = /(Ax) T(Ax) = vVxTATAx.
x#0

@ (From basic notes on Linear Algebra’): ATA € S is symmetric positive semi-definite

© By spectral decomposition, there exists orthonormal U with column vectors u; and
diagonal matrix ¥ of non-negative eigenvalues o; of ATA such that ATA = UTS U with
(ATA)u,- = ou;

@ Without loss of generality, let 01 > 09.. > o,.

@ Since columns of U form an orthonormal basis for R”, let x =

"https://www.cse.iitb.ac.in/~cs709/notes/LinearAlgebra.pdf
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If N =1|.]}, Mn(A) = sup S75.

x#0
@ Mn(A) = sup 152 We know that || x|, = /(Ax) T(Ax) = vVxTATAx.
x#0

@ (From basic notes on Linear Algebra’): ATA € S is symmetric positive semi-definite

© By spectral decomposition, there exists orthonormal U with column vectors u; and
diagonal matrix ¥ of non-negative eigenvalues o; of ATA such that ATA = UTS U with
(ATA)u,- = ou;

@ Without loss of generality, let 01 > 09.. > o,.

n
@ Since columns of U form an orthonormal basis for R”, let x = g aju;
i=1

@ Then, |[x[2 = /> ;02 and ||Ax[2 = \/XT(ATAx) =

"https://www.cse.iitb.ac.in/~cs709/notes/LinearAlgebra.pdf
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N(Ax
If N=||.||2, Mn(A) = j{t;lg ﬁ

@ Mn(A) = sup 152 We know that || x|, = /(Ax) T(Ax) = vVxTATAx.
x#0
@ (From basic notes on Linear Algebra’): ATA € S is symmetric positive semi-definite
© By spectral decomposition, there exists orthonormal U with column vectors u; and
diagonal matrix ¥ of non-negative eigenvalues o; of ATA such that ATA = UTS U with
@4TA)u;::0nh
@ Without loss of generality, let 01 > 09.. > o,.

n
@ Since columns of U form an orthonormal basis for R”, let x = g aju;
i=1

n n
@ Then, |x[2 = /3,02 and [|Ax|; = /XT(ATAx) = | (O am) (D o).
i=1 i=1

@ If a; =1 and aj =0 for all j# 1, the maximum value in (7) will be attained. Thus,
Mn(A) = /51 , where o} is the dominant eigenvalue of ATA

"https://www.cse.iitb.ac.in/~cs709/notes/LinearAlgebra.pdf
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Norm balls: Summary

e Norm ball with center x. and radius r: {x|||x — x4|| < r} is a convex set.
» Eg 1: Ellipsoid is defined using ||x||3 = x"Px.
» Eg 2: Euclidean ball is defined using ||x]|2.

@ Matrix Norm induced by vector norm N: Mpy(A) = SL;AF()) %(A?’;z
» Eg: Mn(l) = My(A) =1 irre;spective of N )
> N = |l My(A) = max D ay]
> If N=|.||2, Mn(A) = \/U_ll,z\ivhere oy is the dominant eigenvalue of ATA

>IN = oo, Mu(A) = max Y Jay
=1

e Matrix norm with an inner product: ||A||f= /Z az. = 1/ trace(ATA) is the Frobenius
ij

norm.
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HW: Dual Representation

If vector space V C R" and {qi,qo, ..., qx} is finite spanning set in V-, then:-
o V= (VHt = {x|q/x=0;i=1,..., K}, where K = dim(V)
o A dual representation of vector subspace V (in R"): {x|@x = 0; q/ is the /' row of Q}

@ What about dual representations for Affine Sets, Convex Sets, Convex Cones, etc?
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HW: Dual Representations of Affine Sets

Recall affine sets(say A C R").
o Ais affine iff Yu,v € A: fu+ (1 —0)ve A VO ek

@ For some vector space VC R", A is affine iff:
A(= V shifted by u) = { u+ vju € R" is fixed and v € V }.

@ Procedure: Let u be some element in the affine set A. Then V(= A shifted by —u) = {
v —u|v € A } is a vector space which has a dual representation {x|Qx = 0}

@ The dual representation for A is therefore {x | Qx = Qu}
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HW: Dual Representations of Affine Sets

e For some Q with rank = n— dim(V) and u, A is affine iff:
A = {x|@x = Qu} i.e. solution set of linear equations represented by @x = b where

b = Qu.
@ Example: In 3-d if Q has rank 1, we will get either a plane as solution or no solution. If @
has rank 2, we can get a plane, a line or no solution.

o Thus hyperplanes are affine spaces of dimension n — 1 with @x = b given by p’x = b.
We will soon see the duality of convex cones, and in general convex sets.
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Examples of Convex Cones
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More on Convex Sets and Cones

Half-spaces as cones (induced by hyperplanes)
Norm Cones
Positive Semi-definite cone.

Positive Semi-definite cone: Example and Notes.

Convexity Preserving Operations on Sets
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Hyperplanes and halfspaces.

Hyperplane: Set of the form {x|a’x = b} (a # 0)

z
ax"b

o where b = x/a

e Alternatively: {x|(x —x¢) L a}, where a is normal and xy € H
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Hyperplanes and halfspaces.

halfspace: Set of the form {x|a’x < b} (a # 0)

Is the half space a convex cone?
Yes: The upper half space,

as long as the hyperplane
passes through the origin..
b=0

@ where b = x(-)’—a
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Norm cones

e Norm ball with center x. and radius r: {x|||x — x| < r}.
e Norm cone: A set of form: {(x,t) € R™|||x| < t}.
» Norm balls and cones are convex.
» Euclidean norm cone is called-second order cone. If x € R2, it is shown in R® as:-
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Positive semidefinite cone

Notation

@ 5" is set of symmetric n X n matrices.
o S ={X € S"| X = 0}: positive semidefinite n x n matrices.

» Xe S < z'Xz>0forall z
» S is a convex cone.

o SN, ={X € S| X 0}: positive definite n x n matrices.
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Positive semidefinite cone: Example

Consider a positive semi-definite matrix S in 2. Then S must be of the form

5:[’; )Z’] (33)

We can represent the space of matrices S_% of the form S € Si as a three dimensional space
with non-negative x, y and z coordinates and a non-negative determinant. This space

corresponds to a cone as shown in the Figure above.
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Positive semidefinite cone: Notes
QO 51 ={AcSNA=0} ={AcS"yTAy = OV|y| = 1}
@ So, Sf:_ = m||y||:1 {A S 5’ < yTy,A > 0}
O y Ay = 3,5 viayy; = X o (vivpag = <yyT, A> = tr((yy ) TA) = tr(yy TA)

» H/W:
v=| o) | (34)
[ Cos?(6)  Cos(0)Sin(f)
yy' = [ Cos(%)Sin(G) osém?(a) } (35)

> Plot a finite # of halfspaces parameterized by (9).
@ So S7 = intersection of infinite # of half spaces belonging to ®"("*1)/2 [Dual

Representation]
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Positive semidefinite cone: Notes

@ S = intersection of infinite # of half spaces belonging to R"("*1)/2 [Dual
Representation]

@ Cone boundary consists of all singular p.s.d. matrices having at-least one 0 eigenvalue.
@ Origin = O = matrix with all 0 eigenvalues.
© Interior consists of all full rank matrices A (rank A = m) i.e. A > 0.
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Polyhedra

@ Solution set of finitely many inequalities or equalitiesz--

: Z‘E g;::: Specifying Like S%ecifyinlg

' ' some erplanes
» =< is component wise inequality Intersection yperp

of half spaces

@ Intersection of finite number of half-spaces and hyperplanes.
@ Question:Can you define convex polyhedra (or polytope) in terms of convex hull? Leads
to definition of simplex.
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Polyhedra

@ Solution set of finitely many inequalities or equalities: Ax <b , (x=d

> Aec Rmxn
» Ce RPxn
» = is component wise inequality
a» a
a« a:
N

@ Intersection of finite number of half-spaces and hyperplanes.

@ Question:Can you define convex polyhedra (or polytope) in terms of convex hull? Leads
to definition of simplex.

e Ans: If 35 C Ps.t. |§]is finite and P = conv(S), then P is a polytope.

@ Simplex: An n - dimensional simplex is conv(S) where S is affinely independent set of

n+ 1 points.
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Convex combinations Generalized
@ Convex combination of points x1, X2, ..., Xk is any point x of the form
x = 601x1 + O2x2 + ... + Okxy = conv({x1,X2, ..., Xk})

with 61 +60,+...+6,=1,0;>0.

o Equivalent Definition of Convex Set: Cis convex iff it is closed under generalized convex
combinations.
@ Convex hull or conv(S) is the set of all convex combinations of point in the set S.
@ conv(S) = The smallest convex set that contains S. S may not be convex but conv(S) is.
» Prove by contradiction that if a point lies in another smallest convex set , and not in
conv(S), then it must be in conv(S).

>
@ The idea of convex combination can be generalized to include infinite sums, integrals,
and, in most general form, probability distributions.
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Conic combinations generalized

X1
o)

@ cone Aset CisaconeifVxe C, 0xe Cfor6 > 0.
e conic (nonnegative) combination of points X1, X, ..., Xk is any point x of the form

X = O1x1 + O0ox9 + ... + 0, Xy

with 6, > 0.

example : diagonal vector of a parallelogram is a conic combination of two
vectors(points) x; and xy forming the parallelogram.
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Conic hull and Affine hull

Conic hull or conic(S): The set that contains all conic combinations of points in set S.
conic(S) = Smallest conic set that contains S.

X1
0

Similarly, Affine hull or aff(S): The set that contains all affine combinations of points in
set S.
aff(S) = Smallest affine set that contains S.

a=15
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