PAGES 216 TO 231 OF

http://www.cse.iitb.ac.in/~ cs709/notes/BasicsOfConvexOptimiz
ation.pdf, interspersed with pages between 239 and 253 and
summary of material thereafter, which extend univariate
lconcepts to generic spaces

Maximum and Minimum wvalues of univariate functions

Let f be a function with domain D. Then [ has an absolute maximum (or global
maximum) value at point ¢ € D if

flz) < f(c), Vz €D

and an absolute mintmum (or global minimum) value at ¢ € D if

f(z) > fle), Yz €D

If there is an open interval I containing ¢ in which f(¢) = f(z), Vo € T,
then we say that f(c) is a local maximum value of f. On the other hand, if
there is an open interval 7 containing ¢ in which f(¢) < f(x), Vx € I, then we
say that f(c) is a local minimum value of f. If f(e) is either a local maximum
or local minimum value of f in an open interval 7 with ¢ € Z, the f(c) is called
a local extreme value of f.

- Theorem 39 If f(c) is a local extreme value and if f is differentiable at © =g, b

then f'(c) =0. — ‘g, el ‘7&5 ¢ ,f exdt arv yHzCeD eRﬁ
AW F@Q) ¥ \ow| “eslleme, Y5(6) =0

Theorem 40 A continuous function f(x) on a closed and bounded interva
la, b attains a minimum value f(c) for some ¢ € [a,b] and a mazimum value

fld) for some d € |a,b]. That s, a continuous function on a closed, bounded
interval attains a mantmum and a marimum value.
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Theorem 60 If f(x) defined on a domain D C R"™ has a local maxrimum
or minimum at X* and if the first-order partial derivatives exist at x*, then

fo(x®) =0 foralll <i<n. \gﬂg(gx) =0

Definition 27 [Critical point]: A point x* is called a eritical point of a fune-
tion f(x) defined on D C R™ if

1 If fo(x®) =10, for 1 <i < n.
2. OR f, (x") fails to exist for any 1 <i <mn.

A procedure for computing all critical points of a function f is:

1. Compute f, for 1 <i<n.

2. Determine if there are any points where any one of f, fails to exast. Add
such points (if any) to the list of eritical points.

3. Solve the system of equations f,. = 0 simultaneously. Add the solution
points to the list of saddle points.

Figure 4.17: The paraboloid f(xy,x2) = 9 — &7 — x5 attains its maximum at
(0.0, The tancet plane to the surface at (0.0, F(0.0V) 15 also shown. and so 1s |




Figure 4.18: Plot illustrating critical points where derivative fails to exist.

Definition 28 [Saddle point|: A point x* is called a saddle point of a func-
tion f(x) defined on D C R" if Xx* is a critical point of [ but x* does not

correspond to a local marimum or minimum of the function.

N
X
O‘ =

Figure 4.19: The hyperbolic paraboloid f(r;,x2) = 7 — 23, which has a saddle
point at (0, 0).




Figure 4.20: The hyperbolic paraboloid f(xy,x5) = % — 3, when viewed from
the @y axis is concave up.

Figure 4.21: The hyperbolic paraboloid f(ry,r2) = x7 — 3, when viewed from

the ro axis i1s concave dowr.
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Theorem 41 A continuous function f(x) on a closed and E:m.r,mjf’c.-f mtr—*rvuf a, b]
attains a minimum value f(e¢) for some ¢ € [a,b] and a mazimum value f(d)

for somed € [a,b]. Ifa<c<b rm,uff () E.m.atz-.. then f'(c¢) =0. Ifa<d ij
and f'(d) exists, then f'(d) = 0. . [g D R s ) Osd 4 bduﬂa

& Fis s on D £ \§ dobal wnox|ein 1s Hanek ok CE h\t@
& ; 'S A\ ge{Cﬂ'\f‘ U-Qc. a¢ C /qu ‘VfCC) O

Theorem 42 If { is continuous on |a, b] and differentiable at all x € (a,b) and
if fla)= f(b), then f'(c) = 0 for some c € (a,b).

Figure 4.1 illustrates Rolle’s theorem with an example function f(z) = 9—
on the interval [—3,+3|.

-
]

p—= O == k3 W b= U 0 4 DO 40
— .

=
LI
(4]
=

-

Figure 4.1: Tlustration of Rolle’s theorem with f(x) = 9 — = on the interval
[—3, +3]. We see that f'(0) = 0.
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Theorem 43 If f is continuous on la, b] and differentiable at all x € (a,b),

~then there is some c € (a, b) such that, f'(c) = M.

AFDERY 5 closed £ b

--"-.- K
,-z/ b=l
&} ,".a:;l
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Figure 4.2: [Mustration of mean value theorem with f

 [~3,1]. We see that f/(—1) = {BD==8)
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L
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1 N

() = 9—x? on the interval —

Figure 4.4: The mean value theorem can be violated if f(x) is not differentiable —

at even a single point of the interval.

IMuastration on

f(x) = x2/3 with the



The mean value theorem in one variable generalizes to several variables by applying the
theorem in one variable via parametrization. Let G be an open subset of R", and letf: G = R be
a differentiable function. Hx points x, ¥y = G such that the interval x y lies in G, and define

glt) = f{{1 — f)x + ty). 5ince g Is a differentiable function in one variable, the mean value
theorem gives:

g(1) — g(0) = g'(c)

for some c between 0 and 1. But since g(1) = fiy) and g{0) = fix). computing g’'(c) explicitly we
ave:

fy) = fle)=Vf(l-c)z+cy)-(y—z)

Comcx\ka 6& the Josnain s gw\o\amm%a\
ance ¥ LCJo,0], [ (1-4) ﬁé?"‘"&f]
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Corollary 44 Let f be continuous on [a,b] and differentiable on (a,b) with
m < fiz) £ M, Yz € (a,b). Then, it ey i/

a<i<z<bh ~—— AT ,.[a\lu(,’“ﬂm
AW] \yied MEOVY \M‘\"‘a‘.\%

Let D be the domain of function f. We define & su'bsfwtu)fm '

1. the linear approximation of a differentiable function f(x) as L,(x) =
fla) + f'(a)(x — a) for some a € D. We note that L,(x) and its first
é derivative at a agree with f(a) and f'(a) respectively. A
2. the quadratic approximatin of a twice differentiable function f(x) as the
parabola Q). (x) = f(a) + f'(a){x — a) + %f”[ﬂ.}(ﬂ: — a)?. We note that
(. () and its first and second derivatives at a agree with f(a), f'(a) mid
L . )
f"(a) respectively. PQ@C) - C\ X (21'({)'12' SV ?a(a) 5&6\) ?a(a)f“’;&) d
,;Ca)‘-f(a)

3. the cubic approximation of a thrice differentiable function f(x)is C,(x) =
fla)+ f'la)(x—a)+ 51" (a)(x—a)* + 2 f"(a)(x —a)’. Cu(x) and its first,
second and third derivatives at a agree with f(a), f'(a), f"(a) and f"'(a)

4 \ '
respectively. Rm(’i ) - (‘ +( tm. ¢ (51 2‘{— C X.g s'b Rnc q') ’fg\ (\“‘) fa‘ (a) - f&/
C (@)=

hi |
SeREP

05 f 1.5 2 25 3

Figure 4.3: Plot of f(x) = % and its linear, quadratic and cubic approximations.
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1c vesenation
Theorem 45 The Taylor's thmrf’m states that if f and its first'n aelibvatives /gog
For o f™ are continuous on the closed interval la,b], and differentiable on /

(a,b), fhﬁn there exists a number ¢ € (a, b) such that

f(b) = fla)+f'(a) h—rj}—l—zrf "(a)(b—a)*+.. +— rf{”}[ﬁ.}[t[}—ﬂ.j}”—l- Frt @y n—

\/\/MMT = Ope""'\ Cose

' 3 ceab) st f(\g &(a)f!}@%;g e

)ﬂ, rf ove USE Mff SULceSsS\y ¢ 5' () FQ() a.‘of-roﬁmo.}:\m

(n+1)!

Consider the function ¢(f) = f(x + th) considered in theorem 71, defined on
the domain D, = [0, 1]. Using the chain rule,

P . i dTi e .
qﬁ{t}_;fm{x—l—th} - =h".Vf(x+th)

Since f has partial and mixed partial derivatives, ¢’ is a differentiable function
of t on Dy and
¢"(t) = hTV2f(x +th)h

Since ¢ and ¢ are continous on Dy and ¢’ is differentiable on int(Dy), we

can make use of the Taylor’s theorem (45) with n = 3 to obtain:

o(t) = ¢(0) +t.¢'(0) + t2. %m”{ﬂ} < G{t

lectd §
a:\g gsded :;FW'*'

fx £ th) = f(x)+th! Vf(x x) + 75 LTy f() 11+D{t3)
4 Fov @™ pedev Tafor exense®

Teplace V'f[ﬁ MY f[xfcﬁ) for CE(oit)

Writing this equation in terms of f gives
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Derivatives

We will introduce some definitions at this point:

skiiei

e A function [ is said to huair.tr.‘rmgmg on an interval 7 in its domain D if
f(t) < f(x) whenever t < .
5t‘lict\j
e The function f is said to be decreasing on an interval T € D if f(t) > f(x)
whenever t < . "

These definitions help us derive the following theorem:




Theorem 46 Let T be an interval and suppose [ is continuous on I and dif-
ferentiable on int(I). Then:

1. if f'(x) = 0 for all x € int(I), then f is increasing on IT; — -5\159‘5'('“‘]:
2. 4f f'(x) <0 for all x € int(T), then f is decreasing on T ; /
3. if f'lx) =0 for all x € int(I), iff, [ is constant on T. — Nef-&’gagg

suefficient
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Figure 4.5: Ilustration of the increasing and decredsing regions ol mfsuction
flz) = 3z + 42° — 3622

Theorem 47 Let I be an interval and suppose [ is continuous on T and dif-
ferentiable on int(I). Then:

1. if fllx) = 0 for all x € int(L), and if f'(x) = 0 al only finitely many
r € I, then [ is increasing on I; N Q.Cfﬁsﬁ-:j

2.4f f'(x) <0 for all x € int(I), and if f'(x) = 0 af only finitely many
x e X, then [ is decreasing on T. Neccasa:j



Theorem 48 Let T be an interval, and suppose [ is continuous on I and dif-
ferentiable in int(I). Then:

1. if f is increasing on I, then f'(x) = 0 for all x € int(T); \.\\\.eo"-‘s

2. if f is decreasing on I, then f'(z) <0 for all x € int(I). w(\b" 095-‘ S

i It It i i i i i 1
LLL - B i - 0 20 a0 600 B00 100D

Figure 4.6: Plot of f(x) = T2 illustrating that though the function is increasing
on (—oo, oc), f(0) = 0.
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Analogous to the definition of increasing functions introduced on page num-
ber 220, we next introduce the concept of monotonic functions. This concept is

very useful for characterization of a convex function. ’he .SWF]C
~— gt vs '-R“-’fk“ crsC

Definition 39 Letf: D — R" and D C R". Then /’,F o=l \\R
1. f istmenotene on D if for any x,.x; € D, (f(‘:IA _‘F&’)'>(.z‘_-‘2)
a/ - >0
Cz tens\oL oS:- reass My
fa b £ Q"-:R“ (£(x1) — £(x2))" (x1 —X2) =0 (4.41)

2. f is strictly monotone on D if for any x,,X3 € D with x; # X,

(F(x1) — £(x2))" (x1 — x2)(> 0 (4.42)

3. f is uniformly or strongly monotone on D if for any x1,x2 € D, there is
a constant ¢ > 0 such that

186 -1 M (5(x,) — (x)" (31— x2) 2 el — ol (4.43)

v
Fdf Mm+( and D-—‘-’(aub) Ihs VY\TheS (b mean vedae
? / I j-‘!wem
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Figure 4.7: Example illustrating the derivative test for function f(x) = 3z° —

B,

Procedure 1 [First derivative test]|: Let ¢ be an isolated critical number of
f. Then,

1.

oo

3. If f'(x) is positive in an interval [c — €1, c| and also positive in an

As an example, the function f(x) = 32° — 5z* has the derivative f'(z) =
150%(x +1)(x — 1). The critical points are 0, 1 and —1. Of the three, the sign of
f'(x) changes at 1 and —1, which are local minimum and maximum respectively.

=

fle) is a local minimum if f(x) is decreasing in an interval [c— e, (]
and increasing in an interval [r::, ¢+ fg] with €1,e2 > 0, or ( but not
equivalently), the sign of f'(x) changes from negative in [c — €y, ¢ fo
positive in (¢, c + ea] with €1,e3 > 0.

f(e) is a local maximum if f(x) is increasing in an interval [c— €1, ¢]
and decreasing in an interval [r:, ¢+ Eg] with €1,e2 > 0, or (but not A
equivalently), the sign of f'(x) changes from positive in [c — €1,¢| to g
negative in |¢, ¢ + ex| with €1,e0 > 0. ?JH

To c| a3
oYl

interval [c, c — ez, or f'(x) is negative in an interval [c — €1, ¢| and ygn
also negative in an interval [c,c— ey] with ey, ex >0, then f(c) is not |[ghyn

a local extremurm. ncveasing } decy easiny) ,F(\ff
o

e L ' - - . | F . - - o )
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1. A differentiable function f is strictly convex (or strictly concave
up) on an open interval Z, iff, f'(x) is increasing on 7. Recall frmu theo-
rem 46, the graphu al 111’rf1rpu"r ation of the first derivative f'(x); f'(z) = 0
1111;:-11{‘“, that f(x) is increasing at x. Similarly, f'(x) is 111|:,1~LHL5111Eh when

f"(x) = 0. This gives us a sufficient condition for the strict convexity of
a fuuf:tiﬂu:

Theorem 50 If at all points in an open interval T, f(x) is doubly differ-
entiable and if f"(x) > 0, Va € I, then the slope of the function is always
increasing with x and the graph is strictly conver. This is illustrated in

Figure 4.8.

On the other hand, if the function is strictly convex and doubly differen-

tiable in Z, then f"(x) > 0, Vo € T.

There is also a slopeless interpretation of strict convexity as stated in the
following theorem:

Theorem 51 A differentiable function f is Hfi’"if_‘.f@ COTLVET 0T QAT OPEn
interval I, iff

flaxy + (1 —a)xy) < af(x) + (1 —a) flx) (4.2)

whenver xy,x2 €L, 11 # 19 and ) < a < 1.
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Proof: First we will prove the necessity. Suppose f' is increasing on 7.
let 0 < a <1, 21,700 € T and 7, # 3,. Without loss of generality
assume that o < xo°. Then, r; < ary 4+ (1 —a)rz < r» and therefore
ary + (1l —a)rs € I. By the mean value theorem, there exist s and ¢ with
T, < 8 < ary+(1l—a)rs <t< 2y, suchthat flax; +{1—ajx)— flz;) =
fi(s)xe —x1)(1 —a) and f(xs) — flaxy + (1 — a)xs) = f'(t)(x2 — x1)a.

Therefore,

(1 —a)f(z) — flax; + (1 —a)zs) +af(x) =
alf(x2) — flaxy + (1 —a)zz)] — (1 —a) [flaz, + (1 —a)xz) — f(xy)] =
a(l —a)(x2 —21) [f'(t) — f'(s)]

Since f(x) is strictly convex on Z, f'(x) is increasing 7 and therefore,
fi(t) — f'(s) = 0. Moreover, x2 — ;1 > 0 and 0 < a < 1. This implies
that (1 — a) f{zx,) — flaz, + (1 — a)zs) + af{xs) > 0, or equivalently,
flary + (1 —a)ra) < af(x1)+ (1 — a) f(x2), which is what we wanted to
prove in 4.2,

Next, we prove the sufliciency. Suppose the inequality in 4.2 holds. There-
fore,

]jInJF['TE +alr) —x3)) — flra) < flx1) = fi

Lo
2 =[] ] jl

that is.

filza)(zy — 22) < flz) — flaa) (4.3)

Similarly, we can show that

i) (xe —21) < f(22) — flxr) (4.4)

Adding the left and right hand sides of inequalities in (4.3) and (4.4}, and
multiplying the resultant inequality by —1 gives us

(f'{z2) = fl(z1)) (x2 —21) 2 0 (4.5)

Using the mean value theorem, 3z = ) + t(xy —xy) for t € (0.1) such
that



flaz) — flzr) = f'(2)(z2 — 21) (4.6)

Since 4.5 holds for any x1, xs € I, it also hold for x» = z. Therefore,

(f'(2) = fll@)(z—21) 20

(f'(2) = F'(z1))(22 —21) = %

Additionally using 4.6, we get

flaa)=flzy) = (f'(2)=fz) (e —z1 )+ [z ) (2o —21) = JFF{-TIJ'[*TEEII;
4.7

Suppose equality holds in 4.5 for some xy # x3. Then equality holds in
4.7 for the same r; and x-. That is.

Fx2) = flx1) = f'(21) (22 — a1) (4.8)

Applying 4.7 we can conclude that

flzy) +af' (1 )(22 — 1) < fl21 + alzg — 21)) (4.9)

From 4.2 and 4.8, we can derive that

fley +ales —x1)) < (1 —a) f(x) +af(za) = flx) +af' (x))(xs — )
(4.10)

However. equations 4.9 and 4.10 contradict each other. Therefore. equality

in 4.5 cannot hold for any xy # xa, implying that

(f'(x2) = f'(z1)) (x2 —21) >0

that is, f'(x) is increasing and therefore f is convex on Z. O



Figure 4.9: Plot for the strictly convex function f(x) = —x? which has f"(z) =
—2<0, V.




A differentiable function f is said to be strictly conecave on an open interval
T, iff, f'(x) is decreasing on Z. Recall from theorem 46, the graphical
interpretation of the first derivative f'(x); f'(x) < 0 implies that f(x) is
decreasing at x. Similarly, f'(x) is monotonically decreasing when f”(x) >
(). This gives us a sufficient condition for the concavity of a function:

Theorem 52 If at all points in an open interval Z, f(x) is doubly differ-
entiable and if f"(x) < 0, Vo € I, then the slope of the function is always
decreasing with x and the graph s strictly concave. This is illustrated in

Figure 4.9.

On the other hand, if the function is strictly concave and doubly differen-
tiable in 7, then f"(x) <0, Vo € T.

There is also a slopeless interpretation of concavity as stated in the fol-
lowing theorem:

Theorem 53 A differentiable function f is strictly concave on an open
interval T, iff

flaxy + (1 —a)xs) > af(x) + (1 —a)f(x) (4.11)

whenver £y, 10 € T, &1 F 19 and 0 < a < 1.



. 1] T Inflection

Figure 4.10: Plot for f(x) = x® + = + 2, which has an inflection point = = 0,
along with plots for f'(x) and f"(x).

Procedure 2 [First derivative test in terms of strict convexity|: Let ¢ be
a critical number of f and f'(¢) = 0. Then,

1. f(e) is a local minimum if the graph of f(x) is strictly convex on an
open interval containing c.

2. fle) is a local maximum if the graph of f(x) is strictly concave on
an open interval containing c.



Convex Optimization — Boyd & Vandenberghe

3. Convex functions

basic properties and examples

operations that preserve convexity

the conjugate function
e quasiconvex functions

e log-concave and log-convex functions

convexity with respect to generalized inequalities

3-1

Definition
f:R" — Ris convex if dom f is a convex set and
f0r+ (1= 0)y) <O0f(x)+(1—-0)f(y)

forallz,y €edom f,0<6<1

\ //?;,f(y))
e

(z, f(z))

e f is concave if —f is convex

e f is strictly convex if dom f is convex and

fOx+(1=0)y) <0f(x)+(1-0)f(y)

forz,yedomf, x4y 0<0<1

Convex functions 3-2



Definition 35 [Convex Function]: A function f:D — R is conver if D is

- a conver set and o

- flx+(1-0y)<8f(x)+(1-8)f(y) Vx,yeD 0<8=<1(431) — —

Figure 4.37 illustrates an erample convex function. A function f : D — R
is strictly conver if D is conver and

- flox+(1-8y)<8fi(x)+(1 -8 f(y)) YxyeD 0<6<1(432)

A function f : D — R is called uniformly or strongly convez if I is convex
~ and there exists a constant ¢ > () such that

- f(Ox+(1-0)y) < 0f(x) + (1 -O)f(y)) — 58(1 - O)[lx~y|]| VxyeD 0<88<1(

~ Theorem 69 Let f : D — R be a conver function on a convexr domain D. Any
point of locally minimum solution for f is also a point of its globally minimum
_ solution.

— Theorem TO Let f: D — R be a strictly convez function on a conver domain
D. Then f has a unigue point corresponding to its global minimum.

Theorem T1 A function f : D — R is (strictly) conver if and only if the
— function ¢ : Dy — R defined below, is (strictly) convex in t for every x € R"
and for every h ¢ R"
- ¢(t) = f(x + th)

arth the domain of & agivnen by D = [tlw 4+ th = DV



Examples on R

convex:

e affine: ax + b on R, for any a,b € R
e powers: z%on Ry, fora>1ora <0

e powers of absolute value: |z|P on R, for p > 1

e negative entropy: zlogx on R,

concave:
e affine: ax +bon R, for any a,b € R
e powers: z*on Ry, for0 <a <1

e logarithm: logx on R, 4+

Convex functions

Examples on R"” and R™*"

affine functions are convex and concave; all norms are convex

examples on R"

e affine function f(x) = a’z +b
(

e norms: ||z, = (320, |z:P)Y/P for p > 1; ||2||ee = maxy |24]

1=

examples on R™™" (m x n matrices)

e affine function

i=1 j=1

e spectral (maximum singular value) norm

Convex functions

3-3

3-4



Restriction of a convex function to a line

f :R"™ — R is convex if and only if the function g : R — R,
g(t) = f(z + tv), domg = {t |z +tv € dom f}

is convex (in t) for any z € dom f, v € R”

can check convexity of f by checking convexity of functions of one variable

nnnnn la £.€N c B ik LAV 1Ay
CAAmpic. j .9 ——7 Wil jlAa ) — 10§

AN | AR Vs 1T B 1 1 1 (T v —1/2v 7 v —1/2N
gkl/) = 108 (JGLKA +— LV ) 10g d€L A 1 108 (lebkl T+ LA V A )
n
= ogact A ) HOg(L T 1A

" - " - " RN R XS WN—— R X5 }
where A; are the eigenvalues of X~/ <V X%/

g is concave in t (f

Convex functions 3-5

Extended-value extension

ki 2
&
I
8
R
o
53
=
S~

often simplifies notation; for example, the condition

0<0<1 = f(Ox+(1—0)y) <0f(x)+(1-6)f(y)
(as an inequality in RU {oo}), means the same as the two conditions

e dom f is convex
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First-order condition

f is differentiable if dom f is open and the gradient

V50 = (G )

N

exists at each x € dom f

1st-order condition: differentiable f with convex domain is convex iff

fly) > f(z) + Vf(x)T(y —x) forall x,y € dom f

\f(y)

/ -
\ /f(x) + Vi(z) (y — z)
y(w,f(x))

firct_order 2
HrSt-oraer a

Convex functions 3-7

3-8



 Theorem 75 Let f : D — R be a differentiable conver function on an open
conver set D. Then:

1. f is conver if and only if, for any x.y € D,

fiy) = f(x) + V' f(x)(y — x) (4.44)

3. f is strictly conver on D if and only if, for any x, ¥y € D, with x #£ ¥,

f(¥) > f(x) + V' f(x)(y — x) (4.45)

3. f is strongly conver on D if and only if, for any x,y € D,

19)2 [+ VT -x) + gelly —xI  (4.46)

for some constant ¢ > ().




- Theorem T8 Let f : D — R with D C R™ be differentiable on the convez set
- D. Then,

1. f is conver on D if and only if is its gradient V f is monotone. That is,
forallx,ye®R

) (Vi(x) - Vi) (x—y) =0 (4.53)

2. f is strictly convexr on D if and only if is its gradient V [ is strictly mono-
tone. That is, forallx,y c R with x # y,

) (Vf(x) - Vi) (x—y)>0 (4.54)

~ 8. f is uniformly or strongly convexr on D if and only if is its gradient V [ is
uniformly monotone. That is, for allx,y € R,

(VF(x) - VIy) (x—y) > dx -yl (4.55)

for some constant ¢ > (.




Procedure 3 [Second derivative test]: Lef ¢ be a critical number of [ where
f'(e) =0 and f"(¢) exvists.

1. If f"(¢) = 0 then f(c) is a local minimum.
2. If f"(e) < 0 then f(c) is a local mazximum.
3

3. If f'"(¢) = 0 then f(c) could be a local maximum, a local minimum,
neither or both. That is, the test fails.

For example,

o If f(x) = a*, then f'(0) = 0 and f"(0) = 0 and we can see that f(0) is a
local minimum.

o If f(x) = —a*, then f(0) =0 and f"(0) = 0 and we can see that f{0) is
a local maximum.

o If f(x) = 22, then f'{0) = 0 and f"(0) = 0 and we can see that f(0) is
neither a local minimum nor a local maximum. (0,0) is an inflection point
in this case.

o If f(x) =+ 2sinwx, then f'(x) =1+ 2cosx. f'(x } — 0 for o — 2%!4%

which are the critical numbers. f" (2{[) = —2sin%" = —\/3 <

f (Erf) = EW—FV/_ }1s a lULﬁl maximum value. On the Uther hand, f" ‘%) i
Vi_ 3=0=f {h) = q ﬁ.,/_ 3 15 a local minimum value.

o If flo)=ua+ < L then f'(x) =1— 4. The critical numbers are = = +1.
Note that x = [l 1s not a critical Immber even though f/(0) does not exist,
because (0 is not in the domain of f. f"(z) = %. f"(-1) = -2 < 0 and
therefore f(—1) = —2 is a local maximum. (1) = 2 > 0 and therefore
f(1) = 2 is a local minimum.



Theorem 79 A twice differential function f : D — R for a nonempty open
convex set D

1. is convex if and only if its domain is conver and its Hessian matriz is
positive semidefinite at each point in D. That is

Vif(x) =0 ¥xeD (4.62)

2. is strictly convez if its domain is conver and its Hessian matriz is positive
definite at each point in D. That is

Vif(x)=0 ¥xeD (4.63)

3. is uniformly convex if and only if its domain is conver and its Hessian
matriz is uniformly positive definite at each point in D). That is, for any
v € R" and any x € D, there erists a ¢ > 0 such that

vIVEf(x)v > e|v]|? (4.64)

In other words
?zftx} > elysn

where I, 15 the n x n identity matriz and = corresponds to the pos-
itive semidefinite inequality. That is, the function [ is strongly convez
iff V2f(x) — clpuxn is positive semidefinite, for all x € D and for some
constant ¢ > (), which corresponds to the positive minimum curvature of

1.




Global Extrema on Closed Intervals

Procedure 4 [Finding extreme values on closed, bounded intervals|:
Find the eritical points in int(T).

2. Compute the values of f at the critical points and at the endpoints of
the interval.

3. Select the least and greatest of the computed values.

For example, to compute the maximum and minimum values of f(x) =
4x? — 8x? 4 5 on the interval [0,1], we first compute f'(x) = 122 — 16x + 5
Tieh e o o— 1 O . t e b 1y By 25
which is 0 at x = 3, 2. ‘Vﬁlueh at the Ll“ltlf,ﬂllpﬂlllth are j[ﬁ} =1, f(ﬁ} =
The values at the end points are f(0) = 0 and f(1) = 1. Therefore, the minimum

value is f(0) = 0 and the maximum value is f(1) = f[%} = 1.

Definition 21 [One-sided derivatives at endpoints|: Lef f be defined on

a closed bounded interval [a,b]. The (right-sided) derivative of f at x =a
15 defined as

f'{a) = lim flath) - fla)

 h—0+ h

Similarly, the (left-sided) derivative of [ at x = b is defined as

f(b) = lim flb+h)— fb)

h—s()— h




Theorem 54 If f is continuous on [a,b] and f'(a) exists as a real number or
as £oo, then we have the following necessary conditions for extremnum at a.

o [f f(a) is the maximum value of f on |a,b], then f'(a) <0 or f'(a) = —oc.
o If f(a) is the minimum value of f on [a,b], then f'(a) = 0 or f'(a) = oc.

If [ is continuous on |a,b] and f'(b) exists as a real number or as oo, then
we have the following necessary conditions for extremum at b.

o If f(b) is the maximum value of f on [a,b], then [f'(b) =0 or f'(b) = c.
o If f(b) is the minimum value of f on [a,b], then f'(b) <0 or f'(b) = —oc.

The following theorem gives a useful procedure for finding extrema on closed
intervals.

Theorem 55 If [ is continuous on [a,b] and f"(x) ewists for all x € (a,b).
Then,

o If f"(x) <0, Va € (a,b), then the minimum value of f on [a,b] is either
fla) or f(b). If, in addition, { has a critical number ¢ € (a,b), then f(c)
is the maximum value of [ on [a, b.

o If f"(x) =0, V& € (a,b), then the maximum value of  on [a,b] is either
fla) or f(b). If, in addition,  has a critical number ¢ € (a,b), then f(c)
is the minimum value of f on [a,b).

Theorem 56 Let I be an open interval and let [ (x) exist Wa € T,

o If f"(x) = 0, Ve € T, and if there is a number ¢ € T where f'(c) = 0,
then f(c¢) is the global minimum value of f on I,

o If f'"(x) <0, Ve € I, and if there is a number ¢ € T where f'(c) = 0,
then f(c) is the global maximum value of [ on T.

For example, let f(x) = %:;: —secr and T = (5, 5). f'(x) = % —secxtanr =
% — E‘:‘j;ifm =0 = o = Z. Further, f"(r) = —sec r(tan? x 4+ sec?x) < 0 on

(5. ). Therefore, f attains the maximum value f(%)= % — % on 7.



- the cone with minimum volume that can contain a sphere of radius R.

Figure 4.11: Ilustrating the constraints for the optimization problem of finding




Theorem 61 Lel [ : D — R where D C R". Let f(x) have continuous partial
derwatives and continuous mized partial dertvatives in an open ball R containing
a point xX* where ¥V f(x*) = 0. Let V?f(x) denote an n x n mutn.r of mized
partial derivatives of f evaluated at the point x, such that the i§*" entry of the
matric 1§ fr o . The matriz V2f(x) is called the Hessian matriz. The Hessian
matree 15 .ﬁ'yrrarrmtr'ir:ﬁ. Then,

o IfV?2f(x*) is positive definite, x* is a local minimum.

o If V2f(x*) is negative definite (that is if —V° f(x*) is positive definite),

x* 15 a local maximuwm.

Theorem 62 Let f : D — R where D C R™. Lel f(x) have continuous par-
tial derivatives and continuous mizved partial derivatives in an open region R
containing a point Xx* where V f(x*) = 0. Then,

o Ifx* is a point of local minimum, V2 f(x*) must be positive semi-definite.

o Ifx* is a point of local mazimum, V* f(x*) must be negative semi-definite
(that is, —V* f(x*) must be positive semi-definite).

Corollary 63 Let f : D — R where D C R". Let f(x) have continuous par-
tial derivatives and continuous mired partial derivatives in an open region R
containing a point x* where V f(x*) = 0. If V2f(x*) is neither positive semi-
definite nor negative semi-definite (that is, some of its eigenvalues are positive
and some negative), then x* is a saddle point.



Theorem 64 Let the partial and second partial derivatives of f{axy,x2) be con-

tinuous on a disk with center (a,b) and suppose fr, (a,b) =0 and f,(a,b) =0
so that (a,b) is a critical point of f. Let D(a,b) = fi o (a,b)fr,c,(a,b) —
(frrzs (a,0)]?. Then',

o IfD =0 and f, . (a,b) >0, then f{a,b) ts a local minimum.
o Elseif D >0 and f. . (a,b) <0, then f(a,b) is a local mazimum.

e Else if D <0 then (a,b) is a saddle point.

Figure 4.22: Plot of the function 2x? 4+ xx3 + 527 + 13 showing the four critical
points.

We saw earlier that the critical points for f(xy, x3) = 20+ a1 254+5x7 413 are
(0,0), [—%, 0), (—=1,2) and (-1, —2). To determine which of these correspond
to local extrema and which are saddle, we first compute compute the partial
derivatives of f:

foyae, (1, 00) = 1221 + 10

fooas (1, 22) = 201 + 2

f:cl T Iiml: -TE} = 2xq

Using theorem 64, we can verify that (0,0) corresponds to a local minimum,
(—2,0) corresponds to a local maximum while (—1,2) and (=1, —2) correspond



to saddle points. Figure 4.22 shows the plot of the function while pointing ouw
the four eritical points.

- Figure 4.23: Plot of the function 10x%y — 52% — 4y* — x* — 2y* showing the four
~critical points.
 Consider a significantly harder function f(x,y) = 10x%y — 5z? — 4y* —

r* — 2y*. Let us find and classify its critical points. The gradient vector
Cis Vf(r.y) = [200y — 100 — 42°, 102% — 8y — 8y?]. The critical points o
- correspond to solutions of the simultaneous set of equations

- 20xy — 102 — 4 o
Ory — 10x — 4 0 (4.15)

. 10x? — 8y — Sy* = 0 -

- One of the solutions corresponds to solving the system —8y* 4+ 42y —
225 = 0° and 102? = 50y — 25, which have four real solutions”, wiz., o

(0.8567,0.646772), (—0.8567,0.646772), (2.6442, 1.898384), and (—2.6442, 1.898384).
- Another real solution is (0,0). The mixed partial derivatives of the func- o

~ tion are
f i

few = 20z (4.16)
fyy = —8-—244

I
bt
=
=
I
-
L
I
-
bt
=
b2




Using theorem 64, we can verify that (2.6442, 1.898384) and (—2.6442, 1.898384)
correspond to local maxima whereas (0.8567,0.646772) and (—0.8567, 0.646772)

corresnond tn gaddle noants Thig g illnstrated in Fionre 4 923










