First-order condition

f is differentiable if dom f is open and the gradient

V50 = (G g e )

exists at each x € dom f

1st-order condition: differentiable f with convex domain is convex iff

fly) > f(z) + Vf(x)T(y —x) forall x,y € dom f

wes lowr bouﬂa\ zgﬁmﬁ\?,

f(y) ’faoguﬂ%

flx)+ Vi) (y — )

(z, f(z))

first-order approximation of f is global underestimator
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Second-order conditions

f is twice differentiable if dom f is open and the Hessian VZf(z) € S",

_ *f(=)
N 8:5‘1'8]3]"

V2 ()5

,j=1,...,n,

exists at each x € dom f

2nd-order conditions: for twice differentiable f with convex domain

e f is convex if and only if

V2f(xz) =0 forall z € dom f

o if V2f(z) = 0 for all x € dom f, then f is strictly convex

Convex functions 3-8



Theorem 69 Lef [ : D — R be a conver function on a conver domain D. Any

point of locally minimum solution for [ is also a point of its globally minimum
solution.

Optimization problem in standard form
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Theorem 70 Let f: D — R be a strictly convexr function on a conver domain
D. Then f has a unique point corresponding to its global mim'mum.(it \S‘ et exioks ﬁ‘O\OA\

Proof: o m\(ﬂ)



Theorem 69 Let f: D — R be a conver function on a conver domain D. Any \gr \ocq\ mn L
oint of locally minimum solution for { is also a point of its globally minimum -~

solution. .
opa\ YO

Proof: Suppose x € D is a point of local minimum and let ¥ € D be a point of ohelld xisk

global minimum. Thus, f(y) < f(x). Since x corresponds to a local minimum,

. sWiee ojlw
there exists an € > 0 such that ! ‘S'

3lo}m\ 0 docs

“0\1 ex b '\’hcn

Consider a point z = fy + (1 — f)x with § = z==—m. Since X is a point of IS VIS ¢

local minimum (in a ball of radius €), and since f(y) < f(x), it must be that /S,(j) < %l ("1-)

llv —x|| = e. Thus, 0 < 8 < % and z € D. Furthermore, ||z — x|| = 5. Since f

is a convex function S\ °l\'° X
flz) = 0f(x) + (1 =8)f(y) would Nawe Vo

Since f(y) < f(x), we also have 3("\9&[ Wl\ﬂ)
‘( %C‘\ oNe

0f(x) +(1=0)f(y) < f(x) @0 b 4

The two equations imply that f(z) < f(x), which contradicts our assumption |Z=074 (1-9)
that x corresponds to a point of local minimum. That is f cannot have a point s} 7¢ g(, 4

of local minimum, which does not coincide with the point y of global minimum. ’?(1) J ‘; @y - 0
-

vzeD, |lz-x|| <e= f(z) > f(x)

conl a&ic)ﬁon

Theorem 70 Let f: D — R be a strictly conver function on a conver domain
D. Then f has a unique point corresponding to its global mim'mum.(it \S‘ fhetC exisle zﬂo\ou\

Proof: Suppose x € D and y € D with y # x are two points of global minimum. m\ﬂlm\m)
That is f(x) = f(y) for y # x. The point ¥ also belongs to the convex set
D and since f is strictly convex, we must have o

f(x-;}’){%f{x}+%f{}')=ﬂx) ‘\\Xg\é\»\\@ gS
S

@
which is a contradiction. Thus, the point corresponding to the minimum of f ,},‘fﬁ\ \6’\\9
must be unique. O e¥ 0\
%N

%. /F(ﬂ:,\of)-x, \s Q)’wo@ @Onve thouk any %an\ i)



Definition 41 [Subgradient]: Let f: D — R be a convexr function defined
on a conver set D. A vector h € R™ is said to be a subgradient of [ at the

point x € D if
f(y) = f(x) +h' (y = x)

for all y € D. The set of all such vectors is called the subdifferential of f

atl .

Theorem 76 Let f: D — R be a conver function defined on a convex set D.
A point x € D corresponds to a mintmum if and only if

Vi) =x) =0
for all y € D.

If ¥V f(x) is nonzero, it defines a supporting hyperplane to D at the point x.
Theorem 77 implies that for a differentiable convex function defined on an open

set, every critical point must be a point of (global) minimum.
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Definition 41 [Subgradient]: Let f: D — R be a conver function defined
on a conver set D. A vector h € R™ is said to be a subgradient of [ at the
point x € D if

fly) = f(x) +h' (y — x)

for all y € D. The set of all such vectors is called the subdifferential of f
at x.

Theorem 76 Lel f: D — R be a conver function defined on a convex set D.
A point x € D corresponds to a mintmum if and only 1
po p f y if \ At (VD)

va{x}{}' -x)=0 [ :1311:;m10'ﬂ0{7 *
for all y € D. wﬁ:l(t 0")}' ?1()\3\(’/{“

If ¥V f(x) is nonzero, it defines a supporting hyperplane to D at the point x.
Theorem 77 implies that for a differentiable convex function defined on an open
set, every critical point must be a point of (global) minimum.
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Quasiconvex functions

f : R"™ — R is quasiconvex if dom f is convex and the sublevel sets

Sao={redomf| f(x) <a}

are convex for all «

peot™

SV
e )
{\\ Y& . f is quasiconcave if — f is quasiconvex M MGYIA'UY\ﬁ (F:ﬂ

e f is quasilinear if it is quasiconvex and quasiconcave ~ O¥C Guasiinea

Convex functions 3-23

Examples

\/m is quasiconvex on R

e ceil(z) =inf{z € Z | z > x} is quasilinear
e logz is quasilinear on Ry ¢

o f(x1,x9) = w129 is quasiconcave on R%r+

e linear-fractional function

T
b
f(x):%, dom f={z|clz+d>0}
is quasilinear
e distance ratio
| — al|2
flx) = =Bl dom f = {z | |z — all2 < [[z — b]|2}

IS quasiconvex

Convex functions 3-24



internal rate of return

e cash flow = = (zg,...,x,); x; is payment in period i (to us if x; > 0)
e we assume g < 0Oandzg+2x21+---+2x, >0

e present value of cash flow x, for interest rate r:

PV(z,r) = Z(l + )"l

=0
e internal rate of return is smallest interest rate for which PV (z,r) = 0:
IRR(z) = inf{r > 0| PV(x,r) =0}

IRR is quasiconcave: superlevel set is intersection of halfspaces

IRR(z) > R <= Y (14r)'z;>0for0<r<R
1=0

Convex functions 3-25

Properties
modified Jensen inequality: for quasiconvex f

0<0<1 = [f(0x+(1-0)y) <max{f(z), f(y)}

first-order condition: differentiable f with cvx domain is quasiconvex iff

fy) < flx) = Vf@)'(y—=2)<0

Vi(z)

sums of quasiconvex functions are not necessarily quasiconvex

Convex functions 3-26



Definition 41 [Subgradient]: Let f: D — R be a conver function defined

on a conver set D. A vector h € R™ is said to be a subgradient of [ at the
point x € D if

f(y) = f(x) + h' (y = x)
for all y € D. The set of all such vectors is called the subdifferential of f
at x.

Theorem 76 Let f: D — R be a conver function defined on a convex set D.
A point x € D corresponds to a mintmum if and only if

Vi) =x) =0
for all y € D.

If ¥V f(x) is nonzero, it defines a supporting hyperplane to D at the point x.
Theorem 77 implies that for a differentiable convex function defined on an open
set, every critical point must be a point of (global) minimum.

Theorem 77 Let f: D — R be differentiable and conver on an open convez

domain D C R". Then x is a eritical point of [ if and only if it is a (global)
AT,

Theorem T8 Let f: D — R with D C R™ be differentiable on the conver set
D. Then,

1. f is conver on D if and only if is its gradient V f is monotone. That is,
forallx,y € R

(Vix)=Viy) (x=y)=0 (4.53)

2. [ is strictly conver on D if and only if is its gradient V [ is strictly mono-
tone. That is, for all x,y € R with x # y,

(Vf(x)=Viy) (x—y)>0 (4.54)

3. f is uniformly or strongly conver on D if and only if is its gradient V f is
uniformly monotone. That s, for all x,y € R,

(VI(x)=Viy)' (x=y) =[x =y (4.55)

for some constant ¢ > (.



I":Iecessit}r: Suppose f is uniformly convex on D. Then from theorem 75,
we know that for any x,. ¥y € D,

1) 2 £6) + V6 (y =) = selly +xIP
1) 2 1) + V7 f(y) o~ y) — zellx+ 1P

Adding the two inequalities, we get (4.55). If f is convex, the inequalities hold
with ¢ = (0, yielding (4.54). If f is strictly convex, the inequalities will be strict,
vielding (4.54).

Sufficiency: Suppose V f is monotone. For any fixed x, y € D, consider the
function @#(t) = f (x +t{y — x)). By the mean value theorem applied to ¢(t),
we should have for some t € (0,1).

#(1) — a(0) = ¢'(t) (4.56)

Letting z = x + t(y — x), (4.56) translates to

f(y) - f(x) =V f(z)(y —x) (4.57)
Also, by definition of monotonicity of V f, (from (4.53)).

(Vf(2) = V1) (v =%) = 7 (V/(2) = VF() (2=2) 20 (458)

Combining (4.57) with (4.58), we get.

f(y) = f(x) = (Vf(z) = f(x)" (v —%) + V' f(x)(y — x)
>V f(x)(y — x) (4.59)

By theorem 75, this inequality proves that f is convex. Strict convexity can
be similarly proved by using the strict inequality in (4.58) inherited from strict
monotonicity, and letting the strict inequality follow through to (4.59). For the
case of strong convexity, from (4.55), we have

@'(t) = #'(0) = (Vf(=z) — F(x))" (¥ —x)
(Vf(z) = f(x)" (2—x) 2 %f—‘ll55 —x||* = etlly — x||* (4.60)

] =

8(1) = 6(0) - 60) = [ [#0) = SOt 2 gelly <l (461)
which translates to

Fly) > f(x) + VT F )y — %) + elly — x||2



Theorem T9 A twice differential function f : D — R for a nonempty open
conver set D

1. is conver if and only if its domain is conver and its Hessian matric is
positive semidefinite at each point in D. That is

Vif(x) =0 VYxeD (4.62)

2. is strictly convex if its domain is conver and its Hessian matriz is positive
definite at each point in D. That is

Vif(x) -0 ¥YxeD (4.63)

3. is uniformly convex if and only if its domain is conver and its Hessian
matriz is uniformly positive definite at each point in D. That is, for any
v € R" and any x € D, there exists a ¢ > 0 such that

vIVEf(x)v = cf|v]]? (4.64)

In other words
?Ef{x) = clpxn

where Inyn 18 the n x n identity matriz and = corresponds to the pos-
itive semidefinite inequality. That is, the function f is strongly convez
iff V2f(x) — clnxn is positive semidefinite, for all x € D and for some
constant ¢ > 0, which corresponds to the positive minimum curvature of

f.



Proof: We will prove only the first statement in the theorem: the other two
statements are proved in a similar manner.

Necessity: Suppose f is a convex function, and consider a point x € D.
We will prove that for any h € 8", hY V*f(x)h > 0. Since f is convex, by
theorem 75, we have

flx+th) > f(x)+tV7 f(x)h (4.65)

Consider the function &(t) = f(x + th) considered in theorem 71, defined on
the domain Dy = [0.1]. Using the chain rule,

@'(t) =) fr(x+th) '{;

=1

=h¥. ¥V f(x+th)

Since [ has partial and mixed partial derivatives, ¢’ is a differentiable function
of t on Dy and
#"(t) = h' V¥ f(x+ th)h

Since ¢ and ¢ are continous on Py and ¢’ is differentiable on int(Dy ). we
can make use of the Taylor's theorem (45) with n = 3 to obtain:

; Y, 1 T :
o(t) = @(0) + t.¢'(0) + E:’.Em (0) + O(t)
Writing this equation in terms of f gives

f(x+th) = f(x) +th? V f(x) + r?%hf‘vﬂ flx)h + Ot

In conjunction with (4.65), the above equation implies that
2 :
EhT?E_f{x}h + 0t =0

Dividing by t? and taking limits as t — 0, we get

W92 f(x)h =0

Sufficiency: Suppose that the Hessian matrix is positive semidefinite at
each point x € D. Consider the same function ¢(t) defined above with h = y—x
for v, x € D. Applying Taylor's theorem (45) with n = 2 and a = ), we obtain,

#1) = 6(0) +£.6'(0) + 2. 56"(c)

for some ¢ € (0.1). Writing this equation in terms of f gives

1
flx) = fly) + (x =)' Vfly) + 5(x - y) Vf(z)(x - y)
where 2 = y +e{x —y). Since D is convex, z € D. Thus, V2 f(z) = 0. It follows
that

s el



Operations that preserve convexity

practical methods for establishing convexity of a function

1. verify definition (often simplified by restricting to a line)
2. for twice differentiable functions, show V2f(z) = 0

3. show that f is obtained from simple convex functions by operations
that preserve convexity

nonnegative weighted sum
composition with affine function
pointwise maximum and supremum
composition

minimization

perspective

Convex functions 3-13

Positive weighted sum & composition with affine function

nonnegative multiple: «of is convex if f is convex, a > 0
sum: f; + fo convex if f1, fo convex (extends to infinite sums, integrals)

composition with affine function: f(Ax + b) is convex if f is convex

examples

e log barrier for linear inequalities

f(x) = _Zlog(bi —al'r), dom f = {z|alz <bs,i=1,...,m}
i=1
e (any) norm of affine function: f(x) = || Az + b||

Convex functions 3-14



