Operations that preserve convexity

practical methods for establishing convexity of a set C

1. apply definition

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta)x_2 \in C$$

- 2. show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, . . .) by operations that preserve convexity
 - intersection
 - affine functions
 - perspective function
 - linear-fractional functions

Convex sets 2-11

Intersection

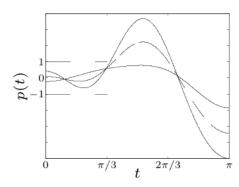
the intersection of (any number of) convex sets is convex

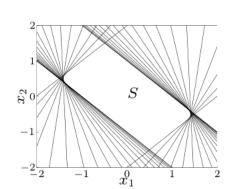
example:

$$S = \{x \in \mathbf{R}^m \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3\} = \bigcap_{\substack{t \in \mathbf{R}^n \\ \text{on } t = 2}} \underbrace{\mathbf{R}^n \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3} = \bigcap_{\substack{t \in \mathbf{R}^n \\ \text{on } t = 2}} \underbrace{\mathbf{R}^n \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3} = \bigcap_{\substack{t \in \mathbf{R}^n \\ \text{on } t = 2}} \underbrace{\mathbf{R}^n \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3} = \bigcap_{\substack{t \in \mathbf{R}^n \\ \text{on } t = 2}} \underbrace{\mathbf{R}^n \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3} = \bigcap_{\substack{t \in \mathbf{R}^n \\ \text{on } t = 2}} \underbrace{\mathbf{R}^n \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3} = \bigcap_{\substack{t \in \mathbf{R}^n \\ \text{on } t = 2}} \underbrace{\mathbf{R}^n \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3} = \bigcap_{\substack{t \in \mathbf{R}^n \\ \text{on } t = 2}} \underbrace{\mathbf{R}^n \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3} = \bigcap_{\substack{t \in \mathbf{R}^n \\ \text{on } t = 2}} \underbrace{\mathbf{R}^n \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3} = \bigcap_{\substack{t \in \mathbf{R}^n \\ \text{on } t = 2}} \underbrace{\mathbf{R}^n \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3} = \bigcap_{\substack{t \in \mathbf{R}^n \\ \text{on } t = 2}} \underbrace{\mathbf{R}^n \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3} = \bigcap_{\substack{t \in \mathbf{R}^n \\ \text{on } t = 2}} \underbrace{\mathbf{R}^n \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3} = \bigcap_{\substack{t \in \mathbf{R}^n \\ \text{on } t = 2}} \underbrace{\mathbf{R}^n \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3} = \bigcap_{\substack{t \in \mathbf{R}^n \\ \text{on } t = 2}} \underbrace{\mathbf{R}^n \mid |p(t)| \le 1 \text{ for } |t| \ge 1 \text{ for } |t$$

where $p(t) = x_1 \cos t + x_2 \cos 2t + \dots + x_m \cos mt$

for m=2:





Affine function

suppose $f: \mathbf{R}^n \to \mathbf{R}^m$ is affine $(f(x) = Ax + b \text{ with } A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^m)$

 \bullet the image of a convex set under f is convex

 $S \subseteq \mathbf{R}^n$ convex $\implies f(S) = \{f(x) \mid x \in S\}$ convex

ullet the inverse image $f^{-1}(C)$ of a convex set under f is convex

 $C \subseteq \mathbf{R}^m$ convex $\implies f^{-1}(C) = \{x \in \mathbf{R}^n \mid f(x) \in C\}$ convex

examples

- scaling, translation, projection
- solution set of linear matrix inequality $\{x \mid x_1A_1 + \cdots + x_mA_m \leq B\}$ (with $A_i, B \in \mathbf{S}^p$)
- hyperbolic cone $\{x \mid x^T P x \leq (c^T x)^2, \ c^T x \geq 0\}$ (with $P \in \mathbf{S}^n_+$)

f({x|x,h,+...xm/m < B3}) = f({x|Ax < b3})

Affine for that serializes the rows of a making into a row vector

perspective function $P: \mathbb{R}^{n+1} \to \mathbb{R}^n$: midsem Q5 invoked a perspective P(x,t) = x/t

$$P(x,t) = x/t,$$
 dom $P = \{(x,t) \mid t > 0\}$

images and inverse images of convex sets under perspective are convex

linear-fractional function $f: \mathbb{R}^n \to \mathbb{R}^m$:

$$f(x) = \frac{Ax + b}{c^T x + d},$$
 dom $f = \{x \mid c^T x + d > 0\}$

images and inverse images of convex sets under linear-fractional functions are convex

2-14

example of a linear-fractional function

