Operations that preserve convexity

practical methods for establishing convexity of a set C'
1. apply definition

r,70€C, 0<0<1 = fOr;+(1-0)xyeC

2. show that C' is obtained from simple convex sets (hyperplanes,
halfspaces, norm balls, . . . ) by operations that preserve convexity

e intersection

e affine functions

e perspective function

e linear-fractional functions
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Intersection

the intersection of (any number of) convex sets is convex

0
example: 4
SR Pl <1< = [ ) 3zef |f, €
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where p(t) = xy cost + x9cos2t + - - - + x,y, cosmi /:b- »\Ok)’p g)ﬂd

for m = 2:
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Affine function

suppose f : R™ — R™ is affine (f(z) = Az + b with A € R™*", b € R™)

e the image of a convex set under f is convex
a——

S CR"convex = f(S)={f(x)|x e S} convex

e the inverse image f~!(C) of a convex set under f is convex
SN —,—e—

C CR™convex = [ HC)={xeR"| f(z)€ C} convex %w‘ se

e’
examples @/\ a\\(j
neq”
e scaling, translation, projection /’

e solution set of linear matrix inequality {z | 214, + -+ + x4, <X B}

(with A;, B € S”)
e hyperbolic cone {z | 2T Pz < (¢Tx)?, Tz > 0} (with P € ST)
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Perspective and linear-fractional function ’YI
{b"%
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perspective function P : R""' — R™ o A;em 8 SY(\
_,-\/\Nw

P(x,t) = x/t, dom P = {(z,t) | t > 0}

images and inverse images of convex sets under perspective are convex /
. \;»xj
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linear-fractional function f : R" — R™:
: Ax +b -
f(?")zm domfz{'ﬁ|(,fut+d>0}

images and inverse images of convex sets under linear-fractional functions
are convex 61*
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example of a linear-fractional function
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