First Order Descent Methods

Instructor: Prof. Ganesh Ramakrishnan

General descent algorithm

- (0) (0)
- Let us say we want to minimize a function f(x)
- The general descent algorithm involves two steps:
 - ▶ Determining a good descent direction $\Delta x^{(k)}$, typically forced to have unit norm
 - ▶ Determining the step size using some line search technique
- We want that $f(x^{(k+1)}) < f(x^{(k)})$
- If the function f is convex, we must have $\nabla^{\top} f(x^{(k)})(x^{(k+1)} x^{(k)}) < 0 \quad \text{(neces sem)}$
- That is, the descent direction $\Delta x^{(k)}$ must make an obtuse angle with the gradient vector $\nabla f(x^{(k)})$

General descent algorithm

• In descent for a convex function f, we must have:

$$f(x^{(k+1)}) \ge f(x^{(k)}) + \nabla^{\top} f(x^{(k)}) (x^{(k+1)} - x^{(k)})$$

Here, the LHS is the actual value and RHS is the linear approximation of $f(x^{(k+1)})$

- Since step size $t^{(k)} > 0$, $\nabla^{\top} f(x^{(k)}) \Delta x^{(k)} < 0$
- Algorithm:
 - Set a starting point $x^{(0)}$
 - repeat
 - Determine $\Delta x^{(k)}$
 - ② Choose a step size $t^{(k)} > 0$ using line search
 - **3** Obtain $x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)}$

until stopping criterion (such as $\left\|
abla f(\mathbf{x}^{(k+1)}) \right\| < \epsilon$) is satisfied

who was soce (a)

Steepest descent

- The idea of steepest descent is to determine a descent direction such that for a unit step in that direction, the prediction of decrease in the objective is maximized
- However, consider $\Delta x = \operatorname{argmin}_{\mathbf{v}} \begin{bmatrix} -5 & 10 & 15 \end{bmatrix} \mathbf{v}$

$$\implies \Delta x = \begin{bmatrix} \infty \\ -\infty \\ -\infty \end{bmatrix}$$

which is unacceptable

- ullet Thus, there is a necessity to restrict the norm of v
- The choice of the descent direction can be stated as:

$$\Delta \mathbf{x} = \arg\!\min_{\mathbf{v}} \nabla^{\top} \mathbf{f}(\mathbf{x}) \mathbf{v}$$

s.t.
$$\|v\| = 1$$

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ 釣 へ ()

Various choices of the norm result in different solutions for Δx

- For 2-norm, $\Delta x = -\frac{\nabla f(x^{(k)})}{\left\|\nabla f(x^{(k)})\right\|_2}$ (gradient descent)
- For 1-norm, $\Delta x = -\operatorname{sign}\left(\frac{\partial f(x^{(k)})}{\partial x_i^{(k)}}\right)e_i$, where e_i is the ith standard basis vector (coordinate descent)
- For ∞ -norm, $\Delta x = -\operatorname{sign}(\nabla f(x^{(k)}))$

Gradient Descent

Interpretation of gradient descent

Consider the optimization problem

$$x^* = \arg\min_{x \in \mathbf{R}^n} f(x)$$

• The idea behind gradient descent is that you start with a $x^0 \in \mathbf{R}^n$, and $\forall k = 0, 1, 2, ...$,

$$x^{k+1} = x^k + t^k \Delta x^k$$

• x^{k+1} can be treated as a solution to a quadratic approximation of f around x^k

March 31, 2015 7 / 14

• At each iteration, we can consider the quadratic approximation

$$f_{Q_k}(x^{k+1}) = f(x^k) + \nabla f(x^k)^{\top} (x^{k+1} - x^k) + \frac{1}{2t} ||x^{k+1} - x^k||^2$$

• Equating $\nabla f_{Q_k}(x^{k+1}) = 0$ $\Rightarrow \nabla f(x^k) + \frac{1}{t}(x^{k+1} - x^k) = 0$ $\Rightarrow x^{k+1} = x^k - t\nabla f(x^k)$

March 31, 2015 8 / 14

Finding the step size *t*

- If t is too large, we get diverging updates of x
- If t is too small, we get a very slow descent
- We need to find a t that is just right
- We discuss two ways of finding t:
 - Exact line search
 - Backtracking line search

Exact line search

$$\begin{aligned} t^{k+1} &= \operatorname*{argmin}_t f \Big(x^k - t \nabla f(x^k) \Big) \\ &= \operatorname*{argmin}_t \phi(t) \end{aligned}$$

- This method gives the most optimal step size in the given descent direction $\nabla f(x^k)$
- It ensures that $f(x^{k+1}) \le f(x^k)$
- If f is itself quadratic, it gives an optimal solution to the minimization of f (since the quadratic approximation f_Q would become exact and no longer approximate)

March 31, 2015 10 / 14

Backtracking line search

- The algorithm
 - ▶ Choose a $\beta \in (0,1)$
 - Start with t=1
 - ▶ While $f\left(x^k t\nabla f(x^k)\right) > f(x^k) \frac{t}{2} \left\|\nabla f(x^k)\right\|^2$, do
 - ★ Update $t \leftarrow \beta t$

March 31, 2015 11 / 14

Interpretation of backtracking line search

- $\Delta x = \text{direction of descent} = -\nabla f(x^k)$ for gradient descent
- A different way of understanding the varying step size with β : Multiplying t by β causes the interpolation to tilt as indicated in the figure

Assumptions for proving the convergence of gradient descent

- $f: \mathbf{R}^n \to \mathbf{R}$ is convex and differentiable
- *f* is Lipschitz continuous

• Claim: If $t^k \leq \frac{1}{L}$, then

$$f(x^k) - f(x^*) \le \frac{\|x^0 - x^*\|^2}{2tk}$$

- ► The gap between the optimal solution and the solution at the kth step is going to decrease with increasing step size t
- $O(\frac{1}{k})$ rate or linear convergence

March 31, 2015 14 / 14