Initial point and sublevel set

algorithms in this chapter require a starting point z(?) such that
o (¥ ¢ dom f
e sublevel set S = {z | f(x) < f(2(©)} is closed

2nd condition is hard to verify, except when all sublevel sets are closed:

e equivalent to condition that epi f is closed
e true if dom f = R"

e true if f(x) — oo as * — bddom f

examples of differentiable functions with closed sublevel sets:

f(z) =log(}_exp(alz +b)),  fla) =~ Z log(b; — a; x)

=1
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Strong convexity and implications
f is strongly convex on S if there exists an m > 0 such that

V2f(x)=mI  forallzeS

implications

e forz,y €S,
) = f(2) + V@) (y = 2) + Sz =yl

hence, S is bounded

e p* > —o00, and for x € S,

f@) —p* < oIV T @3

useful as stopping criterion (if you know m)
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Gradient descent method

general descent method with Az = —V f(x)

given a starting point x € dom f.

repeat
1. Az := -V f(x).
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. = := x + tA=x.

until stopping criterion is satisfied.

e stopping criterion usually of the form ||V f(z)]|2 < €

e convergence result: for strongly convex f,

F@®) —p* < F(f (@) — p¥)
c € (0,1) depends on m, (9, line search type

e very simple, but often very slow; rarely used in practice
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quadratic problem in R?

flz) = (1/2)(2F + ~yz3) (v>0)
P\ Z
i (v, 1):

with exact line search, starting at z(9) =

e y-1 k) _ 7—1
‘7(7+1) o ‘( 7+1 _ e
/
e veryslowify>1lory<1 Rt

e example for v = 10:
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nonquadratic example

f(z1,x2) = er1+3e2=0.1 | jw1-3x2—0.1 | ,—w1-0.1

backtracking line search exact line search
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a problem in R'®
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‘linear’ convergence, i.e., a straight line on a semilog plot
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choice of Wst descent oo nduted Wr) y

e steepest descent with backtracking line search for two quadratic norms
o ellipses show {z | ||z — 2| p =1} " @)\\‘{56 Spow> Geordh o /@% o

e equivalent interpretation of steepest descent with quadratic norm || - || p:
gradient descent after change of variables z = P'/2x

shows choice of P has strong effect on speed of convergence
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Newton step

o
interpretations &\Q)“O\so\& «
e x + Ax,; minimizes second order approximation Q&c o 9

AT
N S e &
Fla+0) = f(2) + VI @) 0+ 0TV ) o\ © 0
$@ R o&@*
e x + Ax,y solves linearized optimality condition QQ\/ \(S

Vf(z+v) = V(z+v) = V) + Vi) =0

@gm
(z, f(z))

({13' + Afcn‘ca f(x + A'rn‘c)n)k—/ f

(33 + AZEnt, f/(x + Amnt))
(z, f'(=))
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e Az, is steepest descent direction at x in local Hessian norm

1/2
lullg2p) = (W V2 f(2)u)

dashed lines are contour lines of f; ellipse is {z + v | vI V2 f(z)v = 1}

arrow shows —V f(z)
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Newton decrement

1/2

Mz) = (Vf(2)' V2 (2) 'V f(z))
a measure of the proximity of x to x*

properties

*

e gives an estimate of f(z) — p*, using quadratic approximation ]?

Lo 1
f(z) — inf Fly) = sM@)?
e equal to the norm of the Newton step in the quadratic Hessian norm
M) = (Az V2 f(2) Azy)

e directional derivative in the Newton direction: Vf(z)T Axy = —\(z)?

e affine invariant (unlike |V f(x)]2)
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