
Initial point and sublevel set

algorithms in this chapter require a starting point x(0) such that

• x(0) ∈ dom f

• sublevel set S = {x | f(x) ≤ f(x(0))} is closed

2nd condition is hard to verify, except when all sublevel sets are closed:

• equivalent to condition that epi f is closed

• true if dom f = Rn

• true if f(x) → ∞ as x→ bddom f

examples of differentiable functions with closed sublevel sets:

f(x) = log(

m∑

i=1

exp(aT
i x+ bi)), f(x) = −

m∑

i=1

log(bi − aT
i x)
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Strong convexity and implications

f is strongly convex on S if there exists an m > 0 such that

∇2f(x) � mI for all x ∈ S

implications

• for x, y ∈ S,

f(y) ≥ f(x) + ∇f(x)T (y − x) +
m

2
‖x− y‖2

2

hence, S is bounded

• p⋆ > −∞, and for x ∈ S,

f(x) − p⋆ ≤
1

2m
‖∇f(x)‖2

2

useful as stopping criterion (if you know m)
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Gradient descent method

general descent method with ∆x = −∇f(x)

given a starting point x ∈ dom f .

repeat

1. ∆x := −∇f(x).

2. Line search. Choose step size t via exact or backtracking line search.

3. Update. x := x + t∆x.

until stopping criterion is satisfied.

• stopping criterion usually of the form ‖∇f(x)‖2 ≤ ǫ

• convergence result: for strongly convex f ,

f(x(k)) − p⋆ ≤ ck(f(x(0)) − p⋆)

c ∈ (0, 1) depends on m, x(0), line search type

• very simple, but often very slow; rarely used in practice
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quadratic problem in R2

f(x) = (1/2)(x2
1 + γx2

2) (γ > 0)

with exact line search, starting at x(0) = (γ, 1):

x
(k)
1 = γ

(
γ − 1

γ + 1

)k

, x
(k)
2 =

(
−
γ − 1

γ + 1

)k

• very slow if γ ≫ 1 or γ ≪ 1

• example for γ = 10:
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nonquadratic example

f(x1, x2) = ex1+3x2−0.1 + ex1−3x2−0.1 + e−x1−0.1

x(0)

x(1)

x(2)

x(0)

x(1)

backtracking line search exact line search
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a problem in R100

f(x) = cTx−
500∑

i=1

log(bi − aT
i x)

k

f
(x

(k
) )

−
p

⋆

exact l.s.

backtracking l.s.
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‘linear’ convergence, i.e., a straight line on a semilog plot
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choice of norm for steepest descent

x(0)

x(1)
x(2)

x(0)

x(1)

x(2)

• steepest descent with backtracking line search for two quadratic norms

• ellipses show {x | ‖x− x(k)‖P = 1}

• equivalent interpretation of steepest descent with quadratic norm ‖ · ‖P :
gradient descent after change of variables x̄ = P 1/2x

shows choice of P has strong effect on speed of convergence
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Newton step

∆xnt = −∇2f(x)−1∇f(x)

interpretations

• x+ ∆xnt minimizes second order approximation

f̂(x+ v) = f(x) + ∇f(x)Tv +
1

2
vT∇2f(x)v

• x+ ∆xnt solves linearized optimality condition

∇f(x+ v) ≈ ∇f̂(x+ v) = ∇f(x) + ∇2f(x)v = 0

f

bf

(x, f(x))

(x + ∆xnt, f(x + ∆xnt))

f ′

bf ′

(x, f ′(x))

(x + ∆xnt, f ′(x + ∆xnt))
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• ∆xnt is steepest descent direction at x in local Hessian norm

‖u‖∇2f(x) =
(
uT∇2f(x)u

)1/2

x

x + ∆xnt

x + ∆xnsd

dashed lines are contour lines of f ; ellipse is {x+ v | vT∇2f(x)v = 1}

arrow shows −∇f(x)
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Newton decrement

λ(x) =
(
∇f(x)T∇2f(x)−1∇f(x)

)1/2

a measure of the proximity of x to x⋆

properties

• gives an estimate of f(x) − p⋆, using quadratic approximation f̂ :

f(x) − inf
y
f̂(y) =

1

2
λ(x)2

• equal to the norm of the Newton step in the quadratic Hessian norm

λ(x) =
(
∆xnt∇

2f(x)∆xnt

)1/2

• directional derivative in the Newton direction: ∇f(x)T∆xnt = −λ(x)2

• affine invariant (unlike ‖∇f(x)‖2)
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