SVM and SMO and Joachims' SVM'sht

Instructor: Prof. Ganesh Ramakrishnan



Choosing the working set in SVM/&ht

@ Let

fla) = EaT Qu—e'a

@ SVM'8Mt chooses working set B by solving for:
Ao = moiln V' fla¥)d
where d is the descent direction and Ao = o*t! k
s.t.
> {di:di#0}[ <gq
Intuitively, if g non-zero d|'s are possible, they will be picked up since such a set will reduce the objective

further as compared to a smaller set

» yTd=0
(0)Ty=0,and (&) Ty=0 = (a*+d)Ty=0
Thus, y'd =0

» d; € [—1, 1]

» d; >0, for (a¥); =0

» d; <0, for (a¥);=C
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Solving for d in SVM/&ht

The intuition is that:

@ The descent directions d;'s for the most violating (a¥);'s
correspond to the (Vf(aX))/'s that are farthest from 0,

e taking care that we also want y'd = 0, ie. > yidi =0, for all i's
chosen as per above

(st. |{d;: di # 0} < q)
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Solving for d in SVM/&ht

@ Sort yi(VAak)); in decreasing order

@ Symmetrically do:
From the top, sequentially set d; = —y;
From the bottom, sequentially set d; = y;
» Until either
* 4 'd; = —yj's have been selected from the top, and {
‘di = yi's have been selected from the bottom
* we cannot find d; = —y; from the top and d; = y; from the
bottom at the same time
» At any point,
if (k)i =0 and d; = —1, set d; = 0 and bypass it, and
if ()i = Cand d; =1, set di = 0 and bypass it
» The goal is to achieve a balancing between the two signs from
the opposite ends, ie. > yidi=0

@ di's not yet considered are assigned 0
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If 4 ‘d; = —yi's from the top and { 'd; = y;'s from the bottom could
not be selected (or if g is large enough), the algorithm will stop at /;
from the top and i, from the bottom
One of the following will happen:

@ i; is just before iy

@ There is one position i between i; and i, with 0 < (a¥); < C
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When the algorithm stops, d is an optimal solution for

Aa = mC}n V' fla¥)d

s.t.
@ |{di:di#0}<gq
@ y'd=0
@ d e [*1,1]

@ d; >0, for (a¥); =0
o d,‘ S 0, for (ak),- =C

When the algorithm stops at i, if the next index in the sorted list of
yi(Vfla¥)); is i, there are three possible situations:

e (a¥); €(0,0
o (af);=0and y; = —1
o (oM, =Candy, =1

If the last two do not hold, we can move down further by assigning d;, = 0
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Decomposition in Joachims'
f;b4m4ﬁght

(continued)
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Choice of the working set size g

@ In the decomposition algorithm, a working set size ¢ < / must be
chosen
@ There is a tradeoff between g and the number of iterations
needed for the algorithm to converge
» The higher the working set size g, the lower will be the number

of iterations needed
» However, with a larger g, individual iterations become extremely

expensive
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Correctness of the algorithm



@ Verify that the algorithm actually minimizes the objective?

@ When an iteration of the algorithm stops, d is an optimal

solution for
Aa = min V' fla¥)d

s.t.

» {di:di#0} <gq

> de: 0

» d;i € [—1, 1]

» d; >0, for (a¥); =0

> d,' < 0, for (Oék),' =C

Tr proof at http://www.csie.ntu.edu.tw/~cjlin/papers/conv.pdf
Chih-Jen Lin. On the Convergence of the Decomposition Method. for Support Vector Machines
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http://www.csie.ntu.edu.tw/~cjlin/papers/conv.pdf

When an iteration of the algorithm stops, the following KKT
conditions are satisfied, showing that d is an optimal solution:

o VAaX) = —by+ N\ — &

e y'd=0

e \(di+1)=0,if0<ak<C
e \di=0, a,’-‘zO

0 {(1—d)=0,if0<ak<C
e &di=0, ifaf‘:C

@ \i>0,&2>0,Vi=1,...,/
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@ Assume that B is the working set at the kth iteration, and
N=1,...,/\B
o If we define s= «
> f(ak—i-l) _ f(ak)
=15 Qs+s' Qak—e's
= 355 QBBSE + 55 (Qak) g — efsp

k1 _ ok then sy = 0 and
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Thus, in the kth iteration, we solve the following problem with the
variable sg:

L Tk T
min ;s QBsSs + sg(Qa")g — egsp
B

s.t.
0 0< (ak+s),;<CieB
@ yrsg =0

This is written purely in terms of the basis B components, ignoring
the function of sy in the objective which does not depend on sg
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Using the KKT conditions that the optimal solution sg must satisfy,
we show a sufficient decrease of f{«) over the iterations:

o flansr) < fla¥) — gllak* — ok
» where, o = min;(min(eig(Qy)))

@ At every step, the function decreases by an amount that does
not become insignificant
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Convergence of SMO



e SVM Dual objective:

moin %aTQa —ela
s.t.
» 0<a; < C Vi
> yTa =0
@ where:

» @ is positive-semidefinite, and Q;; = yiyjo' (x/)o(x;)
1
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@ We split the constraint 0 < a; < C, Vi into:
» —q; <0, with the Lagrange multiplier 6;
» «; < C, with the Lagrange multiplier T;
@ and, consider y"a = 0, with the Lagrange multiplier /3
@ Thus, we can write the Lagrangian as:
L(a,0,1,8)=30"Qa—e'a—0"a+T T (a—C) + By«
s.t. Vi,
» 0, >0
» >0
> 9,’0[,‘ =0
4 F,'(Oé,' — C) =0
e Taking V,L =0, we get:
Qu—e—0+T+8y=0
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o Ifa;=0,a;— C#0and thus';=0
» (Qa)i—1—0;+By;=0
= 0i=(Qa);i—1+ By
> ASQ,’ZO,

(Qa)i—1+By; >0

o |fOé;: C, 9,:0
» (Qa)i—1+T;+Byi=0

= —Ii=(Qa);— 1+ By
» As F,’Z 0,

(Qa)i—1+By; <0

o Ifa;€(0,0),0;=0andI';=0
» Thus,
(Qa)i— 1+ By;=0
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Let us define the following sets of indices i

° hhla)={i:0<a;< C}

@ li(a)={i:yi=+1,a;=0}
@ hia)={i:yi=-1,a;=C}
@ Iia)={i:yi=+1,a;=C}
o Iy(a)={i:yi=—-1,a;=0}

Let us now consider
@ hia)Uh(a)Uk(a)
={ityi=+L, ;< CtU{i:y;=—1,a; > 0}
» ((Qu)i—1)y;>—p
@ (o) U h(a)Ul(a)
={ityi=+L,0;>0}U{i:yi=—-1,0,< C}
» ((Qu)i—1)y; < -8
Here, ((Qa);j— 1) yj is equivalent to (Vf(«)),y; from the decomposition
algorithm in Joachims' SV\M/ight
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Thus, we have:

min  ((Qa)—1)y;> max ((Qu)—1)y

iclhUl Uly - i€lgUlsUly

We get:

min( min _— (Vfa)),, min (w@)i)

yi=+1,a;>0 y;=—1,a,-<C
>
e (y;inl?é<c_ (Vf(a))" Lo (vf(a))’)

Let the min be attained at index /, and max be attained at index j.
If for (/, ), the inequality is violated, the KKT conditions are violated.
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We need to prove that for all such choices of / and j across iterations,
Yk,

2
Aok < flak) — %Hak—i-l . akH

st. 0 >0, and ot £ ok

Once we find / and j, we will find closed form solutions for

ot = glaf, ak, af)
aft = g(af, ok, af)

(which have been discussed before)
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@ Whatever be the values of o

k+1
/

and aj’-‘“, we will have:

>yt yjozjl-<Jr1 = —y o (constant)

@ Thus, we can say that if o/ changes linearly, then ¢; also

changes linearly

» We can replace af‘“
a(t) af“
k+1
a(t) + a;

@ oy and q; vary linearly with t

1

and aJ’-H' as:

> a,(t)zaf‘—i—ty:af‘—i-ﬁ
> aj(t)zaj’-‘—l—ty:ajlf—f—y—tj
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o Let fla) = Y(t)
» 1) is a function of ap, ay(t), and «;(t)

@ We need to analyze w.r.t. t that minimizes ¢ (t) subject to
constraints

> dayi=0
> o € [0, C]
@ That would give
o ka’,i, t
> ak=|af|, and ofT1 = |aj + 5
k k., T
a/ O[I + }7’
0
» okl _ gk — é
t
Yi
@ Taking norm on both sides, we get:
ot o] = 22

= I = ot e
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e Now, ¢(t) is a quadratic function on t
o Thus, () = 1 (0) +¢/(0) +¢"(0) 5
o V(1) = X7, (VF(a(y)) “40
=y (Vf(a(®)) ~y (Vf(a(t)))j
=y (0, Quai(t) — 1) =y (072 Quevi(t) — 1)
> ¥/(0) = yi(VAak)) —y; (VHAa")
o Y'(t) = Qu+ Qj — 2y Qy
= ¢ (x)o(x) + & (x)P(x;) — 26" (x1)B(x;)
> 9(0) =||o(x) — ¢0)|”

Jj
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@ t minimizes ¢(t) s.t. > a;y; =0 and o; € [0, (], Vi
- 7 = \/%Hakﬂ _akH
@ Suppose t* minimizes ¢ (t) without constraints

» Solving for ¢/(t*) = 0, we get: t* = _¥(0)

¥"(0)
o (t) = ¥(t)
e We can say that t = yt*, where v € [0, 1]
(you could have gone till t* but had to halt at t due to
constraints)
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o () = ¥(v") = (—vingh)
= 9(0) +90) (—180) + 0 (81

_ (v@)° | 52 (vO)

=1(0) —~ w”() + 5
° Smcefye [0, 1],’72§’Y nd

r_oy< -2
@ Thus, ¥(t) < ¢(0) — %Q(w((g))

— G - 0(0) < —2 W)

— §(D) — $(0) < —1Q|ak+t — k|
@ This becomes:

flak+!) = flak) < =gl — o

» where, o = Y49 = L||6(x) — ¢(x))||?

» 0 > 0 except when feature vector ¢(x;) is the same as ¢(x;)
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@ We assume Q to be positive-semidefinite so that ¢”(0) > 0

@ But in the analysis of general decomposition, we assumed @) to
be positive-semidefinite for any submatrix of Q, which is a
stronger assumption
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