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Barrier methods
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@ Consider the objective
min f{x)
s.t. gi(x) <0,Vi
@ Indicator function for g;(x)

(x) = {0, if gi(x) <0

oo, otherwise

» We have shown that this is convex

@ We will use subgradient descent to solve this optimization
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Option 1: Sum of indicators

@ Convert our objective to the following unconstrained
optimization problem

Let G = {x| gi(x) <0}
We take

mmF( —mlnf —I—Z/C

(]

Consider the subgradient of F:

g(x) = &%) + > &1 (¥

Recall that gi(x) is d€ R"st. d'x>d'y, Vy € G

8ic.(x) = 0 if xis in the interior of C;, and has other solutions if
x is on the boundary

L T



Option 1: More General

@ Consider the following sum of a differentiable function f(x) and a
nondifferentiable function c(x)
o We take
m)in F(x) = m)jn fx) + c(x)

o Like gradient descent, consider the first order approximation for
f(x) around x* leaving c(x) alone:

mXin AX) + VTAX) (x — X + 2—||x X2 + c(x)

e Adding f(x¥)? to the objective (without any loss) to complete
squares

1
X1 = argmin Z_HX— (X — tV X)) ||? + c(x)
@ In general, such a step is called a proximal step

X = prox, (ka VA + c<x))
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Option 1: Generalized Gradient Descent

@ Interesting because in many settings, prox;(x) can be computed
efficiently

1
prox;(z) = argmin —||x — z||* + ¢(x)
x 2t
lllustration on Lasso!
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'How did we come up with the iterative algo for Lasso on page 8 of

http://www.cse.iitb.ac.in/~cs709/notes/enotes/lecture23a=pdf?
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lllustration on Lasso?

2 Justification of the iterative algo for Lasso on page 8 of

http://www.cse.iitb.ac.in/~cs709/notes/enotes/lecture23a=pdf
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lllustration on Lasso®

3 Justification of the iterative algo for Lasso on page 8 of

http://www.cse.iitb.ac.in/~cs709/notes/enotes/lecture23a=pdf
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Option 1: Generalized Gradient Descent
o Recall )
prox:(z) = argmin 2—t||x— Z||* + c(x)

Gradient Descent: ¢(x) =0
Projected Gradient Descent: c(x) =, gi. (x)

Proximal Minimization: f{x) =0

Convergence: If f(x) is convex, differentiable, and Vfis Lipschitz
continuous with constant L > 0 AND ¢(x) is convex and
prox;(x) can be solved exactly then convergence result (and
proof) is similar to that for gradient descent
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Eg: Projected Gradient Descent

o Let
dist(x, C;) = min||x — ul|?
ueC;

@ We define
D(x) = maxdist(x, C;)

1

» If Cjis closed and convex, a unique minimizer P¢,(x) exists
(projection of x on ;)
» dist(x,C;)) =0if xe G

@ Recall discussion on subgradient descent for this problem in class
notes*

*http://www.cse.iitb.ac.in/~cs709/notes/enotes/lecture22a.pdf
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@ We get the subgradient of D(x) as
gp(x) = Vdist(x, G;) if D(x) = dist(x, ;)
@ For illustration, consider

8y (X) = VIFi(x) if fi(x) = maxfi(x)

8 v ”S-'b =V E{
Froga Cman
S‘F\N‘\am = O 2
» If f; gives maximum value at a point, gf,.. will be Vf; at that

point
» At the points of intersection of f; and f;, we will get some
convex combination of Vf; and Vf;
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Projection methods



@ So far, we have dealt with simple projections during SMO and
the general decomposition method

» We considered «y; + «jy; = constant, and solved a quadratic
optimization problem for «; and «;
» We then projected (o, o)) — [0, CJ?
@ We will now ‘scale up’ these projections
@ In active set methods, the working set changes slowly.
Projection methods can solve bound constrained optimization
problems with large changes in the working set at each iteration.
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Overview

@ We can find Ax as the change in x along some steepest descent
direction of f without constraints

@ Thus, let xX*! = x* + Ax be the working set that reduces f(x)
without constraints (unbounded)

@ To find the constrained working set, we project x*! onto © to
get x*t1
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@ To project x, onto the non-empty closed convex set €2 to get the
projected point x,, we solve:

: 2
x, = Po(x,) = argrzglngu — 2|5

@ That is, the projected point X, is the point in {2 that is the
closest to the unbounded optimal point x, if {2 is a non-empty
closed convex set

L November 2, 2015 15 / 34



Descent direction for a convex function

@ For a descent in a convex function f, we must have
fix**1) > Value at x**! obtained by linear interpolation from x

o ie. X)) > AxK) + VTAX) (x+1 — x¥)
PICHY I\

‘F(’(lu—l) =
Y P& e

) \."
:1{ fa)
+ ff(zk) [1‘""19

@ Thus, for Ax* to be a descent direction, it is necessary that
VT AX)Axk < 0
(where Axk = XK1 — )
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We want that the point obtained after the projection of x<™! to be a
descent from x* for the function f

VAX) - Ax, <0

(where Ax, = Pq(xkT1) — x¥)
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e Claim: If Py(x) is a projection of x, then
(z— PQ(X))T (x—Pa(x)) <0,YVzeQ

e That is, the angle between (z— Pq(x)) and (x — Pqo(x)) is
obtuse (or right-angled for the projected point), Vz € Q

o

m?') !

o
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Proof for (z — Pq(x), x — Pa(x)) <0

@ To be more general, let us consider an inner product (a, b)
instead of a' b

o Let 7 = (1 — a)Pq(x) + az, for some a € (0,1), and z€ 2
= 7" = Po(x) + a(z— Pa(x)), - € Q

q‘\
:
l \

@ Since Pq(x) = argmin,cq||x — 2|/,
2 2
b= Pal)ll” < lx— 2
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Ix — 2|

:HX_ PQ(X)‘i‘Od Z—PQ H

=||x— P (x H2 +oz2Hz— Pqo(x || — 2 <x— Po(x), z — PQ(X)>
> |[x = Pa(x)]’

— (x—Po(x),z— Po(x)) < %Hz— Po(x)|*, Va € (0,1)

@ Thus, the LHS can either be 0 or a negative value. Any positive
value of the LHS will lead to a contradiction for some small
a—0

@ Hence, we proved that (z — Pq(x), x — Po(x)) <0
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@ We can also prove that if (x— x*,z— x*) <0, Vz€ Q s.t.
z# x*, and x* € (), then

x _ . 32
X" = Pq(x) = argr;yg”x Z||;

o Consider ||x — z||* —||x — x*||?
=|x—x + (x = 2)||” —|x— x|
=[x = x> +llz = x°|* = 2 (x = x*, 2= x) —|x = x°|*
=|lz=x|* =2 (x—x*,z— x*)
>0

o = |x—z|” >|lx—x|*, Vz€ Qst. z# X

@ This proves that x* = Pq(x)
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These approaches lead to a class of algorithms that start with small
values of ), iteratively increase A (— o0), and in each iteration, we
use some descent algorithm to solve the unconstrained minimization
problem

min fix) + AB(x)

where B is a barrier function like
@ B(x) =>_lc(x)
@ B(x) = max;minyec||x — ul|”
@ B(x) = ¢g,(x) = —1 log (—&i(x))

» Here, —% is used instead of A\

» Lets discuss this in more detail
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Option 3: Log barrier function

@ The log barrier function is defined as

B(x) = 65(x) = — log (~&i(x)

@ It looks like an approximation of > I¢,(x)
o flx)+ > 0g(x)
is convex if fand g; are convex

@ We've taken care of the inequality constraints, lets also consider
an equality constraint Ax= b
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@ Our objective becomes

min f(x) + Z <—%) log (—gi(x))

st. Ax=5>b
o At different values of t, we get different x*
* _ —1
o Let A\i(t) = 2~ (®)

o First-order necessary conditions for optimality at x*(¢):
> g ()(*(t)) <0
> AX*(t) =b
> VE(x*(1) + 7, A (HVgi (x(8) + v () TA=0
- Xi(5) 20
* Since g; (x*(t)) <0and t>0

o (Aj(t),v*(t)) is dual feasible
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@ x*(t) minimizes the Lagrangian

L(x, A\, v) = fx) + Z Aigi(x) + v (Ax— b)

i=1
» VL =0 at x*(¢)
@ Lagrange dual function

L*(A\,v) = min L(x, A\, v)
X

» 7 here is called the duality gap
» As t — oo, duality gap — 0
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@ At optimality, primal optimal = dual optimal
ie. pf=d
@ From weak duality,

= f(x'(t)) —p* < Tt

» The duality gap is always < 7
» The more we increase t, the smaller will be the duality gap
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lterative algorithm

@ Start with t = t©, i > 1, and consider ¢ tolerance
@ Repeat
@ Solve

m

X (t) = argmin fix) + Z (—%) log (—gi(x))

i=1
st. Ax=0»b

Q@ If % < ¢, Quit
else, set t = ut
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@ In the process, we can also obtain A\*(t) and v*(t)

e Convergence of outer iterations:

(m/et(o))

oz () > updates of t

We get € accuracy after log (
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@ The inner optimization in the iterative algorithm using a barrier
method,

X (t) = argmin fix) + Z <_1t) log (—gi(x))

st. Ax=05

can be solved using (sub)gradient descent starting from older
value of x from previous iteration

@ We must start with a strictly feasible x, otherwise
— log (_gi(x>) — o0
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o If you set ) = %, we will have only one iteration
@ We want to run at least some iterations. Thus, we choose
0 m
t0) « T
@ We need not obtain x*(t) exactly at each outer iteration

e If not solving for x*(t) exactly, we will get € accuracy after more
0
than log (%) updates of t
» However, solving the inner iteration exactly may take too much
time
» Fewer inner loop iterations correspond to more outer loop
iterations
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How to find a strictly feasible x(?)?

@ Basic Phase | method

X = argminT

s.t. g,'(X) < r
@ We solve this using the barrier method, and thus will also need a
strictly feasible starting X%

@ Here,

[' = max gi(X0) +6

where, § > 0
» ie. T is slightly larger than the largest g;(x(?))
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@ On solving this optimization for finding x(¥),
» If T* < 0, X9 is strictly feasible
» If " = 0, x(0) is feasible (but not strictly)
» If T > 0, x(9 is not feasible

@ A slightly ‘richer’ problem can consider different I'; for each g,
to improve numerical precision

x0 = argminT;

st. gi(x) < T
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Choice of a good X or x(*) depends on the nature/class
of the problem, use domain knowledge to decide it
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