Machine Learning

Instructor: Prof. Ganesh Ramakrishnan

Barrier methods

Consider the objective

$$\min f(x)$$

s.t.
$$g_i(x) \leq 0, \forall i$$

• Indicator function for $g_i(x)$

$$I_{g_i}(x) = \begin{cases} 0, & \text{if } g_i(x) \leq 0 \\ \infty, & \text{otherwise} \end{cases}$$

- We have shown that this is convex
- We will use subgradient descent to solve this optimization

Option 1: Sum of indicators

- Convert our objective to the following unconstrained optimization problem
- Let $C_i = \{x \mid g_i(x) \leq 0\}$
- We take

$$\min_{x} F(x) = \min_{x} f(x) + \sum_{i} I_{C_{i}}(x)$$

• Consider the subgradient of *F*:

$$g_F(x) = g_f(x) + \sum_i g_{I_{C_i}}(x)$$

- Recall that $g_{I_{C_i}}(x)$ is $d \in \mathbf{R}^n$ s.t. $d^\top x \ge d^\top y$, $\forall y \in C_i$
- $g_{I_{C_i}}(x) = 0$ if x is in the interior of C_i , and has other solutions if x is on the boundary

Option 1: More General

- Consider the following sum of a differentiable function f(x) and a nondifferentiable function c(x)
- We take

$$\min_{x} F(x) = \min_{x} f(x) + c(x)$$

• Like gradient descent, consider the first order approximation for f(x) around x^k leaving c(x) alone:

$$\min_{x} f(x^{k}) + \nabla^{T} f(x^{k})(x - x^{k}) + \frac{1}{2t} ||x - x^{k}||^{2} + c(x)$$

• Adding $f(x^k)^2$ to the objective (without any loss) to complete squares

$$x^{k+1} = \arg\min_{x} \frac{1}{2t} ||x - (x^k - t\nabla f(x^k))||^2 + c(x)$$

• In general, such a step is called a proximal step

$$x^{k+1} = prox_t \left(||x^k - t\nabla f(x^k)||^2 + c(x) \right)$$

Option 1: Generalized Gradient Descent

• Interesting because in many settings, $prox_t(x)$ can be computed efficiently

$$prox_t(z) = \underset{x}{\operatorname{argmin}} \frac{1}{2t} ||x - z||^2 + c(x)$$

- Illustration on Lasso¹
- •
- •
- •

¹How did we come up with the iterative algo for Lasso on page 8 of http://www.cse.iitb.ac.in/~cs709/notes/enotes/lecture23a-pdf?

Illustration on Lasso²

²Justification of the iterative algo for Lasso on page 8 of http://www.cse.iitb.ac.in/~cs709/notes/enotes/lecture23arpdf

Illustration on Lasso³

³Justification of the iterative algo for Lasso on page 8 of http://www.cse.iitb.ac.in/~cs709/notes/enotes/lecture23arpdf

Option 1: Generalized Gradient Descent

Recall

$$prox_t(z) = \underset{x}{\operatorname{argmin}} \frac{1}{2t} ||x - z||^2 + c(x)$$

- Gradient Descent: c(x) = 0
- Projected Gradient Descent: $c(x) = \sum_{i} g_{I_{C_i}}(x)$
- Proximal Minimization: f(x) = 0
- Convergence: If f(x) is convex, differentiable, and ∇f is Lipschitz continuous with constant L>0 AND c(x) is convex and $prox_t(x)$ can be solved exactly then convergence result (and proof) is similar to that for gradient descent

$$f(x^k) - f(x^*) \le \frac{1}{k} \sum_{i=1}^k \left(f(x^i) - f(x^*) \right) \le \frac{\left\| x^{(0)} - x^* \right\|^2}{2tk}$$

Eg: Projected Gradient Descent

Let

$$dist(x, C_i) = \min_{u \in C_i} ||x - u||^2$$

We define

$$D(x) = \max_{i} dist(x, C_i)$$

- ▶ If C_i is closed and convex, a unique minimizer $P_{C_i}(x)$ exists (projection of x on C_i)
- $dist(x, C_i) = 0$ if $x \in C_i$
- Recall discussion on subgradient descent for this problem in class notes⁴

⁴http://www.cse.iitb.ac.in/~cs709/notes/enotes/lecture22a.pdf

• We get the subgradient of D(x) as

$$g_D(x) = \nabla dist(x, C_i)$$
 if $D(x) = dist(x, C_i)$

For illustration, consider

$$g_{F_{max}}(x) = \nabla f_i(x) \text{ if } f_i(x) = \max_j f_j(x)$$

- ▶ If f_i gives maximum value at a point, $g_{F_{max}}$ will be ∇f_i at that point
- ▶ At the points of intersection of f_i and f_j , we will get some convex combination of ∇f_i and ∇f_i

4□ > 4□ > 4□ > 4□ > 4□ > 4□ >

Projection methods

- So far, we have dealt with simple projections during SMO and the general decomposition method
 - ▶ We considered $\alpha_i y_i + \alpha_j y_j = constant$, and solved a quadratic optimization problem for α_i and α_j
 - We then projected $(\alpha_i, \alpha_i) \rightarrow [0, \tilde{C}]^2$
- We will now 'scale up' these projections
- In active set methods, the working set changes slowly.

 Projection methods can solve bound constrained optimization problems with large changes in the working set at each iteration.

Overview

- We can find Δx as the change in x along some steepest descent direction of f without constraints
- Thus, let $x_u^{k+1} = x^k + \Delta x$ be the working set that reduces f(x) without constraints (unbounded)
- To find the constrained working set, we project \mathbf{x}_u^{k+1} onto Ω to get \mathbf{x}^{k+1}

• To project x_u onto the non-empty closed convex set Ω to get the projected point x_p , we solve:

$$x_p = P_{\Omega}(x_u) = \underset{z \in \Omega}{\operatorname{argmin}} ||x_u - z||_2^2$$

• That is, the projected point x_p is the point in Ω that is the closest to the unbounded optimal point x_u if Ω is a non-empty closed convex set

Descent direction for a convex function

• For a descent in a convex function f, we must have $f(x^{k+1}) \ge \text{Value}$ at x^{k+1} obtained by linear interpolation from x^k

• Thus, for Δx^k to be a descent direction, it is necessary that $\nabla^{\top} f(x^k) \Delta x^k \leq 0$ (where $\Delta x^k = x^{k+1} - x^k$)

We want that the point obtained after the projection of x_u^{k+1} to be a descent from x^k for the function f

$$\nabla f(x^k) \cdot \Delta x_p \le 0$$

(where
$$\Delta x_p = P_{\Omega}(x_u^{k+1}) - x^k$$
)

17 / 34

• Claim: If $P_{\Omega}(x)$ is a projection of x, then

$$(z - P_{\Omega}(x))^{\top} (x - P_{\Omega}(x)) \le 0, \forall z \in \Omega$$

• That is, the angle between $(z - P_{\Omega}(x))$ and $(x - P_{\Omega}(x))$ is obtuse (or right-angled for the projected point), $\forall z \in \Omega$

18 / 34

Proof for $\langle z - P_{\Omega}(x), x - P_{\Omega}(x) \rangle \leq 0$

- To be more general, let us consider an inner product $\langle a, b \rangle$ instead of $a^{\top}b$
- Let $\mathbf{z}^* = (1 \alpha)P_{\Omega}(\mathbf{x}) + \alpha\mathbf{z}$, for some $\alpha \in (0, 1)$, and $\mathbf{z} \in \Omega$ $\implies \mathbf{z}^* = P_{\Omega}(\mathbf{x}) + \alpha(\mathbf{z} - P_{\Omega}(\mathbf{x}))$, $\mathbf{z}^* \in \Omega$

• Since $P_{\Omega}(x) = \operatorname{argmin}_{z \in \Omega} ||x - z||_2^2$, $||x - P_{\Omega}(x)||^2 < ||x - z^*||^2$

$$\begin{aligned} \|x - z^*\|^2 &= \|x - (P_{\Omega}(x) + \alpha(z - P_{\Omega}(x)))\|^2 \\ &= \|x - P_{\Omega}(x)\|^2 + \alpha^2 \|z - P_{\Omega}(x)\|^2 - 2\alpha \langle x - P_{\Omega}(x), z - P_{\Omega}(x) \rangle \\ &\geq \|x - P_{\Omega}(x)\|^2 \\ &\implies \langle x - P_{\Omega}(x), z - P_{\Omega}(x) \rangle \leq \frac{\alpha}{2} \|z - P_{\Omega}(x)\|^2, \, \forall \alpha \in (0, 1) \end{aligned}$$

- \bullet Thus, the LHS can either be 0 or a negative value. Any positive value of the LHS will lead to a contradiction for some small $\alpha \to 0$
- Hence, we proved that $\langle z P_{\Omega}(x), x P_{\Omega}(x) \rangle \leq 0$

• We can also prove that if $\langle x - x^*, z - x^* \rangle \leq 0$, $\forall z \in \Omega$ s.t. $z \neq x^*$, and $x^* \in \Omega$, then

$$x^* = P_{\Omega}(x) = \underset{\bar{z} \in \Omega}{\operatorname{argmin}} ||x - \bar{z}||_2^2$$

- Consider $||x z||^2 ||x x^*||^2$ = $||x - x^* + (x^* - z)||^2 - ||x - x^*||^2$ = $||x - x^*||^2 + ||z - x^*||^2 - 2\langle x - x^*, z - x^* \rangle - ||x - x^*||^2$ = $||z - x^*||^2 - 2\langle x - x^*, z - x^* \rangle$ > 0
- $\implies ||x z||^2 > ||x x^*||^2$, $\forall z \in \Omega$ s.t. $z \neq x^*$
- This proves that $x^* = P_{\Omega}(x)$

References

• Yu-Hong Dai, Roger Fletcher. New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds. http://link.springer.com/content/pdf/10. 1007%2Fs10107-005-0595-2.pdf

These approaches lead to a class of algorithms that start with small values of λ , iteratively increase λ $(\to \infty)$, and in each iteration, we use some descent algorithm to solve the unconstrained minimization problem

$$\min_{x} f(x) + \lambda B(x)$$

where B is a **barrier function** like

- $B(x) = \max_{i} \min_{u \in C_i} ||x u||^2$
- $B(x) = \phi_{g_i}(x) = -\frac{1}{t} \log \left(-g_i(x) \right)$
 - Here, $-\frac{1}{t}$ is used instead of λ
 - Lets discuss this in more detail

Option 3: Log barrier function

The log barrier function is defined as

$$B(x) = \phi_{g_i}(x) = -\frac{1}{t} \log \left(-g_i(x)\right)$$

- It looks like an approximation of $\sum I_{C_i}(x)$
- $f(x) + \sum_{i} \phi_{g_i}(x)$ is convex if f and g_i are convex
- We've taken care of the inequality constraints, lets also consider an equality constraint Ax = b

Our objective becomes

$$\min_{x} f(x) + \sum_{i} \left(-\frac{1}{t} \right) \log \left(-g_{i}(x) \right)$$
s.t. $Ax = b$

- At different values of t, we get different x^*
- Let $\lambda_i^*(t) = \frac{-1}{t g_i(x^*(t))}$
- First-order necessary conditions for optimality at $x^*(t)$:
 - $g_i(x^*(t)) \leq 0$
 - $\rightarrow Ax^*(t) = b$

 - $\lambda_i^*(t) \geq 0$
 - ★ Since $g_i(x^*(t)) \le 0$ and $t \ge 0$
- $(\lambda_i^*(t), \nu^*(t))$ is dual feasible

• $x^*(t)$ minimizes the Lagrangian

$$L(x,\lambda,\nu) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \nu^{\top} (Ax - b)$$

- $\nabla L = 0$ at $x^*(t)$
- Lagrange dual function

$$L^*(\lambda,\nu) = \min_{\mathbf{x}} L(\mathbf{x},\lambda,\nu)$$

$$L^{*}(\lambda^{*}(t), \nu^{*}(t)) = f(x^{*}(t)) + \sum_{i=1}^{m} \lambda_{i}^{*}(t)g_{i}(x^{*}(t)) + \nu^{*}(t)^{\top} (Ax^{*}(t) - b)$$
$$= f(x^{*}(t)) - \frac{m}{t}$$

- $ightharpoonup \frac{m}{t}$ here is called the *duality gap*
- As $t \to \infty$, duality gap $\to 0$

- At optimality, primal optimal = dual optimal
 i.e. p* = d*
- From weak duality,

$$f(x^*(t)) - \frac{m}{t} \le p^*$$

$$\implies f(x^*(t)) - p^* \le \frac{m}{t}$$

- ▶ The duality gap is always $\leq \frac{m}{t}$
- ▶ The more we increase t, the smaller will be the duality gap

Iterative algorithm

- **1** Start with $t = t^{(0)}$, $\mu > 1$, and consider ϵ tolerance
- Repeat
 - Solve

$$x^{*}(t) = \operatorname*{argmin}_{x} f(x) + \sum_{i=1}^{m} \left(-\frac{1}{t} \right) \log \left(-g_{i}(x) \right)$$
s.t. $Ax = b$

- ullet In the process, we can also obtain $\lambda^*(t)$ and $u^*(t)$
- Convergence of outer iterations:

We get ϵ accuracy after $\log\left(\frac{\left(m/\epsilon t^{(0)}\right)}{\log(\mu)}\right)$ updates of t

 The inner optimization in the iterative algorithm using a barrier method,

$$x^{*}(t) = \underset{x}{\operatorname{argmin}} f(x) + \sum_{i} \left(-\frac{1}{t} \right) \log \left(-g_{i}(x) \right)$$
s.t. $Ax = b$

can be solved using (sub)gradient descent starting from older value of x from previous iteration

• We must start with a strictly feasible x, otherwise $-\log\left(-g_i(x)\right) \to \infty$

- If you set $t^{(0)} = \frac{m}{t}$, we will have only one iteration
- \bullet We want to run at least some iterations. Thus, we choose $t^{(0)} \ll \frac{m}{t}$
- We need not obtain $x^*(t)$ exactly at each outer iteration
- If not solving for $x^*(t)$ exactly, we will get ϵ accuracy after *more than* $\log\left(\frac{\left(m/\epsilon t^{(0)}\right)}{\log(\mu)}\right)$ updates of t
 - However, solving the inner iteration exactly may take too much time
 - Fewer inner loop iterations correspond to more outer loop iterations

How to find a strictly feasible $x^{(0)}$?

Basic Phase I method

$$x^{(0)} = \underset{x}{\operatorname{argmin}} \Gamma$$

s.t.
$$g_i(x) \leq \Gamma$$

- We solve this using the barrier method, and thus will also need a strictly feasible starting $\hat{x}^{(0)}$
- Here,

$$\Gamma = \max_{\mathbf{i}=1\dots\mathbf{m}} \mathbf{g}_{\mathbf{i}}(\hat{\mathbf{x}}^{(0)}) + \delta$$

where, $\delta > 0$

• i.e. Γ is slightly larger than the largest $g_i(\hat{x}^{(0)})$

- On solving this optimization for finding $x^{(0)}$,
 - If $\Gamma^* < 0$, $\mathbf{x}^{(0)}$ is strictly feasible
 - If $\Gamma^* = 0$, $x^{(0)}$ is feasible (but not strictly)
 - If $\Gamma^* > 0$, $x^{(0)}$ is not feasible
- A slightly 'richer' problem can consider different Γ_i for each g_i , to improve numerical precision

$$x^{(0)} = \arg\min_{x} \Gamma_i$$

s.t.
$$g_i(x) \leq \Gamma_i$$

Choice of a good $\hat{x}^{(0)}$ or $x^{(0)}$ depends on the nature/class of the problem, use domain knowledge to decide it