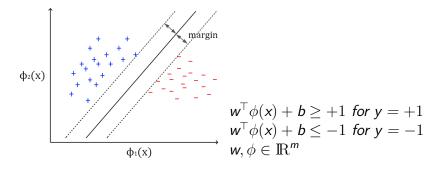
SVM and SMO

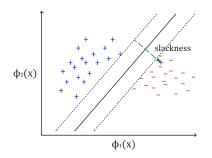
Instructor: Prof. Ganesh Ramakrishnan

Support Vector Machines



There is large margin to seperate the +ve and -ve examples

Overlapping examples



When the examples are not linearly seperable, we need to consider the slackness ξ_i of the examples x_i (how far a misclassified point is from the seperating hyperplane, always +ve):

$$w^{\top} \phi(x_i) + b \ge +1 - \xi_i \text{ (for } y_i = +1)$$

 $w^{\top} \phi(x_i) + b \le -1 + \xi_i \text{ (for } y_i = -1)$

Multiplying y_i on both sides, we get: $y_i(w^T\phi(x_i) + b) \ge 1 - \xi_i$, $\forall i = 1, ..., n$

Maximize the margin

- \bullet We maximize the margin given by $(\phi(\mathbf{x}^+) \phi(\mathbf{x}^-))^\top [\frac{\mathbf{w}}{||\mathbf{w}||}]$
- Here, x^+ and x^- lie on boundaries of the margin.
- We can verify that w is perpendicular to the seperating surface: at the seperating surface, the dot product of w and $\phi(x)$ is 0 (with b captured), which is only possible if w and $\phi(x)$ are perpendicular.
- We project the vectors $\phi(x^+)$ and $\phi(x^-)$ on w, and normalize by w as we are only concerned with the direction of w and not its magnitude.

Simplifying the margin expression

- \bullet Maximize the margin $(\phi(\mathbf{x}^+) \phi(\mathbf{x}^-))^\top [\frac{\mathbf{w}}{||\mathbf{w}||}]$
- At x^+ : $y^+ = 1$, $\xi^+ = 0$ hence, $(\mathbf{w}^\top \phi(x^+) + \mathbf{b}) = 1$ 1 At x^- : $y^- = 1$, $\xi^- = 0$ hence, $-(\mathbf{w}^\top \phi(x^-) + \mathbf{b}) = 1$ 2
- Adding (2) to (1), $\mathbf{w}^{\mathsf{T}}(\phi(\mathbf{x}^{+}) \phi(\mathbf{x}^{-})) = 2$
- Thus, the margin expression to maximize is: $\frac{2}{\|w\|}$

Formulating the objective

- Problem at hand: Find w^* , b^* that maximize the margin.
- $\begin{aligned} \bullet \ \, (\textit{w}^*,\textit{b}^*) &= \arg\max_{\textit{w},\textit{b}} \frac{2}{||\textit{w}||} \\ \text{s.t.} \ \, \textit{y}_i(\textit{w}^\top \phi(\textit{x}_i) + \textit{b}) &\geq 1 \xi_i \text{ and} \\ \xi_i &\geq 0, \, \forall i = 1, \dots, n \end{aligned}$
- However, as $\xi_i \to \infty$, $1 \xi_i \to -\infty$
- Thus, with arbitrarily large values of ξ_i , the constraints become easily satisfiable for any w, which defeats the purpose.
- Hence, we also want to minimize the ξ_i 's. ie. minimize $\sum \xi_i$

Objective

- $(w^*, b^*, \xi_i^*) = \operatorname{argmin}_{w, b, \xi_i} \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i$ s.t. $y_i(w^\top \phi(x_i) + b) \ge 1 - \xi_i$ and $\xi_i > 0$, $\forall i = 1, \dots, n$
- Instead of maximizing $\frac{2}{\|w\|}$, minimize $\frac{1}{2}\|w\|^2$ $\left(\frac{1}{2}\|w\|^2\right)$ is monotonically decreasing with respect to $\frac{2}{\|w\|}$)
- C determines the trade-off between the error $\sum \xi_i$ and the margin $\frac{2}{||w||}$

More on the Objective

- $(w^*, b^*, \xi_i^*) = \operatorname{argmin}_{w,b,\xi_i} \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i$ s.t. $y_i(w^\top \phi(x_i) + b) \ge 1 - \xi_i$ and $\xi_i \ge 0$, $\forall i = 1, \dots, n$
- Converting the constraints to the form $g_i(x) \leq 0$:

$$1 - \xi_i - y_i(\mathbf{w}^\top \phi(\mathbf{x}_i) + \mathbf{b}) \le 0$$
$$-\xi_i \le 0$$

• $L(\mathbf{w}, \mathbf{b}, \alpha, \mu, \xi_i) =$

$$\frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i + \sum_{i=1}^n \alpha_i (1 - \xi_i - y_i (\mathbf{w}^\top \phi(\mathbf{x}_i) + b)) + \sum_{i=1}^n \mu_i (-\xi_i)$$

• We want: $\nabla_{w,b,\xi_i} L(w^*, b^*, \alpha^*, \mu^*, \xi_i^*) = 0$

Gradient of the SVM Lagrangian

$$\nabla L(\mathbf{w}^*, \mathbf{b}^*, \alpha^*, \mu^*, \xi_i^*) = 0$$

• w.r.t. *w*:

$$w^* + \sum_{i=1}^{n} \alpha_i^*(-y_i)\phi(x_i) = 0$$

$$\implies w^* = \sum_{i=1}^{n} \alpha_i^* y_i \phi(x_i)$$

• w.r.t. b: $\sum_{i=1}^{n} \alpha_i^* y_i = 0$

• w.r.t.
$$\xi_i$$
, $\forall i$:
 $C - \alpha_i^* - \mu_i^* = 0$
 $\implies \alpha_i^* + \mu_i^* = C$, $\forall i = 1, ..., n$

Necessary conditions for optimality

- $y_i(w^{*\top}\phi(x_i) + b^*) \ge 1 \xi_i^*, \ \forall i$
- $2 \xi_i^* \ge 0, \ \forall i$
- **3** $w^* = \sum_{i=1}^n \alpha_i^* y_i \phi(x_i)$

- $0 \mu_i^* \geq 0, \forall i$
- **3** $\alpha_i^* (1 \xi_i^* y_i (\mathbf{w}^* \top \phi(\mathbf{x}_i) + \mathbf{b}^*)) = 0, \ \forall i$
- $\mu_{i}^{*}\xi_{i}^{*}=0, \forall i$

For SVM, since the original objective and the constraints are convex, any $(w^*, b^*, \alpha^*, \mu^*, \xi_i^*)$ that satisfies the necessary conditions gives optimality (conditions are also sufficient)

Some observations

- $\alpha_i^* \geq 0$, $\mu_i^* \geq 0$, and $\alpha_i^* + \mu_i^* = C$ Thus, $\alpha_i^*, \mu_i^* \in [0, C]$, $\forall i$
- If $0 < \alpha_i^* < C$, then $0 < \mu_i^* < C$ (as $\alpha_i^* + \mu_i^* = C$)
- $\mu_i^* \xi_i^* = 0$ and $\alpha_i^* (1 \xi_i^* y_i (\mathbf{w}^{*\top} \phi(\mathbf{x}_i) + \mathbf{b}^*)) = 0$ are complementary slackness conditions If $\xi_i^* = 0$ and $1 \xi_i^* y_i (\mathbf{w}^{*\top} \phi(\mathbf{x}_i) + \mathbf{b}^*) = 0$, then $y_i (\mathbf{w}^{*\top} \phi(\mathbf{x}_i) + \mathbf{b}^*) = 1$
 - All such points lie on a margin
 - ▶ Using any point on a margin, we can recover b^* as: $b^* = y_i w^{*\top} \phi(x_i)$

Dual function

- Let $L^*(\alpha, \mu) = \min_{w,b,\xi} L(w, b, \xi, \alpha, \mu)$
- By weak duality theorem, we have: $L^*(\alpha, \mu) \leq \min_{w,b,\xi} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i$ s.t. $y_i(w^\top \phi(x_i) + b) \geq 1 \xi_i$, and $\xi_i \geq 0$, $\forall i = 1, \dots, n$
- The above is true for any $\alpha_i \geq 0$ and $\mu_i \geq 0$
- Thus,

$$\max_{\alpha,\mu} L^*(\alpha,\mu) \le \min_{w,b,\xi} \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i$$

Dual objective

 In case of SVM, we have a convex objective and linear constraints – therefore, strong duality holds:

$$\max_{\alpha,\mu} L^*(\alpha,\mu) = \min_{w,b,\xi} \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i$$

- This value is precisely obtained at the $(w^*, b^*, \xi^*, \alpha^*, \mu^*)$ that satisfies the necessary (and sufficient) optimality conditions
- Assuming that the necessary and sufficient conditions (KKT or Karush–Kuhn–Tucker conditions) hold, our objective becomes:

$$\max_{\alpha,\mu} L^*(\alpha,\mu)$$

•
$$L(w, b, \xi, \alpha, \mu) = \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i + \sum_{i=1}^n \alpha_i (1 - \xi_i - y_i (w^{\top} \phi(x_i) + b)) - \sum_{i=1}^n \mu_i \xi_i$$

• We obtain w, b, ξ in terms of α and μ by setting $\nabla_{w,b,\xi}L=0$:

• w.r.t. w:
$$w = \sum_{i=1}^{n} \alpha_i y_i \phi(x_i)$$

• w.r.t. *b*:
$$-b \sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

• w.r.t.
$$\xi_i$$
: $\alpha_i + \mu_i = C$

• Thus, we get:

$$L(w, b, \xi, \alpha, \mu)$$

$$= \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} \phi^{\top}(x_{i}) \phi(x_{j}) + C \sum_{i} \xi_{i} + \sum_{i} \alpha_{i} - \sum_{i} \alpha_{i} \xi_{i} - \sum_{i} \alpha_{i} y_{i} \sum_{j} \alpha_{j} y_{j} \phi^{\top}(x_{j}) \phi(x_{i}) - b \sum_{i} \alpha_{i} y_{i} - \sum_{i} \mu_{i} \xi_{i}$$

$$= -\frac{1}{2} \sum_{i} \sum_{i} \alpha_{i} \alpha_{i} y_{i} y_{i} \phi^{\top}(x_{i}) \phi(x_{i}) + \sum_{i} \alpha_{i}$$

• The dual optmimization problem becomes:

$$\max_{\alpha} -\frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} \mathbf{y}_{i} \mathbf{y}_{j} \phi^{\top}(\mathbf{x}_{i}) \phi(\mathbf{x}_{j}) + \sum_{i} \alpha_{i}$$

s.t.

$$\alpha_i \in [0, C], \ \forall i \text{ and}$$

 $\sum_i \alpha_i y_i = 0$

- Deriving this did not require the complementary slackness conditions
- \bullet Conveniently, we also end up getting rid of μ

Solving SVMs

- Dual objective: $\max_{\alpha} \sum_{i} \alpha_{i} \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(x_{i}, x_{j})$ s.t. $\sum_{i} \alpha_{i} y_{i} = 0$ and $\alpha_{i} \in [0, C]$, $\forall i$
- We have standard solvers available such as LCQP (linearly constrained quadratic program) solvers like:
 - Projected gradient ascent
 - Active set
 - Ellipsoid
 - Cutting plane
 - etc.
- We will discuss a fast "Active set"-like algorithm known as Sequential minimal optimization (SMO)
- SMO algorithm comprises of Projected gradient ascent and Active set

Coordinate Ascent algorithm

- Optimize over one α_i at a time
- However, $\sum \alpha_i y_i = 0$
- Therefore, we consider a *Block Coordinate Ascent* which will optimize over a subset of $\alpha_1, \ldots, \alpha_n$

SMO's Block coordinate acsent (blocksize 2)

Objective:

$$\begin{array}{l} \max_{\alpha} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(x_{i}, x_{j}) \\ \text{s.t. } \sum_{i} \alpha_{i} y_{i} = 0 \text{ and } \alpha_{i} \in [0, C], \ \forall i \end{array}$$

- ullet w.l.o.g, we say that $lpha_1$ and $lpha_2$ are the lpha's to be updated
 - $\qquad \qquad \boldsymbol{\alpha}_3^{\textit{new}} = \alpha_3^{\textit{old}}, \alpha_4^{\textit{new}} = \alpha_4^{\textit{old}}, \dots, \alpha_n^{\textit{new}} = \alpha_n^{\textit{old}}$
 - $\alpha_1^{\textit{new}} \neq \alpha_1^{\textit{old}}, \alpha_2^{\textit{new}} \neq \alpha_2^{\textit{old}}$ (equality may hold true under certain conditions like convergence but does not hold by design)

Solving for $\alpha_1^{\textit{new}}$, $\alpha_2^{\textit{new}}$

• Re-writing the objective in terms of $\alpha_1^{\textit{new}}$, $\alpha_2^{\textit{new}}$: $(\alpha_1^{\textit{new}}, \alpha_2^{\textit{new}}) =$ argmax $_{\alpha_1,\alpha_2} \alpha_1 + \alpha_2 + \sum_{i=3}^n \alpha_i^{\textit{old}} - \frac{1}{2} [\alpha_1^2 y_1^2 \textit{K}(x_1,x_1) + \alpha_2^2 y_2^2 \textit{K}(x_2,x_2) + 2\alpha_1 \sum_{j=3}^n \alpha_j^{\textit{old}} y_1 y_j \textit{K}(x_1,x_j) + 2\alpha_2 \sum_{j=3}^n \alpha_j^{\textit{old}} y_2 y_j \textit{K}(x_2,x_j) + 2\alpha_1 \alpha_2 y_1 y_2 \textit{K}(x_1,x_2)]$

► s.t.
$$\alpha_1 y_1 + \alpha_2 y_2 = -\sum_{j=3}^{n} \alpha_j^{old} y_j$$

- Multiplying the constraint by y_2 , we have: $\alpha_2 = -\alpha_1 y_1 y_2 \sum_{j=3}^n \alpha_j^{old} y_j y_2$ Let $\sum_{i=3}^n \alpha_i^{old} y_i$ be β^{old}
- Thus, $\alpha_2 = -\alpha_1 y_1 y_2 \beta^{old} y_2$

Substituting the values for α_2 and β^{old} in the SMO objective

- $\begin{array}{l} \bullet \ \ \alpha_1^{\textit{new}} = \operatorname{argmax}_{\alpha_1} \frac{1}{2} (2 \textit{K}(\textit{x}_1, \textit{x}_2) \textit{K}(\textit{x}_1, \textit{x}_1) \textit{K}(\textit{x}_2, \textit{x}_2)) \alpha_1^2 + (1 y_1 y_2 y_1 \textit{K}(\textit{x}_1, \textit{x}_1) \beta_{\textit{old}} + y_1 \textit{K}(\textit{x}_1, \textit{x}_2) \beta_{\textit{old}} + \\ y_1 \sum_{j=3}^n \alpha_j^{\textit{old}} y_j \textit{K}(\textit{x}_1, \textit{x}_j) y_1 \sum_{j=3}^n \alpha_j^{\textit{old}} y_j \textit{K}(\textit{x}_2, \textit{x}_j)) \alpha_1 + \gamma \\ \text{where } \gamma \text{ is a constant term} \end{array}$
- Simplifying the above expression and taking θ_1 and θ_2 as the coefficients of α_1 and α_1^2 respectively, we get: $\alpha_1^{new} = \operatorname{argmax}_{\alpha_1} \theta_1 \alpha_1 + \theta_2 \alpha_1^2 + \gamma$

For more information, see http://www.cs.iastate.edu/~honavar/smo-svm.pdf

- $\bullet \ \alpha_1^{\textit{new}} = \mathrm{argmax}_{\alpha_1} \, \theta_1 \alpha_1 + \theta_2 \alpha_1^2 + \gamma$
- For this objective to be upper convex, $\frac{\partial^2}{\partial \alpha_1^2}(\theta_1\alpha_1 + \theta_2\alpha_1^2 + \gamma) \leq 0$
 - ▶ Thus $\theta_2 \le 0$ must hold
 - ▶ We can see that $\theta_2 = \frac{1}{2}(2K(x_1, x_2) K(x_1, x_1) K(x_2, x_2)) \le 0$
 - ► If $K(x_1, x_2) = x_1^{\top} x_2$, then $\theta_2 = \frac{1}{2} (2x_1^{\top} x_2 - x_1^{\top} x_1 - x_2^{\top} x_2)$ $= -\frac{1}{2} (x_2 - x_1)^{\top} (x_2 - x_1)$ $= -\frac{1}{2} ||x_2 - x_1||^2 \le 0$
- If $\theta_2 < 0$, the expression gives us the unconstrained maximum point $\alpha_1^{\it new}$
- Here, $\frac{\partial}{\partial \alpha_1}(\theta_1 \alpha_1 + \theta_2 \alpha_1^2 + \gamma) = 0$ $\implies \alpha_1^{\text{new}} = \frac{-\theta_1}{2\theta_2}$

The SMO algorithm

- ① Initialise $\alpha_1, \ldots, \alpha_n$ to some value $\in [0, C]$
- ② Pick α_i , α_j to estimate next (i.e. estimate α_i^{new} , α_j^{new})
- - if $\alpha_i^{new} < 0$ then $\alpha_i^{new} = 0$
 - if $\alpha_i^{new} > C$ then $\alpha_i^{new} = C$
- - if $\alpha_i^{new} < 0$ then $\alpha_i^{new} = 0$
 - if $\alpha_i^{new} > C$ then $\alpha_i^{new} = C$
- Oheck if all the KKT conditions are satisfied

 - ▶ If not, choose α_i and α_j that worst violate the KKT conditions (i.e. max value of $\alpha_i(1 y_i(\mathbf{w}^\top \phi(\mathbf{x}_i) + b))$), and reiterate

The SMO procedure has been proved to converge, and is therefore an algorithm

SMO-type decomposition methods for SVMs

Dual objective (vectorized):

$$\min_{\alpha} \frac{1}{2} \alpha^{\top} Q \alpha - e^{\top} \alpha$$

s.t.

•
$$0 \le \alpha_i \le C$$
, $\forall i$

$$\mathbf{v}^{\mathsf{T}}\alpha = 0$$

- where:
 - ► $Q_{ij} = y_i y_j \phi^{\top}(x_i) \phi(x_j)$ Thus, Q is like a 'signed' kernel matrix, carrying the dot products of feature fectors $y_i \phi(x_i)$

$$\bullet \ e = \begin{vmatrix} 1 \\ \vdots \\ 1 \end{vmatrix}$$

• SMO can be shown to converge asymptotically to a minimum if Q is positive-semidefinite (ie. $\forall x \in \mathbf{R}^n, x^\top Qx \geq 0$)

The general decomposition method

- **①** Fix a working set size $q \le n$, where n is the number of examples; Let α^1 be the initial solution at iteration counter value k = 1
- ② If α^k satisfies KKT conditions, stop; else, find a working set $B \subset \{1,\ldots,n\}$ s.t. |B|=q Let $N=\{1,\ldots,n\}\backslash B$, and $\begin{bmatrix} \alpha_B^k \\ \alpha_N^k \end{bmatrix}$ be a partition of α^k
- **3** Solve the following subproblem (for α_B):

$$\min_{\alpha_B} \frac{1}{2} \alpha_B^\top Q_{BB} \alpha_B - (e_B - Q_{BN} \alpha_N^k)^\top \alpha_B$$

s.t.

$$0 \leq (\alpha_B)_i \leq C, \forall i = 1, \dots, q$$

 $y_B^T \alpha_B = -y_N^T \alpha_N^k$

where $\begin{bmatrix} Q_{BB} & Q_{BN} \\ Q_{NB} & Q_{NN} \end{bmatrix}$ is a permutation of the matrix Q.

4 Set α_B^{k+1} to be the optimal solution of 3, and $\alpha_N^{k+1} = \alpha_N^k$. Set $k \leftarrow k+1$ and go to 2

- w.l.o.g., $\alpha = \begin{bmatrix} \alpha_B^k \\ \alpha_N^k \end{bmatrix}$ is obtained by permuting the examples. B is often chosen as the maximal KKT violating set.
- For SMO, q=2

In SVM^{light} , Joachims chooses B by solving another (smaller) optimization problem¹

November 2, 2015 28 / 28

¹ http://www.cs.cornell.edu/people/tj/publications/joachims_99a.pdf 🔋 🔻 🤌 🤄