SVM and SMO

Instructor: Prof. Ganesh Ramakrishnan



Support Vector Machines



$=()

wo(x) +b>+1 fory = +1
who(x) +b< —1 fory = —1
() w, ¢ € R”

There is large margin to seperate the +ve and -ve examples
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Overlapping examples

When the examples are not linearly
slackness seperable, we need to consider
e the slackness &; of the examples
A~ 72 -7 x (how far a misclassified point is
S from the seperating hyperplane,
always +ve):

W o(x) + b > +1 — & (for y; = +1)
$:(0) wlé(x) +b< —1+¢& (fory; = —1)

R CON B

Multiplying y; on both sides, we get:
yiw'o(x;) +b) >1—¢, Vi=1,...,n
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Maximize the margin

@ We maximize the margin given by (¢(x") — ¢(x7)) " [%]

fTwll

@ Here, x™ and x~ lie on boundaries of the margin.

@ We can verify that w is perpendicular to the seperating surface:
at the seperating surface, the dot product of w and ¢(x) is 0
(with b captured), which is only possible if w and ¢(x) are
perpendicular.

@ We project the vectors ¢(x") and ¢(x~) on w, and normalize by
w as we are only concerned with the direction of w and not its
magnitude.
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Simplifying the margin expression

e Maximize the margin (¢(x") — ¢(x)) [ %]
o At x™: yt =1, £ =0 hence, (w'p(x) +
At x: y~ =1,& =0 hence, —(w'p(x7)
e Adding @ to )
WT(60c) - B0 )) = 2

@ Thus, the margin expression to maximize is: ”%”
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Formulating the objective

@ Problem at hand: Find w*, b* that maximize the margin.
o (w b*)=arg maxw,b”%”
st. y(w'¢(x;) + b) > 1 - ¢ and
&>0,Vi=1,...,n
@ However, as § — 00, 1 — & — —0o0
@ Thus, with arbitrarily large values of &;, the constraints become
easily satisfiable for any w, which defeats the purpose.

@ Hence, we also want to minimize the §;'s. ie. minimize ) &;
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Objective

o (Wb, &) = argminube 5 wll* + CL, &
st. y(w'¢(x;) + b) > 1 - ¢ and
5;20, Vi= 1,...,[7
@ Instead of maximizing ”%” minimize %HW“Q
€1l w||* is monotonically decreasing with respect to ”%” )
@ C determines the trade-off between the error > &; and the
margin ”%”
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More on the Objective

o (Wb, &) = argminy b slwll* + C3L, &
st. yi(w'é(x) +b) >1—¢ and
&>0,Vi=1,...,n
e Converting the constraints to the form g;(x) < 0:
1—& —yi(w'o(x;) + b) <0
=<0
L L(W7 ba Qa, [, gl) =
siwll*+ CL, &+ ; ai(1 =& = yi(w' é(x)) + b)) + ; pi(=&i)
o We want: V,, ¢ L(W', b*, a*, pn*,&) =0
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Gradient of the SVM Lagrangian

VL(w, b* o u* &) =0

@ w.r.t. KVZ

W'+ > ai (—y)é(x) =0

=1

— W =Y aiyox)
° V\rll.r.t. b:

Y oiyi=0

=1
o w.rt. &, Vi

C—aj —pi =0

== aj+pu;=CVi=1,...,n
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Necessary conditions for optimality

D y,(MT¢(X;) + b*) >1-&, Vi
@ ¢ >0,vi

ow:é@W@)

(] i;a7Yi:0

@ o >0,Vi

@ p;>0,Vi

Q@ o +u=CVi

@ o (1—& —yi(w'o(x)+ b)) =0, Vi
@ & =0,Vi
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For SVM, since the original objective and the constraints are convex,
any (w*, b*, a*, u*, &) that satisfies the necessary conditions gives
optimality (conditions are also sufficient)
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Some observations

@ aj >0, uf >0, and of + puj = C
Thus, of, ui €10, (), Vi
o lf0<af<CthenO< i <C
(as af +pj = ()
o pi&r =0and af (1 — & — yi(w d(x;) + b%)) = 0 are
complementary slackness conditions
If & =0and 1 —& — y(w¢(x) + b*) =0, then
yiw T o(x) + b*) =1
» All such points lie on a margin

» Using any point on a margin, we can recover b* as:
b* = yi — w'T (x)
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Dual function

o Let L*(a, i) = minype L(w, b€, a, 1)

@ By weak duality theorem, we have:
L*(a, i) < ming pe Sw])* + COL, &
s.t. yi(w'o(x;) + b) > 1—¢, and
&E>0,Vi=1,...,n

@ The above is true for any «; > 0 and p; > 0

@ Thus,
| + CZS,

l\D|'—‘

max L* (e, i) §
o,
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Dual objective

@ In case of SVM, we have a convex objective and linear
constraints — therefore, strong duality holds:

. N TR -
max L*(a, ) = min o [|w]* + C;&

a,p

@ This value is precisely obtained at the (w*, b*, &*, a*, u*) that
satisfies the necessary (and sufficient) optimality conditions

@ Assuming that the necessary and sufficient conditions (KKT or
Karush—-Kuhn—Tucker conditions) hold, our objective becomes:

max L*(a, )
ap
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o L(w, b & a,p) =
i + CXL, 6+ 21— & = YW 6L) + b)) =
@ We obtain w, b, £ in terms of a and p by setting VL = 0:
. wWort. Wi w= z"la,-y,-gb(x,-)

n

» w.rt. br —b> ajyi=0
i=1

» w.rt. & ai+pi=C

@ Thus, we get:
L(w, b, &, a, p)
= 5 22y (x)e0x) + €306+ 0 a0 — 20 i —
doiaiyid o pydt ()o() — b2 iy — 3 ik
= _% ZIZJ' aiajyyd’ (x)e(x) + 3 ai
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@ The dual optmimization problem becomes:

max——ZZany,yﬂb X)) P(x;) —l—Za,

s.t.
€ [0, ], Vi and
Yiayi=0

@ Deriving this did not require the complementary slackness
conditions

@ Conveniently, we also end up getting rid of
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Solving SVMs

o Dual objective: max, Y o — %ZiZj ayyyiK(xi, X))
st. Y ay;=0and a; € [0, (], Vi

@ We have standard solvers available such as LCQP (linearly
constrained quadratic program) solvers like:

Projected gradient ascent

Active set

Ellipsoid

Cutting plane

etc.

v

v

v VvV Vv

@ We will discuss a fast "Active set”-like algorithm known as
Sequential minimal optimization (SMO)

@ SMO algorithm comprises of Projected gradient ascent and
Active set
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Coordinate Ascent algorithm

@ Optimize over one «; at a time
@ However, > a;y; =0

@ Therefore, we consider a Block Coordinate Ascent which will
optimize over a subset of a, ..., a,
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SMO's Block coordinate acsent (blocksize 2)

o Objective:
maxa D5 — 5 2, 0 icyyiy;K(x;, x;)
s.t. Zia,-y,- =0and q; € [0, C], Vi
e w.l.o.g, we say that a1 and as are the a's to be updated

ne old __ old new __ . old
> ag® =08 o™ =ag? ... 00 = ay

> alew 7& Oé(fld, Othw 7& aold
(equality may hold true under certain conditions like
convergence but does not hold by design)
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w new

ne
Solving for af®", o

w new.

@ Re-writing the objective in terms of af¢”, af

(e, o) —
argmax,, ,, a1+ a2 + > ¢ s — Lo yiK(x, x1) +
azyaK(xe, 32) + 201 307 °’dY1YJK(X1, x;) +

2003 1 5 oy yiK(x2, X)) + 201001y, K(x1, %))

> sty tagye =3 Lo J"'dyj

@ Multiplying the constraint by y,, we have:
Qp = —Q1Y1ye — ZJ 3 JOId)/J}’Q
Let EJ 5 oldyJ be Bold

@ Thus, ay = —Q1 Y1y — 5°Id)’2
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Substituting the values for s and 5 in the SMO
objective

o of™ = argmax,, 3(2K(x1,x) — K(x1,x1) — K(x2, x2))of + (1 —
y1ye — y1K(x1, x1) Botd + y1 K(x1, X2) Boid +
N ZJ 3 f/dXIK(X17)<.I'> N ZJ 3 fldyJK(X%Xj))O‘l +7
where v is a constant term

@ Simplifying the above expression and taking 6, and 65 as the
coefficients of a; and a? respectively, we get:

af®’ = argmax,, tha + Oy +

For more information, see
http://www.cs.iastate.edu/~honavar/smo-svm.pdf
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new

o o = argmax,, 0104 + 0205 +

@ For this objective to be upper convex, %(91% + 6202 +7) <0
» Thus A5 < 0 must hold
> We can see that 0 = $(2K(x1, x2) — K(x1,x1) — K(x2, x2)) <0
» If K(x1,x0) = x{ xo, then
0y = %(2X1|—X2 — Xil—Xl — X;I—XQ)
=—1(x—x)"(x—x)
=il —x*<0
e If 05 < 0, the expression gives us the unconstrained maximum
point af®"
o Here, 3%1(91041 + 6203 +7) =0

new __ —61
— = 3,
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The SMO algorithm

@ Initialise a, ..., a, to some value € [0, C|

@ Pick a;j, a; to estimate next (i.e. estimate ", af*")
new __ —0

o ai 26,

> if @ < 0 then /¥ = 0
> if ¥ > Cthen o™ = C

o a})ew — _Ofi)/i_yj o 6oldyj
> if aJ’-’e"" < 0 then aJ’-’eW =0
> if " > Cthen af*" = C
@ Check if all the KKT conditions are satisfied
» ai(1 - yi(w'é(x;) + b)) =0, Vi
» If not, choose «; and «; that worst violate the KKT conditions
(i.e. max value of a;(1 — y;(w' ¢(x;) + b))), and reiterate

The SMO procedure has been proved to converge, and is therefore an
algorithm
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SMO-type decomposition methods
for SVMs



e Dual objective (vectorized):

moin %aTQoz —e
s.t.
» 0< ;<G Vi
» yla=0
@ where:

> Q= yiyjo! (x)o(x)
Thus, Q is like a ‘signed’ kernel matrix, carrying the dot
products of feature fectors y;p(x;)

@ SMO can be shown to converge asymptotically to a minimum if
Q is positive-semidefinite (ie. Vx € R”, xTQx > 0)
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The general decomposition method

@ Fix a working set size g < n, where n is the number of examples;
Let o' be the initial solution at iteration counter value k=1

@ If o satisfies KKT conditions, stop;
else, find a working set BC {1,...,n} st. |B|=g¢q

K
Let N={1,...,n}\B, and [351 be a partition of a*
N
@ Solve the following subproblem (for ag):

1oy KT
min 5 og Qesag — (eg — Qpnavy) B
B

s.t.
» 0<(ag)i<CVi=1,...,q
> VBB = ~YNON
where [852 gzﬂ is a permutation of the matrix Q.
@ Set k™! to be the optimal solution of @, and af™ = ak. Set k + k+1
and go to @
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k
o wlog, a= ZE is obtained by permuting the examples.
N

B is often chosen as the maximal KKT violating set.
@ For SMO, g=2

In SVM'& " Joachims chooses B by solving another (smaller)
optimization problem!?

1http ://wuw.cs.cornell.edu/people/tj/publications/joachims_99a.pdf
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