Eg: Projected Gradient Descent

o Let
dist(x, G;) = umel(?Hx ul|

o We define
c(x) = D(x) = maxdist(x, ;)

1

» If G is closed and convex, a unique minimizer Pc,(x) exists
(projection of x on C;)
» dist(x,Ci)) =0if xe G
@ Recall discussion on subgradient descent for this problem in class
notes*

“http://www.cse.iitb.ac.in/~cs709/notes/enotes/lecture22a.pdf
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o We get the subgradient of D(x) as
gp(x) = Vdist(x, ;) if D(x) = dist(x, C))

@ For illustration, consider

gr,..(x) = V(x) if () = max f(x)

J

» If f; gives maximum value at a point, gr,_, will be Vf; at that
point

» At the points of intersection of f; and f;, we will get some
convex combination of Vf; and V',
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Projection methods



@ So far, we have dealt with simple projections during SMO and
the general decomposition method

» We considered ajy; + ajy; = constant, and solved a quadratic

optimization problem for a; and «;

» We then projected (o, a;) — [0, (?

@ We will now ‘scale up’ these projections

° Inmethods, the working set changes slowly.
Projection methods can solve bound constrained optimization
problems with large changes in the working set at each iteration.
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Overview

ak’ q: v& (4k)
/

e We can find Ax as the change in x along some steepest descent
direction of fwithout constraints

® Thus, let X! = xk 4 Ax be the working set that reduces f{x)
without constraints (unbounded)

o To find the constrained working set, we project x*! onto ) to
get x<+1
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@ To project x, onto the non-empty closed convex set {2 to get the
projected point x,, we solve:

:P — i _ 2
x, = Po(x,) argg"éngu z|[;

e That is, the projected point x, is the point in €2 that is the
closest to the unbounded optimal point x, if 2 is a non-empty
closed convex set
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Descent direction for a convex function

@ For a descent in a convex function f, we must have
f(x**1) > Value at x**! obtained by linear interpolation from x*

o ie. f(xXT1) > fA(xXK) + VI AX) (XK — %)
Jaxd

‘F(”flu-l)

3{ Fx¥) /
+ U;'j((lk) (1”]-’9

@ Thus, for Ax* to be a descent direction, it is necessary that
VX AXE <0
(where Axk = xf+1 — xK)

L™
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We want that the point obtained after the projection of x£*! to be a
descent direction from x* for the function f

V) - Ax, <0

(where Ax, = Pq(xkT1) — x¥)
You can prove this (necessary condition) for a convex f{x) using the
following result...

I = November 5, 2015 17 / 38



0 s assumed Y be conver

e Claim: P,(x) is a projection of x, iff

(z— PQ(X))T (x— PQ(X)) <0, Vze(

o That is, the angle between (z— Pq(x)) and (x — Pqo(x)) is
obtuse (or right-angled for the projected point), ¥z € 2
X

'

{
/
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Proof for (z— Pq(x), x — Pqo(x)) <0

@ To be more general, let us consider an inner product (a, b)
instead of a' b

o Let z* = (1 — a)Pa(x) + az for some o € (0,1), and z€
= 7' = Pa(x) + a(z— Pa(x)), z €

!

\
|\

L-—k—‘“
| " "Z.
PJ}_C’*}\B' "
@ Since Pq(x) = argmincq||x — z||§
2
|x = Pa(®)]|” < lIx— 2|
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I = Movember 5, 2015

Ix— 2|

—Hx— Pa(x) + a(z — Pa(x H

_HX—PQ H —|—Of2HZ—PQ H —2a<x—PQ(x),z—PQ(x))
> [lx— Psz(x)lf

= (x— Pa(x),z— Pa(x)) < %HZ_ Pa()’

, Va € (0,1)

@ Thus, the LHS can either be 0 or a negative value. Any positive

value of the LHS will lead to a contradiction for some small
a— 0

o Hence, we proved that (z— Py(x), x — Py(x)) <0
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?«,o% Gg/ Sw%mmt J '

We can also prove that if (x — x*,z — x*) <0, Vze€ Q s.t.
z# x*, and x* € (), then

. _ TR
X" = Pa(x) = arggg{r;”x Z||;
Consider || x — z||* —[|x — x*||?

* * 2 *|| 2
=|lx—=x"+(x* = 2)||” = |Ix — x|
=||X—)("||§+||Z—)("||2—2<X—X"az—)(">—||X—)("||2
=|lz—x*|"—2{x— x*,z— x*)
>0
= |x—2” >|x—x*|*, Vze Qst. z#x*
This proves that x* = Pg(x)

I = Movember 5, 2015
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Quadratic Optimization:
Primal Active-Set
Algorithm

Consider the quadratic optimization problem

minimize %XT Qx + cIx+p

subject to Ax>b

(1)
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Step 1

Input a feasible point, x", identify the active set Z9, form matrix A7, and
set k= 0.

Step 2

Compute gF = Qx* + c.

Check the rank condition 1r'{11r1k'.[A?,£ir gkl = ?‘a.nk[Agk]. If it does not hold,
go to Step 4.
Step 3 —
Solve the system( A;'A = g™
stop; otherwise, refiiove’thie indexthat is associated with the most negative
Lagrange multiplier (some \;) from T*.

Step 4

Compute the value of d*:

\
A’A Qma,}\anS .
If X > 0, output x* as the solution and

dF = argmin 1d"Qd + (g¥)"d

d (2)
subject to ald=0 for i € T*
Step 5
Compute ay: _
Rareehon S¥
N ooalxh —b; 3
ap =ming¢ 1, ﬁé%ll Tk (3)
alak<o

Set xFt! = x* | a,dk.

Step 6

If ar < 1, construct 25! by adding the index that vields the minimum
value of ay, in (?7). Otherwise, let 7Ft1 = T*,

Step 7

Set k = k 4+ 1 and repeat from Step 2.

Figure 1: Optimization for the quadratic problem in (??) using Primal Active-
set Method.



Option 2: Log barrier function
«m\ﬂ 46
j,(ﬂ <0 & Ay=b

@ The log barrier function is defined as

B(x) = 65 = — log (~&

@ It looks like an approximation of ) I(x)
) + 320, (%)
is convex if fand g; are convex

e We've taken care of the inequality constraints, lets also consider
an equality constraint Ax= b
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o Our objective becomes Q%(ﬂ X ZL ( \I\)(g/‘(ﬂ\vglg\?q\&«,c
o _ A ] %V(@ (\%"\p
, NS L0 min fix) + Z (—;) log (—g,-(x)) Vo

)~ i e
i o PRAR
4 ok 3 st Ax=b —7 AU \ f\{“’
EAt different values of t, we get different x*(t) 04,\‘&‘\0L

Let \:(t) = 7 %;({(\:\\ ‘SS

o First-order necessary conditions for optimality (and strong

duality) at x*(t), /\;!‘(t)}- M‘G,) R
9 (B0, A (Db, N (V)30 .
g (2 ) =0 A
o (j(%\\ £ I vj;(fm) t Q@c ) /

Q 40
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Our objective becomes

min fx) + Z (—%) log (—&i(x))

s.t. Ax=>b

At different values of t, we get different x*

* _ —1
Let \i(t) = PIEI0)

First-order necessary conditions for optimality (and strong
duality) at x*(t), A¥(¢):
» g (x(t) <0
» Ax*(t) = b
> VE(x(1) + M Af(t) Vg (x (1) + v* () TA=0
[ /\T(t) >0
* Since g; (x*(t)) <0 and t >0

o (Ar(t),v*(t)) is dual feasible
N ovmbers 2015 27738




e If necessary conditions are satisfied and if fand g;'s are convex,
and g;'s strictly feasible, they are also sufficient. Thus,
(x*(t), Af(t),v*(t)) form a saddle point for the Lagrangian

1

L(x,\,v) = fix) + Z \igi(x) + v" (Ax — b)

e Lagrange dual function

L*(\,v) = min L(x, \,v)

L (A (1), (1)) = f(x* () +Z A (g (X (8)+v* (1) (Ax*(t) — b)

A0 -

> m“? is the duality gap
» As t — o<, duality gap — .
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@ If necessary conditions are satisfied and if fand g;'s are convex,
and g;'s strictly feasible, they are also sufficient. Thus,
(x*(t), Aj(t),v*(t)) form a saddle point for the Lagrangian

1

L(x,\,v) = fix) + Z Nigi(x) + v (Ax — b)

e Lagrange dual function

L*(\,v) = min L(x,\,v)
L (X0, () = F(x (1) +Z X (D8 (' (8) +° (1) (Ax'(1) — b)
= f(x*(t)) — —

> ™ here is called the duality gap

> As t — oo, duality gap — 0
I = November 5, 2015 20 / 38



@ At optimality, primal optimal = dual optimal
ie. pf=d*

@ From weak duality,

» The duality gap is always < 7
» The more we increase t, the smaller will be the duality gap
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lterative algorithm

@ Start with t = t{°), ;1 > 1, and consider ¢ tolerance
@ Repeat \

@ Solve 1}\;0\00\;&
X(t) = argmxin fix) + Z (_lt) log (—g,-(x)) ‘P\Q‘({\ -
- gD "
st. Ax=b Qo

@ If ﬂt < €, Quit
else, set t = ut
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@ In the process, we can also obtain A\*(t) and v*(t)

e Convergence of outer iterations:
(m;’ct{“})

We get ¢ accuracy after log (—I.ng

) updates of t
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@ The inner optimization in the iterative algorithm using a barrier
method,

2(0 = argminfi) + 3 () g (~&()

s.t. Ax=>b

can be solved using (sub)gradient descent starting from older
value of x from previous iteration

e We must start with a strictly feasible x, otherwise
—log (—gi(x)) o0 —
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@ We need not obtain x*(t) exactly at each outer iteration

e If not solving for x*(t) exactly, we will get ¢ accuracy after more
4]
than log (%) updates of t
» However, solving the inner iteration exactly may take too much
time
» Fewer inner loop iterations correspond to more outer loop
iterations
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Ho i
w to find a strictly feasible x(9)?

S e We U
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How to find a strictly feasible x()?

o Basic Phase | method
X9 = argminT

s.t. gi(x) <T

@ We solve this using the barrier method, and thus will also need a
strictly feasible starting x(?)

@ Here,
r = max g(X) + 4

where, § > 0
> ie T is slightly larger than the largest g;(x(?))
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@ On solving this optimization for finding x(),
» If I'* < 0, x19 is strictly feasible
» If I* = 0, x{0) is feasible (but not strictly)
» If I* > 0, X9 is not feasible

e A slightly ‘richer’ problem can consider different I'; for each g,
to improve numerical precision

x = argminT;
X

st gi(x) < T
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Choice of a good X”) or x”) depends on the nature/class
of the problem, use domain knowledge to decide it
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