Eg: Projected Gradient Descent

Let

$$dist(x, C_i) = \min_{u \in C_i} ||x - u||^2$$

We define

$$c(x) = D(x) = \max_{i} dist(x, C_{i})$$

- ▶ If C_i is closed and convex, a unique minimizer $P_{C_i}(x)$ exists (projection of x on C_i)
- $dist(x, C_i) = 0$ if $x \in C_i$
- Recall discussion on subgradient descent for this problem in class notes⁴

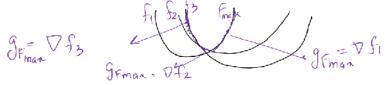
⁴http://www.cse.iitb.ac.in/~cs709/notes/enotes/lecture22a.pdf

• We get the subgradient of D(x) as

$$g_D(x) = \nabla dist(x, C_i)$$
 if $D(x) = dist(x, C_i)$

For illustration, consider

$$g_{F_{max}}(x) = \nabla f_i(x) \text{ if } f_i(x) = \max_j f_j(x)$$



- ▶ If f_i gives maximum value at a point, $g_{F_{max}}$ will be ∇f_i at that point
- ▶ At the points of intersection of f_i and f_j , we will get some convex combination of ∇f_i and ∇f_i

< □ > < @ > < 분 > < 분 > 분 · 9 < 연 ·

Projection methods

- So far, we have dealt with simple projections during SMO and the general decomposition method
 - ▶ We considered $\alpha_i y_i + \alpha_j y_j = constant$, and solved a quadratic optimization problem for α_i and α_j
 - We then projected $(\alpha_i, \alpha_j) \rightarrow [0, \tilde{C}]^2$
- We will now 'scale up' these projections
- In active set methods, the working set changes slowly.
 Projection methods can solve bound constrained optimization problems with large changes in the working set at each iteration.

Overview

- We can find Δx as the change in x along some steepest descent direction of f without constraints
- Thus, let $x_u^{k+1} = x^k + \Delta x$ be the working set that reduces f(x) without constraints (unbounded)
- To find the constrained working set, we project x_u^{k+1} onto Ω to get x^{k+1}

• To project x_u onto the non-empty closed convex set Ω to get the projected point x_p , we solve:

$$x_p = P_{\Omega}(x_u) = \underset{z \in \Omega}{\operatorname{argmin}} ||x_u - z||_2^2$$

• That is, the projected point x_p is the point in Ω that is the closest to the unbounded optimal point x_u if Ω is a non-empty closed convex set

Descent direction for a convex function

• For a descent in a convex function f, we must have $f(x^{k+1}) \ge \text{Value}$ at x^{k+1} obtained by linear interpolation from x^k

• ie.
$$f(x^{k+1}) \ge f(x^k) + \nabla^T f(x^k)(x^{k+1} - x^k)$$

$$f(x_k) = \frac{1}{x^{k-1}}$$

$$f(x^k) = \frac{1}{x^{k-1}}$$

$$f(x^k) = \frac{1}{x^{k-1}}$$

• Thus, for Δx^k to be a descent direction, it is necessary that $\nabla^{\top} f(x^k) \Delta x^k \leq 0$ (where $\Delta x^k = x^{k+1} - x^k$)

We want that the point obtained after the projection of x_u^{k+1} to be a descent direction from x^k for the function f

$$\nabla f(x^k) \cdot \Delta x_p \le 0$$

(where $\Delta x_p = P_{\Omega}(x_u^{k+1}) - x^k$)

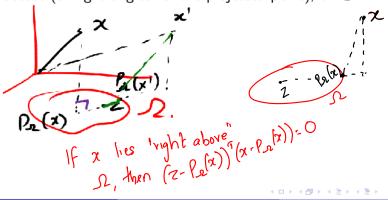
You can prove this (necessary condition) for a convex f(x) using the following result...

I is assumed to be convex

• Claim: $P_{\Omega}(x)$ is a projection of x, iff

$$(z - P_{\Omega}(x))^{\top} (x - P_{\Omega}(x)) \le 0, \forall z \in \Omega$$

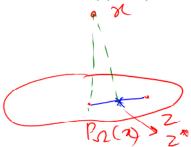
• That is, the angle between $(z - P_{\Omega}(x))$ and $(x - P_{\Omega}(x))$ is obtuse (or right-angled for the projected point), $\forall z \in \Omega$



18 / 38

Proof for $\langle z - P_{\Omega}(x), x - P_{\Omega}(x) \rangle \leq 0$

- To be more general, let us consider an inner product $\langle a, b \rangle$ instead of $a^{\top}b$
- Let $\mathbf{z}^* = (1 \alpha)P_{\Omega}(\mathbf{x}) + \alpha\mathbf{z}$, for some $\alpha \in (0, 1)$, and $\mathbf{z} \in \Omega$ $\implies \mathbf{z}^* = P_{\Omega}(\mathbf{x}) + \alpha(\mathbf{z} - P_{\Omega}(\mathbf{x}))$, $\mathbf{z}^* \in \Omega$



• Since $P_{\Omega}(x) = \operatorname{argmin}_{z \in \Omega} ||x - z||_{2}^{2}$, $||x - P_{\Omega}(x)||^{2} \le ||x - z^{*}||^{2}$

$$\begin{aligned} \|x - z^*\|^2 &= \|x - (P_{\Omega}(x) + \alpha(z - P_{\Omega}(x)))\|^2 \\ &= \|x - P_{\Omega}(x)\|^2 + \alpha^2 \|z - P_{\Omega}(x)\|^2 - 2\alpha \langle x - P_{\Omega}(x), z - P_{\Omega}(x) \rangle \\ &\geq \|x - P_{\Omega}(x)\|^2 \\ &\implies \langle x - P_{\Omega}(x), z - P_{\Omega}(x) \rangle \leq \frac{\alpha}{2} \|z - P_{\Omega}(x)\|^2, \, \forall \alpha \in (0, 1) \end{aligned}$$

- \bullet Thus, the LHS can either be 0 or a negative value. Any positive value of the LHS will lead to a contradiction for some small $\alpha \to 0$
- Hence, we proved that $\langle z P_{\Omega}(x), x P_{\Omega}(x) \rangle \leq 0$

• We can also prove that if $\langle x - x^*, z - x^* \rangle \leq 0$, $\forall z \in \Omega$ s.t. $z \neq x^*$, and $x^* \in \Omega$, then

$$x^* = P_{\Omega}(x) = \underset{\bar{z} \in \Omega}{\operatorname{argmin}} ||x - \bar{z}||_2^2$$

- Consider $||x z||^2 ||x x^*||^2$ = $||x - x^* + (x^* - z)||^2 - ||x - x^*||^2$ = $||x - x^*||^2 + ||z - x^*||^2 - 2\langle x - x^*, z - x^* \rangle - ||x - x^*||^2$ = $||z - x^*||^2 - 2\langle x - x^*, z - x^* \rangle$ > 0
- $\Longrightarrow ||x-z||^2 > ||x-x^*||^2$, $\forall z \in \Omega$ s.t. $z \neq x^*$
- This proves that $x^* = P_{\Omega}(x)$

References

 Yu-Hong Dai, Roger Fletcher. New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds. http://link.springer.com/content/pdf/10. 1007%2Fs10107-005-0595-2.pdf Quadratic Optimization: Primal Active-Set

Algorithm

I'm index set of constraints active in Hietk aix=p;

minimize $\frac{1}{2}\mathbf{x}^TQ\mathbf{x} + \mathbf{c}^T\mathbf{x} + \beta$ subject to $A\mathbf{x} \ge \mathbf{b} \rightarrow \{0, \mathbf{x} \ge \mathbf{b}\}$

where $Q \succ 0$.

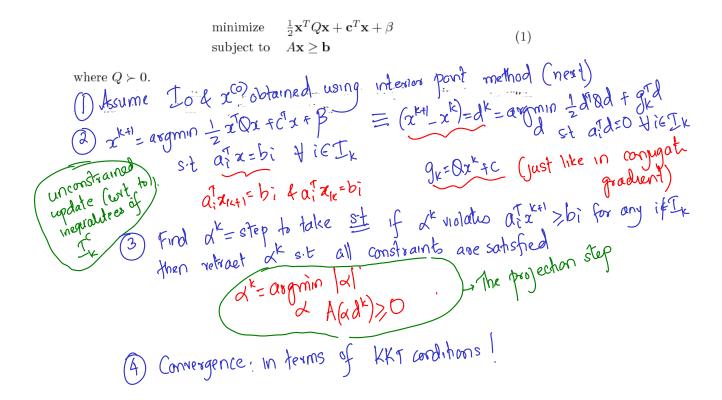
How to check whether to stop?
How to mitalize Io? Is a stop?

· Need to ensure that Hif Ix, aix +1 > bi

Else project!

Quadratic Optimization: Primal Active-Set Algorithm

Consider the quadratic optimization problem



Step 1

Input a feasible point, \mathbf{x}^0 , identify the active set \mathcal{I}^0 , form matrix $A_{\mathcal{I}^0}$, and set k = 0.

Step 2

Compute $\mathbf{g}^k = Q\mathbf{x}^k + \mathbf{c}$.

Check the rank condition $rank[A_{\mathcal{I}^k}^T \ \mathbf{g}^k] = rank[A_{\mathcal{I}^k}^T]$. If it does not hold, go to Step 4.

Step 3

Solve the system $A_{T^k}^T \hat{\lambda} = \mathbf{g}^k$. If $\hat{\lambda} \geq \mathbf{0}$, output \mathbf{x}^k as the solution and stop; otherwise, remove the index that is associated with the most negative Lagrange multiplier (some $\widehat{\lambda}_t$) from \mathcal{I}^k .

Step 4

Compute the value of \mathbf{d}^k :

$$\mathbf{d}^{k} = \underset{\mathbf{d}}{\operatorname{argmin}} \quad \frac{1}{2}\mathbf{d}^{T}Q\mathbf{d} + (\mathbf{g}^{k})^{T}\mathbf{d}$$
subject to
$$\mathbf{a}_{i}^{T}\mathbf{d} = 0 \quad \text{for } i \in \mathcal{I}^{k}$$
(2)

Step 5

Compute α_k :

Rojechon step
$$\alpha_k = \min \left\{ 1, \min_{\substack{j \notin \mathcal{I}^k \\ \mathbf{a}_i^T \mathbf{d}_k < 0}} \frac{\mathbf{a}_j^T \mathbf{x}^k - b_j}{-\mathbf{a}_j^T \mathbf{d}^k} \right\}$$
(3)

Set $\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha_k \mathbf{d}^k$.

If $\alpha_k < 1$, construct \mathcal{I}^{k+1} by adding the index that yields the minimum value of α_k in (??). Otherwise, let $\mathcal{I}^{k+1} = \mathcal{I}^k$.

Set k = k + 1 and repeat from **Step 2**.

Figure 1: Optimization for the quadratic problem in (??) using Primal Activeset Method.

Option 2: Log barrier function

• The log barrier function is defined as

$$B(x) = \phi_{g_i}(x) = -\frac{1}{t} \log \left(-g_i(x)\right) \frac{g_i(x)}{g_i(x)}$$

- ullet It looks like an approximation of $\sum I_{C_i}(x)$
- $f(x) + \sum_{i} \phi_{g_i}(x)$ is convex if f and g_i are convex
- We've taken care of the inequality constraints, lets also consider an equality constraint Ax = b

• Our objective becomes $\nabla f(x) + \sum_{i=1}^{n} \left(\frac{1}{a_i(x_i)}\right)^{n}$

s.t.
$$Ax = b \rightarrow M(\xi)^{0.9}$$

• At different values of t, we get different $x^*(t)$

Let $\lambda_i^*(t) = \frac{1}{2} \operatorname{Lgi}(x^*(t))$

- First-order necessary conditions for optimality (and strong duality) at $x^*(t), \lambda_i^*(t), \mathcal{M}^*(t)$
 - = gi(x*(t))≤0, Ax*(t)=b, xi(t)≥0

 - Vf(x(t)) + Z/xi(t) Vgi(x*(t)) + V((6x(t)) A-6) with

26 / 38

If $(x^*(t), u^*(t))$ was obtained by solving Barrier augmented problem without $g_i(x) \le 0$ but with $Ax = b$ of $f(x^*(t)) = 1$ of $f(x^*(t)) = 1$ of $f(x^*(t)) = 1$ of $f(x^*(t)) = 1$ conditions, we have converged.
without gi(x) <0 but with Ax=b
& if si(t) = 1 & x'(t) & M'(t) satisfy KKT
tgi(x*(t)) conditions we have converged

Our objective becomes

$$\min_{x} f(x) + \sum_{i} \left(-\frac{1}{t} \right) \log \left(-g_{i}(x) \right)$$
s.t. $Ax = b$

- At different values of t, we get different x^*
- Let $\lambda_i^*(t) = \frac{-1}{t \, g_i\left(x^*(t)\right)}$
- First-order necessary conditions for optimality (and strong duality) at $x^*(t)$, $\lambda_i^*(t)$:
 - $g_i(x^*(t)) \leq 0$
 - $Ax^*(t) = b$
 - $\nabla f(x^*(t)) + \sum_{i=1}^{m} \lambda_i^*(t) \nabla g_i(x^*(t)) + \nu^*(t)^{\top} A = 0$
 - $\lambda_i^*(t) \geq 0$
 - ★ Since $g_i(x^*(t)) \le 0$ and $t \ge 0$
- $(\lambda_i^*(t), \nu^*(t))$ is dual feasible

• If necessary conditions are satisfied and if f and g_i's are convex, and g_i 's strictly feasible, they are also sufficient. Thus, $(x^*(t), \lambda_i^*(t), \nu^*(t))$ form a saddle point for the Lagrangian

$$L(x, \lambda, \nu) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \nu^{\top} (Ax - b)$$

Lagrange dual function

$$L^*(\lambda,\nu) = \min_{\mathbf{x}} L(\mathbf{x},\lambda,\nu)$$

$$L^*\left(\lambda^*(t), \nu^*(t)\right) = f\left(x^*(t)\right) + \sum_{i=1}^{m} \lambda_i^*(t)g_i\left(x^*(t)\right) + \nu^*(t)^\top \left(Ax^*(t) - b\right)$$
$$= \left\{\left(\chi^*\left(\frac{1}{t}\right)\right) - \frac{m}{L}\right\}$$

- m is the *duality gap* As $t \to \infty$, duality gap $\to .$

• If necessary conditions are satisfied and if f and g_i 's are convex, and g_i 's strictly feasible, they are also sufficient. Thus, $\left(x^*(t), \lambda_i^*(t), \nu^*(t)\right)$ form a saddle point for the Lagrangian

$$L(x, \lambda, \nu) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \nu^{\top} (Ax - b)$$

Lagrange dual function

$$L^*(\lambda, \nu) = \min_{x} L(x, \lambda, \nu)$$

$$L^* (\lambda^*(t), \nu^*(t)) = f(x^*(t)) + \sum_{i=1}^{m} \lambda_i^*(t) g_i(x^*(t)) + \nu^*(t)^{\top} (Ax^*(t) - b)$$
$$= f(x^*(t)) - \frac{m}{t}$$

- $ightharpoonup \frac{m}{t}$ here is called the *duality gap*
- As $t \to \infty$, duality gap $\to 0$

- At optimality, primal optimal = dual optimal
 i.e. p* = d*
- From weak duality,

$$f(x^*(t)) - \frac{m}{t} \le p^*$$

$$\implies f(x^*(t)) - p^* \le \frac{m}{t}$$

- ▶ The duality gap is always $\leq \frac{m}{t}$
- ▶ The more we increase t, the smaller will be the duality gap

November 5, 2015 30 / 38

Iterative algorithm

- **9** Start with $t = t^{(0)}$, $\mu > 1$, and consider ϵ tolerance
- Repeat
 - Solve

$$x^*(t) = \underset{x}{\operatorname{argmin}} f(x) + \sum_{i=1}^m \left(-\frac{1}{t}\right) \log \left(-g_i(x)\right) \int_{\mathbb{R}^n} \int_{\mathbb{R$$

② If $\frac{m}{t} < \epsilon$, Quit else, **set** $t = \mu t$

- In the process, we can also obtain $\lambda^*(t)$ and $\nu^*(t)$
- Convergence of outer iterations:

We get ϵ accuracy after $\log\left(\frac{\left(m/\epsilon t^{(0)}\right)}{\log(\mu)}\right)$ updates of t

 The inner optimization in the iterative algorithm using a barrier method,

$$x^*(t) = \underset{x}{\operatorname{argmin}} f(x) + \sum_{i} \left(-\frac{1}{t} \right) \log \left(-g_i(x) \right)$$

s.t.
$$Ax = b$$

can be solved using (sub)gradient descent starting from older value of x from previous iteration

• We must start with a strictly feasible x, otherwise $-\log(-g_i(x)) \to \infty$

- We need not obtain $x^*(t)$ exactly at each outer iteration
- If not solving for $x^*(t)$ exactly, we will get ϵ accuracy after more than $\log\left(\frac{\left(m/\epsilon t^{(0)}\right)}{\log(\mu)}\right)$ updates of t
 - However, solving the inner iteration exactly may take too much time
 - Fewer inner loop iterations correspond to more outer loop iterations

How to find a strictly feasible $x^{(0)}$?

How to find a strictly feasible $x^{(0)}$?

Basic Phase I method

$$x^{(0)} = \underset{x}{\operatorname{argmin}} \Gamma$$

s.t.
$$g_i(x) \leq \Gamma$$

- We solve this using the barrier method, and thus will also need a strictly feasible starting $\hat{x}^{(0)}$
- Here,

$$\Gamma = \max_{i=1\dots m} g_i(\hat{\mathbf{x}}^{(0)}) + \delta$$

where, $\delta > 0$

• *i.e.* Γ is slightly larger than the largest $g_i(\hat{x}^{(0)})$

- On solving this optimization for finding $x^{(0)}$,
 - If $\Gamma^* < 0$, $x^{(0)}$ is strictly feasible
 - If $\Gamma^* = 0$, $x^{(0)}$ is feasible (but not strictly)
 - If $\Gamma^* > 0$, $x^{(0)}$ is not feasible
- A slightly 'richer' problem can consider different Γ_i for each g_i , to improve numerical precision

$$x^{(0)} = \underset{\times}{\operatorname{argmin}} \Gamma_i$$

s.t.
$$g_i(x) \leq \Gamma_i$$

Choice of a good $\hat{x}^{(0)}$ or $x^{(0)}$ depends on the nature/class of the problem, use domain knowledge to decide it