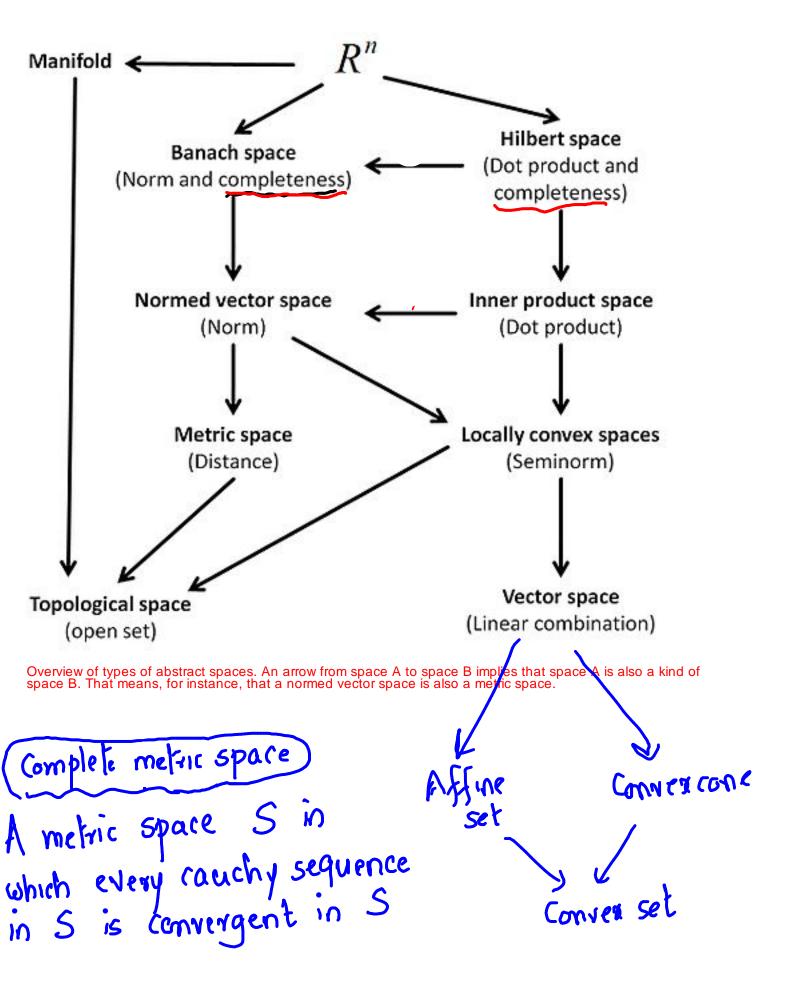
Clam? Any convergent sequence in a Metric claim? Every cauchy sequence is bounded Claim? A bounded sequence in IRn has atleast one limit point: Bolzano Weierstrass Theorom Eg: (1,0,1,0,1...) (see Bertseka) $x \in \mathbb{R}^n$ is said to be a limit point of $\{x_k\}$ if \exists a subsequence of chap 2 & 3 \quad \{x_k\}\ that converges to χ . XER" is said to be a limit point Claim: GIVEN A METRIC SPACE S, EVERY CAUCHY SEQUENCE NEED NOT CONVERGE TO A LIMIT (We saw several examples: $\left(\chi_{n+1} - \frac{\chi_{n} + \frac{2}{\chi_{n}}}{2}\right)$ POINT IN SI <u>Claim</u>: In IRⁿ, every Cauchy sequence converges to a limit point in 1R11 Such spaces are called complete spaces



Show that the following are vector spaces (assuming scalars come from a set S), and then answer questions that follow for each of them: Set of all matrices on S, set of all polynomials on S, set of all sequences of elements of S. (HINT: You can refer to this book for answers to most questions in this homework.) How would you understand the concepts of independence, span, basis, dimension and null space (chapter 2 of this book), eigenvalues and eigenvectors (chapter 5), inner product and orthogonality (chapter 6)? EXTRA: Now how about set of all random variables and set of all functions. **Deadline:** January 23 2015.

Examples: Let 5 be a field. Good examples can be found at http://en.wikipedia.org/wiki/Field_(mathematics)#Examples (a) 5°: Space of infinite sequences of elements from S: (x, x2, x3----) Ly Only finitely many non-zero elements x ∈ Span (V) S Basis = {(1,0...), (0,1,0,0...), (0...,0...), ez ei

obtained by Inxar Dimensionality = countably infinite

combination of countably infinite finite A of elements from V Ly No restriction on non-zero elements =) Basis exists (enumerating basis is open)

Dimensionality = uncountably infinite (Banach space) - With bounded p-norm: ||2||p=(2|xi|)/co Dimensionality = countably infinite pro

{ ||x-x0|| < 1} = { ||x-x0|| p = x } Ans: Yes 11x-x011p1 < 11x-x011p lp&lp' Same relation holds forinfinit sequences

l': Square summable Eg: For p=2 you have $\int_{-\infty}^{\infty} \left\{ \left(x_{1}, x_{2} - \right) \middle| \left(\sum_{i=1}^{\infty} \left| x_{i} \right|^{p} \right) \middle| \left(\infty \right) \right\}$ Note: PCP for p'>p But: (1, \frac{1}{2}, \cdots - \frac{1}{n}, \frac{1}{n+1}) \in \end{area} \end{area} \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) a: 1s la Kilbert space Ans. Only when p

Show that there does not exist (x,y \in \tan \text{x,y})

\(\text{x,x} \right) = \left(\frac{\

Solution:

If ||x|| were defined using an inner product $|\langle x, x \rangle|$ then the following should hold (also called the parallelogram)

||x||2+||y||2- <x,2>+<y,y>

$$= \frac{1}{2} \left(\langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle \right)^{2} ||x + y||^{2}$$

$$= \frac{1}{2} \left(\langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle \right)^{2} ||x + y||^{2}$$

$$\frac{2}{2}\left(\langle \gamma, \alpha \rangle - \langle \alpha, y \rangle - \langle y, \alpha \rangle + \langle y, y \rangle\right) \rightarrow ||2 - y||^{2}$$

$$=\frac{1}{2}(||x+y||^2+||x-y||^2)$$

Now: let x = [a, a, 0 ... 0] y = [a, -a, 0 ... 0]

Then:
$$||x+y||_p = ||\frac{20}{5}||_p = (|2a|^p)^{\frac{n}{2}} = 2|a|$$

$$||x-y||_p = ||\frac{20}{5}||_p = (|2a|^p)^{\frac{n}{2}} = 2|a|$$

$$||x-y||_p = ||\frac{20}{5}||_p = (|a|^4 + |a|^p)^{\frac{n}{2}} = 2^{\frac{n}{2}}||a|$$

$$||y||_p = ||\frac{20}{5}||p| = (|a|^4 + |a|^p)^{\frac{n}{2}} = 2^{\frac{n}{2}}||a|$$
For the parallelogram law to be satisfied
$$2 \times 2^{\frac{n}{2}}||a|^2 = \frac{1}{2} \times 2 \times 2^{\frac{n}{2}}||a|^2$$

$$||x||_p^2 + ||y||_p^2 = \frac{1}{2} \times 2 \times 2^{\frac{n}{2}}||a|^2$$

$$||x||_p^2 + ||y||_p^2 = \frac{1}{2} \times 2 \times 2^{\frac{n}{2}}||a|^2$$

$$||x||_p^2 + ||y||_p^2 = \frac{1}{2} \times 2 \times 2^{\frac{n}{2}}||a|^2$$

$$||x||_p^2 + ||y||_p^2 = \frac{1}{2} \times 2 \times 2^{\frac{n}{2}}||a|^2$$

$$||x||_p^2 + ||y||_p^2 = \frac{1}{2} \times 2 \times 2^{\frac{n}{2}}||a|^2$$

$$||x||_p^2 + ||y||_p^2 = \frac{1}{2} \times 2 \times 2^{\frac{n}{2}}||a|^2$$

$$||x||_p^2 + ||y||_p^2 = \frac{1}{2} \times 2 \times 2^{\frac{n}{2}}||a|^2$$

$$||x||_p^2 + ||y||_p^2 = \frac{1}{2} \times 2 \times 2^{\frac{n}{2}}||a|^2$$

$$||x||_p^2 + ||y||_p^2 = \frac{1}{2} \times 2 \times 2^{\frac{n}{2}}||a|^2$$

$$||x||_p^2 + ||y||_p^2 = \frac{1}{2} \times 2 \times 2^{\frac{n}{2}}||a|^2$$

$$||x||_p^2 + ||y||_p^2 = \frac{1}{2} \times 2 \times 2^{\frac{n}{2}}||a|^2$$

$$||x||_p^2 + ||y||_p^2 = \frac{1}{2} \times 2 \times 2^{\frac{n}{2}}||a|^2$$

$$||x||_p^2 + ||y||_p^2 = \frac{1}{2} \times 2 \times 2^{\frac{n}{2}}||a|^2$$

$$||x||_p^2 + ||y||_p^2 = \frac{1}{2} \times 2 \times 2^{\frac{n}{2}}||a|^2$$

$$||x||_p^2 + ||y||_p^2 = \frac{1}{2} \times 2 \times 2^{\frac{n}{2}}||a|^2$$

$$||x||_p^2 + ||y||_p^2 = \frac{1}{2} \times 2 \times 2^{\frac{n}{2}}||a|^2$$

$$||x||_p^2 + ||y||_p^2 = \frac{1}{2} \times 2 \times 2^{\frac{n}{2}}||a|^2$$

$$||x||_p^2 + ||y||_p^2 = \frac{1}{2} \times 2 \times 2^{\frac{n}{2}}||a|^2$$

$$||x||_p^2 + ||y||_p^2 = \frac{1}{2} \times 2 \times 2^{\frac{n}{2}}||a|^2$$

$$||x||_p^2 + ||y||_p^2 = \frac{1}{2} \times 2 \times 2^{\frac{n}{2}}||a|^2$$

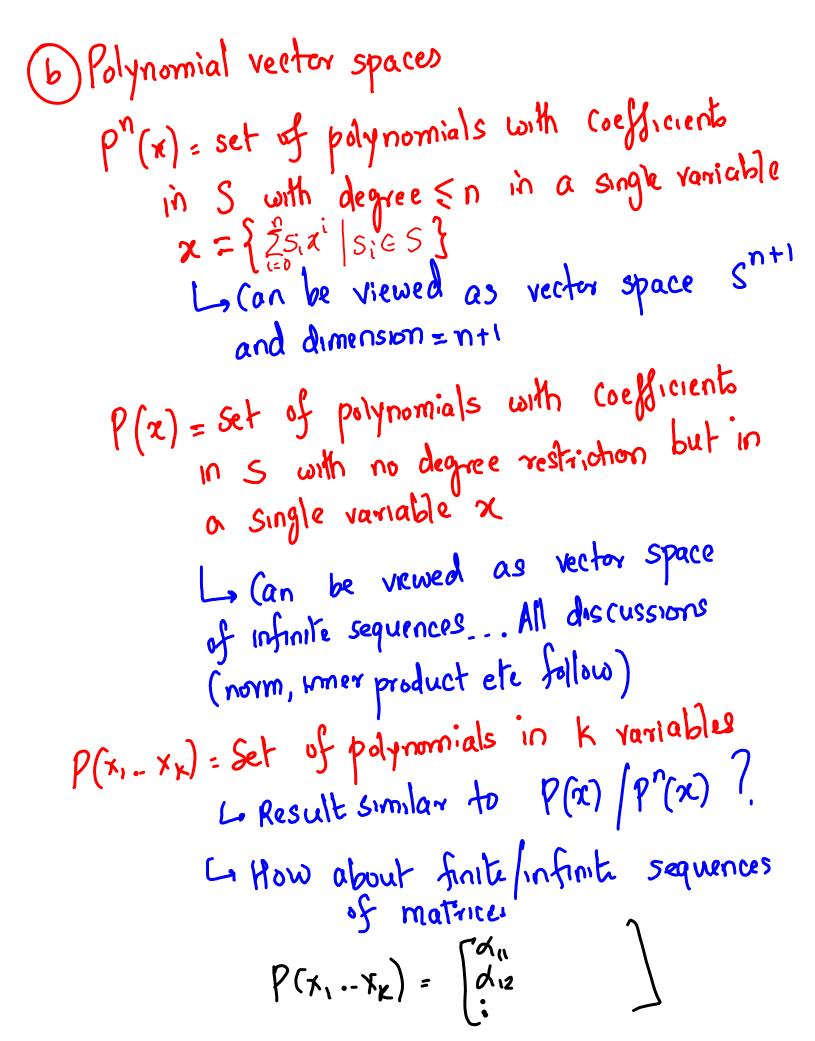
$$||x||_p^2 + ||y||_p^2 = \frac{1}{2} \times 2 \times 2^{\frac{n}{2}}||a|^2$$

$$||x||_p^2 + ||y||_p^2 = \frac{1}{2} \times 2 \times 2^{\frac{n}{2}}||a|^2$$

$$||x||_p^2 + ||x||_p^2 + ||x||_p^2$$

$$||x|$$

 $91 \text{ ff since } \exists ||x||_2$ where $||x||_2$



3) Function spaces: f: X -> V (V is vector space over Basis
[5] { If X is finite 4 V is finite dimensional,

= {fij} { then f has aimension | X|dim(V)} fij(xi)=vj LIF X is finite & V is countably infinite fij (xx)=0 | dimensional then dim f is countably
{V...Vi}=Baro(V)infinite (similarly construct basis) Le Else dim f is uncountably infinite (Prove H/W) Le Normed spaces: $P = \begin{cases} f \\ f: X \rightarrow S \end{cases} \quad ||f||_{p} = \left(\int_{X} |f(x)|^{2} dx \right)^{1/p}$ Should be Stucture preserving Should be Skucture preserving between domain L range | R re measurable L'is Banach for p>1 l'is Hilbert only for p=2 $\langle f,g \rangle = \langle f(n)g(n)dn \rangle$

4) Vector space of mxn matrices

Show that the following are vector spaces (assuming scalars come from a set S), and then answer questions that follow for each of them:

Set of all matrices on S, set of all polynomials on S, set of all sequences of elements of S. (HINT: You can refer to this book for answers to most questions in this homework.) How would you understand the concepts of independence, span, basis, dimension and null space (chapter 2 of this book), eigenvalues and eigenvectors (chapter 5), inner product and orthogonality (chapter 6)? EXTRA: Now how about set of all random variables and set of all functions.

Let us consider space of matrices: Obvious that this is a vector space (since multiplication et c are definéed on 5) For simplicity, let S=R & let us consider a norms for matrices, induced by norms for Let N(x) be a rector norm satisfying the Vectors vector norm azioms: (Define MAM = f(A, N(x)) for any lab

Then we will define a matrix norm Can you prove sup $f(s)=\hat{f}$ $M_N(k)=\sup_{x\neq 0}\frac{N(Ax)}{N(x)}$ set is minimum upper but as the matrix norm induced by N(x)vector norm N(x)what, for example, will be examples

Ans: 1 $||x||_p = \left(\frac{2|x|}{|x||_p}\right)^p$ Ans: 1 $||x||_p = \left(\frac{2|x|}{|x||_p}\right)^p$ Ans: 1 $||x||_p = \left(\frac{2|x|}{|x||_p}\right)^p$ Ans: ||Az||_ = \frac{7}{2} | \frac{7}{2} aij xj | \frac{7}{2} | \frac{7}{2} | aij | kj |

Ans: ||Az||_1 = \frac{7}{2} | \frac{7}{2} | aij | kj |

The armong order of Summation: Some of also values

The armong order of Summation: Changing order of summation:

||Ax||_1 \le \frac{1}{2} |x_j| \frac{1}{2} |a_{ij}| \tag{2} |

Then $||Ax||_{1} \leq C||x||_{1}$ $\Rightarrow ||A||_{1} = \sup_{x \neq 0} ||Ax||_{1} \leq C$ But consider an $x = [0.0.1.0 \, \text{s}]$ kth position, where k is column index j for which $C = \sum_{i=1}^{\infty} |a_{ik}|$ Then ||2||=14 ||Ax||= C (Show this) $\Rightarrow ||A||_1 = \max_{i=1}^{\infty} \frac{\sum_{i=1}^{\infty} |a_{ij}|}{\sum_{i=1}^{\infty} |a_{ij}|} + \max_{i=1}^{\infty} |A||_1 = \max_{i=1}^{\infty} \sum_{i=1}^{\infty} |a_{ij}|$ If $N(\alpha) = ||\alpha||_2 = \left[\int_{i=1}^{\alpha} |\alpha_i|^2\right]^{1/2}$ 6 Similarly, 1/A/1/2 = [dominant eigenvalue of ATA]/2 $C \text{ If } N(x) = \|x\|_{\infty} = \max_{i=1}^{\infty} |x_i| \text{ Sim}(\sum_{p\to\infty} |x_i|^p)^p$ $\|A\|_{\infty} = \max_{i=1}^{\infty} \sum_{j=1}^{\infty} |a_{ij}|$

Other malifix norms: $\|A\|_{F} = \sqrt{\sum_{i,j} a_{ij}^{2}}$ Frobenieu norm = $\sqrt{1}$ vace $(\Lambda^{1}\Lambda)$ (1) If Λ is symmetric: $||\Lambda||_{F}^{2} = \lambda_{1}(\Lambda)^{2} + \lambda_{2}(\Lambda)^{2} + ... + \lambda_{n}(\Lambda)^{2}$ (2) For general Λ $||\Lambda||_{F}^{2} = \sigma_{1}(\Lambda)^{2} + ... + \sigma_{k}(\Lambda)^{2}$ R: What abt inner module a: What abt inner products: (By virtue of brace Note: Not all normed spaces are inner prod Spaces. Eg: $||x||_p = (\overline{z}|x||_p)^{1/p}$, for p=2 $(x,y) = \overline{z}^{x}$; $(x,y) = \overline{z}^{x}$; $(x,y) = \overline{z}^{x}$; $(x,y) = \overline{z}^{x}$ > For p=1 or 00, No corresp. inner Read more on

Eg of Frobenius inner product:

(A,B) = \(\sum_{\text{3}} \alpha_{\text{ijbij}} \) \(\text{weighted inner product} \)

(A,B) \(= \sum_{\text{3}} \alpha_{\text{ijbij}} \) \(\text{text wij} \) \(\text{A} \)

Hint: First poore 2

You might use the orthoriormal
eigenvectors of ATA as basis for
Column space of A and use
this trick like in a previous lecture

Singular values & Eigenvalues of A Au= Ju Au= ov AT= A or A=A A V= 54 A*Au=>2u = 524 A Au = 52 le σ^2 is an eigenvalue of $\Lambda^{\dagger}A$

Basis for vertor space of matrices (mxn) man linearly independent elements

that span the space of all matrices
of size man

This vector & R

span

is a canonical of B

representation of B

RECALL

A linear map/linear operator T between two vector spaces X47 is T:X-17 sit

$$T(\lambda x + \mu x') = \lambda Tx + \mu Tx'$$

Y x, x'e x

If T is 1-1 & onto then T is called invertible. T' is defined sit

T": Y -> X s.t Ty = x / Tx=y a) if X47 are normed spaces ||T|| = sup ||Tx|| is called operator

x = 0 ||x|| norm

x = X Tis colled bounded if IN sit ||Tx|| \(\) A sit ||Tx|| \(\) M||x||

Tis bounded if it is continuous \(\) Proof: Recall that T is called continuous if given any E>0,

3 a 8>0 st whenever ||x-x'|| < 8. ||Tx-Tx'|| < C x,x'e > a suppose T: X>Y is bounded. Then √ 'x, x'∈ x we have ||Tx.Tx'||=||T(x-n')||≤ M||x-x'||