Recap: Lagrange Function for SVR

° Tlc,ng* 2HWH + CY (& + &)

s.t. Vi,

yi—w'o(x)) —b< e+,

b+w'o(x;) —y <e+&

gia 51* 2 0
@ Consider corresponding lagrange muItipIiers aj, oF, pi and pf
@ The Lagrange Function is L(w a, o’y 1) =

—lel +CZ£,+§ +Za, Yi—w'o(x;) —b—e—&)+

Za (b+w'o(xi) =y —e—¢ Zu& Zuf



Recap: KKT conditions for the Constrained
(Convex) Problem
ssume the " on values of

As
é a*, b, i } at KK'T when not

{w.5,&,

exp||C|t|y specified



Recap: Necessary and Sufficient SVR KKT conditions

o Differentiating the Lagrangian w.r.t. w,
w — a;p(x;) + ajd(x;) =0
e w=>3"(aj —aj)o(x)

e Differentiating the Lagrangian w.r.t. &,
C—aj—u=0
e, aj+ ;i =C

o Differentiating the Lagrangian w.r.t £,
ai +u; =C

e Differentiating the Lagrangian w.r.t b,
> (af —a;) =0

@ Complimentary slackness:
ai(y;—w'd(x;)) —b—e—§) =0

I



Support Vectors: Non-zero contribution o; — o

outside e-band

e For any point (x;,y;), the product a;a; = 0.
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Support Vectors: Non-zero contribution «o;j — o

outside e-band

e For any point (x;,y;), the product a;a; = 0.
@ Let a; > 0 and af > 0. This leads to a contradiction.
o By Complimentary slackness, y; —w'¢(x;) — b —¢e— & =0 AND
b+w'¢(x;) —yi —e— & = 0. Adding up the two equalities gives us:
&+ & = 2
@ Since only one of &; and £ can be non-zero,—=> the non-zero
component is negative, which is a contradiction since £;, £ > 0
e Thus, o — af «x max{a;,al}
@ For points within the c-insensitive tube o; = 0 and
af = 0:
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Support Vectors: Non-zero contribution «o;j — o

outside e-band

e For any point (x;,y;), the product a;a; = 0.
@ Let a; > 0 and af > 0. This leads to a contradiction.
o By Complimentary slackness, y; —w'¢(x;) — b —¢e— & =0 AND
b+w'¢(x;) —yi —e— & = 0. Adding up the two equalities gives us:
&+ & = 2
@ Since only one of &; and £ can be non-zero,—=> the non-zero
component is negative, which is a contradiction since £;, £ > 0
e Thus, o — af «x max{a;,al}
@ For points within the c-insensitive tube o; = 0 and
af = 0:
(4] |fy,'—WT§b(X,')—b—€—f,' < 0, then a; =0, Hi = C and 5,20
Similarly, b +w"¢(x;) — y; — € < 0 leading to a} = 0.
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Support Vectors: Non-zero contribution o; — o

I
outside e-band

@ a; = C and o = C correspond to points lying either
outside or on the ¢—tube:
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Support Vectors: Non-zero contribution «o;j — o

outside e-band

@ a; = C and o = C correspond to points lying either
outside or on the ¢—tube:
o Ifa;=C,then yj=0and y; —w'¢p(x;) —b—ec=¢& >0.
e Similarly, af = C corresponds to points lying below (or beyond) the
lower e—band.

@ For points on boundary of the c-insensitive tube
o € [O, C]
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Support Vectors: Non-zero contribution «o;j — o

outside e-band

@ a; = C and o = C correspond to points lying either
outside or on the ¢—tube:
o Ifa;=C,then yj=0and y; —w'¢p(x;) —b—ec=¢& >0.
e Similarly, af = C corresponds to points lying below (or beyond) the
lower e—band.

@ For points on boundary of the c-insensitive tube
o € [O, C]
e For any point on the upper margin, y; — w' ¢(x;) — b — e =0 and
& =0= u; >0 = a; €0, C]. Similarly, aF € [0, C] for points
lying on the margin of the lower e—band.



Support Vector Regression (SVR)

Loss

F=w-g(x)+b



Recap: Retrieving solution for b

o u,f,' =0 and CY,'(y,' — WTgb(X,') —b—¢€— 5,) =0 are
complementary slackness conditions
So0<a;<C=¢=0andy;,—w'd(x;))—b=c+& =€

@ All such points lie on the boundary of the ¢ band

e Using any point x; (that is with ; € (0, C)) on margin, we can
recover b as:

b=y —w'p(x;) —e



Support Vector Regression
Dual Objective



Weak Duality and SVR

° L*(CV, Q’*, My :u*) = min L(W, ba 57 5*7 a, Oé*, Hs :u*)
w,b.£ £
@ By weak duality theorem, for any a;,a’ > 0 and p;, 7 > 0:



Weak Duality and SVR

o [*(a,a*, pu, u*) = Wanigng* L(w, b, &, & a, a, pu, 1)

@ By weak duality theorem, for any a;,a’ > 0 and p;, 7 > 0:
. 2 * * * *
min L wl? + C X7, (6 + €)= L (0 0% )

w,b
st.yi—wio(x) —b<e—§&, andw'g(x;)+b—y <e—¢&
and &, >0,Vi=1,...,n

@ Thus,



Weak Duality and SVR

o [*(a,a*, pu, u*) = Wanigng* L(w, b, &, & a, a, pu, 1)

@ By weak duality theorem, for any a;,a’ > 0 and p;, 7 > 0:
. 2 * * * *
min L wl? + C X7, (6 + €)= L (0 0% )

w,b
st.yi—wio(x) —b<e—§&, andw'g(x;)+b—y <e—¢&
and &, >0,Vi=1,...,n

@ Thus,

wTiéng* 3 lwl|* + CY (& + &) =maxg e e L (v, 0y, 1)

st yi—w'o(x;) —b<e—&, and wig(x;)+b—y <e—¢&
and &, >0,Vi=1,....n



SVR Dual objective

@ Assume: By convexity, KKT conditions are necessary and
sufficient and strong duality holds (for a, o > 0):

Jmin 3wl 4+ € S5 (6 + &) =ma e (007, g1 o)

s.t. yi — WT¢(XI) —b<e— 5/1 and WT¢(XI) + b —Yyi<e— 51*
and &, >0,Vi=1,...,n

@ This value is precisely obtained at the

{W, b,E, é*, a,a*, i, ,&*} that satisfies the necessary (and
sufficient) KKT optimality conditions [KKT Constraint Set|



SVR Dual objective (contd)

o For o, a* > 0 and {w b,¢, §ozoz,u,u} from [KKT
Constraint Set]:

wrtr;]ifnf* 3 lwl|* + C L&+ &) = maxaas e L, @, i, 1)
st.yi—w'o(x;)—b<e—¢ and w'o(x;) +b—y <e—&
and &, >0,Vi=1,...,n

@ Given strong duality, we can equivalently solve:

xf N Ak *
maxd"d*fﬂsla* L (()é7 a 71[’67 /’L )



ou&mm/ﬂ—amu+czm@+£)

> (aily—wTo(x) = b—e— &) + aj(w’
};mé+m§)

o We obtain W, b, é,', é,* in terms of &, &%, i

the KKT conditions derived earlier as w =

and E(oz, &f)=0and &+ fi; = C and

G(xi)+b—y—e—&

and ji* by using
Z:(@i — &7)o(x))

ai + ;= C



Dropping the messy ~ hat notation..
° Llaa® p, ") = 5 wl? +CZ &+ &)+

5% (s — W) — b= e — &)+ i (wTolx) + b—yi— e~
(1 + 1)

m

@ Invoking w = Z( — af)o(x;) and Z(a, —af) =0 and
oz,+,u,—Candoz +ui = Cweget



Dropping the messy ~ hat notation..
° Llaa® p, ") = 5 wl? +CZ, (& + &)+

; (cilyr —w'o(xi) = b—e— &)+ oj(w'd(xi) + b—yi—e =&

2 (il + i)

@ Invoking w = Z(a, — af)o(x;) and Z(a, —af) =0 and

oz,—l—,LL,—Candoz +ui = Cweget
L(w, b, &, &% a0, p, i) = 5 57 > — af)(aj —
@j)¢T(X:')¢(XJ') + 22 (G(C —ai — i) + §(C —af — pf)) —
by (ai— )_GZ(O‘/+O‘)+Z yilay —af) —
> 2ol —af)(ey — o)) (xi)o(x;)
S



Developing further..
o L(a,a" p, ) = 3 [|w* +CZ, (& + &) +

m

Zl (ailyi—wo(x)) —b—e—&) +aj(w'o(x;)+b—yi—e—&
i(ufff + piE;)

° L(W7 b, &, & a, af, p, :UJ*) = % Zi Zj(ai - Ck}k)(Oéj o
7)o (xi)o(x;) + 35 (6i(C — 0 — i) + &(C = of — ) =
by i —af) —ed i(aitaf) + 5 yilai — af) =
> 2oilai = af)(ey — af)d " (xi)e(x))



Developing further..
o L(a,a”, i) = 5 |lwl® +CZ, (&G + &)+

m

Zl (ailyi—wo(x)) —b—e—&) +aj(w'o(x;)+b—yi—e—&
i(ufff + piE;)

° L(W7 b, &, & a, af, p, :UJ*) = % Zi Zj(ai - a:'k)(af o
7)o (xi)o(x;) + 35 (6i(C — 0 — i) + &(C = of — ) =
by i —af) —ed i(aitaf) + 5 yilai — af) =
> 22i(ai = af)(ey — af)d (xi)e(x;))
= —3 2 2 (0 = af)(ey — af)dT (x))b(x;) — € 3oi(ai + of) +
2_iyilai — o)



SVR Dual using only dot products

o w=> " (o —a)d(x;) = the final decision function
f(x) =wlg(x)+ b=
>t (ai— o) (xi)d(x) +y; = 3 (i — a7)d T (xi)d(x;) — €

X; is any point with «; € (0, C).
@ The dual optimization problem to compute the a's for SVR is:



SVR Dual using only dot products

o w=> " (o —a)d(x;) = the final decision function
f(x) =wlg(x)+ b=
>oi(ai—af)oT (xi)d(x) +y; = 3 (i — af)d T (xi)d(x) —

X; is any point with «; € (0, C).
@ The dual optimization problem to compute the a's for SVR is:
o max — 3353 (ai — a)(ey — af)d T (x))(x}) — € 2o + af) +

Zyl(a: a;)
o st) (aj—af)=0&a;,af €[0,C]

@ We notice that the only way these three expressions
involve ¢ is through ¢ (x;)¢(x;) = K(x;,x;), for some i/,



Kernel function: K(x;,x;) = &' (x;)¢(x;)

o We call ¢'(x;)é(x;) a kernel function:
K(xi,x;) = o' (x;)p(x;)

@ The Kernel Trick: For some important choices of ¢, compute
K(x;,x;) directly and more efficiently than having to explicitly
compute/enumerate ¢(x;) and ¢(x;)

@ The expression for decision function becomes
Fx) = 2oy aiK(x, x;)

@ Computation of a; is specific to the objective function being

minimized: Closed form exists for Ridge regression but NOT
for SVR



The Kernelized version of SVR

@ The kernelized dual problem:
1 * *
max — > > D (i —ai)(ay — ) K(xi, %))
i i J

—e) (ai+aj)+ Zyi(@i - aj)

e such that > (a; — o) =0 and «a;, af € [0, C]
o Kernelized decision function: f(x) = > .(a; — af)K(x;,x) + b
e Using any x; with a; € (0,C): b=y; — > .(ai — a])K(xi, X))

e Computing K(x1,Xy) often does not even require computing
o(x1) or ¢(x2) explicitly
S



