Recap: Lagrange Function for SVR

- $\min_{\mathbf{w},b,\xi_{i},\xi_{i}^{*}} \frac{1}{2} \|\mathbf{w}\|^{2} + C \sum_{i} (\xi_{i} + \xi_{i}^{*})$ s.t. $\forall i$, $y_{i} \mathbf{w}^{\top} \phi(\mathbf{x}_{i}) b \leq \epsilon + \xi_{i},$ $b + \mathbf{w}^{\top} \phi(\mathbf{x}_{i}) y_{i} \leq \epsilon + \xi_{i}^{*},$ $\xi_{i}, \xi_{i}^{*} \geq 0$
- Consider corresponding lagrange multipliers α_i , α_i^* , μ_i and μ_i^*
- The Lagrange Function is $L(\mathbf{w}, \alpha, \alpha^*, \mu, \mu^*) =$

$$\frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i} (\xi_i + \xi_i^*) + \sum_{i=1}^{m} \alpha_i \left(y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b - \epsilon - \xi_i \right) + \sum_{i=1}^{m} \alpha_i^* \left(b + \mathbf{w}^\top \phi(\mathbf{x}_i) - y_i - \epsilon - \xi_i^* \right) - \sum_{i=1}^{m} \mu_i \xi_i - \sum_{i=1}^{m} \mu_i^* \xi_i^*$$

Recap: KKT conditions for the Constrained (Convex) Problem Assume the on values of $\left\{\hat{\mathbf{w}},\hat{b},\hat{\xi},\hat{\xi}^*,\hat{\alpha},\hat{\alpha}^*,\hat{\mu},\hat{\mu}^*\right\}$ at KKT when not explicitly specified

Recap: Necessary and Sufficient SVR KKT conditions

- Differentiating the Lagrangian w.r.t. \mathbf{w} , $\mathbf{w} \alpha_i \phi(\mathbf{x}_i) + \alpha_i^* \phi(\mathbf{x}_i) = 0$ i.e. $\mathbf{w} = \sum_{i=1}^m (\alpha_i \alpha_i^*) \phi(\mathbf{x}_i)$
- Differentiating the Lagrangian w.r.t. ξ_i , $C \alpha_i \mu_i = 0$ i.e. $\alpha_i + \mu_i = C$
- Differentiating the Lagrangian w.r.t ξ_i^* , $\alpha_i^* + \mu_i^* = C$
- Differentiating the Lagrangian w.r.t b, $\sum_{i}^{m} (\alpha_{i}^{*} \alpha_{i}) = 0$
- Complimentary slackness: $\alpha_i(\mathbf{v}_i \mathbf{w}^{\top} \phi(\mathbf{x}_i) b \epsilon \mathcal{E}_i) = 0$

• For any point (\mathbf{x}_i, y_i) , the product $\alpha_i \alpha_i^* = 0$.

- For any point (\mathbf{x}_i, y_i) , the product $\alpha_i \alpha_i^* = 0$.
 - Let $\alpha_i > 0$ and $\alpha_i^* > 0$. This leads to a contradiction.
 - By Complimentary slackness, $y_i \mathbf{w}^{\top} \phi(\mathbf{x}_i) b \epsilon \xi_i = 0$ AND $b + \mathbf{w}^{\top} \phi(\mathbf{x}_i) y_i \epsilon \xi_i^* = 0$. Adding up the two equalities gives us: $\xi_i + \xi_i^* = -2\epsilon$.
 - Since only one of ξ_i and ξ_i^* can be non-zero, \Longrightarrow the non-zero component is negative, which is a contradiction since $\xi_i, \xi_i^* \geq 0$
 - Thus, $\alpha_i \alpha_i^* \propto \max\{\alpha_i, \alpha_i^*\}$
- For points within the ϵ -insensitive tube $\alpha_i = 0$ and $\alpha_i^* = 0$:

- For any point (x_i, y_i) , the product $\alpha_i \alpha_i^* = 0$.
 - Let $\alpha_i > 0$ and $\alpha_i^* > 0$. This leads to a contradiction.
 - By Complimentary slackness, $y_i \mathbf{w}^{\top} \phi(\mathbf{x}_i) b \epsilon \xi_i = 0$ AND $b + \mathbf{w}^{\top} \phi(\mathbf{x}_i) y_i \epsilon \xi_i^* = 0$. Adding up the two equalities gives us: $\xi_i + \xi_i^* = -2\epsilon$.
 - Since only one of ξ_i and ξ_i^* can be non-zero, \Longrightarrow the non-zero component is negative, which is a contradiction since $\xi_i, \xi_i^* \geq 0$
 - Thus, $\alpha_i \alpha_i^* \propto \max\{\alpha_i, \alpha_i^*\}$
- For points within the ϵ -insensitive tube $\alpha_i = 0$ and $\alpha_i^* = 0$:
 - If $y_i \mathbf{w}^{\top} \phi(\mathbf{x}_i) b \epsilon \xi_i < 0$, then $\alpha_i = 0$, $\mu_i = C$ and $\xi_i = 0$. Similarly, $b + \mathbf{w}^{\top} \phi(\mathbf{x}_i) - y_i - \epsilon < 0$ leading to $\alpha_i^* = 0$.

• $\alpha_i = C$ and $\alpha_i^* = C$ correspond to points lying either outside or on the ϵ -tube:

- $\alpha_i = C$ and $\alpha_i^* = C$ correspond to points lying either outside or on the ϵ -tube:
 - If $\alpha_i = C$, then $\mu_i = 0$ and $y_i \mathbf{w}^{\top} \phi(\mathbf{x}_i) b \epsilon = \xi_i \geq 0$.
 - Similarly, $\alpha_i^* = C$ corresponds to points lying below (or beyond) the lower ϵ -band.
- For points on boundary of the ϵ -insensitive tube $\alpha_i \in [0, C]$:

- $\alpha_i = C$ and $\alpha_i^* = C$ correspond to points lying either outside or on the ϵ -tube:
 - If $\alpha_i = C$, then $\mu_i = 0$ and $y_i \mathbf{w}^{\top} \phi(\mathbf{x}_i) b \epsilon = \xi_i \geq 0$.
 - Similarly, $\alpha_i^* = C$ corresponds to points lying below (or beyond) the lower ϵ -band.
- For points on boundary of the ϵ -insensitive tube $\alpha_i \in [0, C]$:
 - For any point on the upper margin, $y_i \mathbf{w}^{\top} \phi(\mathbf{x}_i) b \epsilon = 0$ and $\xi_i = 0 \Longrightarrow \mu_i \ge 0 \Longrightarrow \alpha_i \in [0, C]$. Similarly, $\alpha_i^* \in [0, C]$ for points lying on the margin of the lower ϵ -band.

Support Vector Regression (SVR)

Recap: Retrieving solution for b

- $\mu_i \xi_i = 0$ and $\alpha_i (y_i \mathbf{w}^{\top} \phi(\mathbf{x}_i) b \epsilon \xi_i) = 0$ are complementary slackness conditions So $0 < \alpha_i < C \Rightarrow \xi_i = 0$ and $y_i - \mathbf{w}^{\top} \phi(\mathbf{x}_i) - b = \epsilon + \xi_i = \epsilon$
 - ullet All such points lie on the boundary of the ϵ band
 - Using any point \mathbf{x}_j (that is with $\alpha_j \in (0, C)$) on margin, we can recover b as:

$$b = y_j - \mathbf{w}^{ op}\phi(\mathbf{x}_j) - \epsilon$$

Support Vector Regression Dual Objective

Weak Duality and SVR

- $L^*(\alpha, \alpha^*, \mu, \mu^*) = \min_{\mathbf{w}, b, \xi, \xi^*} L(\mathbf{w}, b, \xi, \xi^*, \alpha, \alpha^*, \mu, \mu^*)$
- By weak duality theorem, for any $\alpha_i, \alpha_i^* \geq 0$ and $\mu_i, \mu_i^* \geq 0$:

Weak Duality and SVR

- $L^*(\alpha, \alpha^*, \mu, \mu^*) = \min_{\mathbf{w}, \mathbf{b}, \xi, \xi^*} L(\mathbf{w}, \mathbf{b}, \xi, \xi^*, \alpha, \alpha^*, \mu, \mu^*)$
- By weak duality theorem, for any $\alpha_i, \alpha_i^* \geq 0$ and $\mu_i, \mu_i^* \geq 0$: $\min_{\mathbf{w}, b, \xi, \xi^*} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m (\xi_i + \xi_i^*) \geq L^*(\alpha, \alpha^*, \mu, \mu^*)$ s.t. $y_i \mathbf{w}^\top \phi(\mathbf{x}_i) b \leq \epsilon \xi_i$, and $\mathbf{w}^\top \phi(\mathbf{x}_i) + b y_i \leq \epsilon \xi_i^*$ and $\xi_i, \xi^* \geq 0$, $\forall i = 1, \ldots, n$
- Thus,

Weak Duality and SVR

- $L^*(\alpha, \alpha^*, \mu, \mu^*) = \min_{\mathbf{w}, b, \xi, \xi^*} L(\mathbf{w}, b, \xi, \xi^*, \alpha, \alpha^*, \mu, \mu^*)$
- By weak duality theorem, for any $\alpha_i, \alpha_i^* \geq 0$ and $\mu_i, \mu_i^* \geq 0$: $\min_{\mathbf{w}, b, \xi, \xi^*} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m (\xi_i + \xi_i^*) \geq L^*(\alpha, \alpha^*, \mu, \mu^*)$ s.t. $y_i \mathbf{w}^\top \phi(\mathbf{x}_i) b \leq \epsilon \xi_i$, and $\mathbf{w}^\top \phi(\mathbf{x}_i) + b y_i \leq \epsilon \xi_i^*$ and $\xi_i, \xi^* > 0$, $\forall i = 1, \ldots, n$
- Thus, $\min_{\mathbf{w},b,\xi,\xi^*} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m (\xi_i + \xi_i^*) \ge \max_{\alpha,\alpha^*,\mu,\mu^*} \mathbf{L}^*(\alpha,\alpha^*,\mu,\mu^*)$ s.t. $y_i \mathbf{w}^\top \phi(\mathbf{x}_i) b \le \epsilon \xi_i$, and $\mathbf{w}^\top \phi(\mathbf{x}_i) + b y_i \le \epsilon \xi_i^*$ and $\xi_i, \xi^* > 0$. $\forall i = 1, \dots, n$

SVR Dual objective

• Assume: By convexity, KKT conditions are necessary and sufficient and strong duality holds (for $\alpha, \alpha^* \geq 0$): $\min_{\mathbf{w}, b, \xi, \xi^*} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m (\xi_i + \xi_i^*) = \max_{\alpha, \alpha^*, \mu, \mu^*} L^*(\alpha, \alpha^*, \mu, \mu^*)$ s.t. $y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b \leq \epsilon - \xi_i$, and $w^\top \phi(\mathbf{x}_i) + b - y_i \leq \epsilon - \xi_i^*$ and $\xi_i, \xi^* \geq 0$, $\forall i = 1, \ldots, n$

• This value is precisely obtained at the $\left\{\hat{\mathbf{w}},\hat{b},\hat{\xi},\hat{\xi}^*,\hat{\alpha},\hat{\alpha}^*,\hat{\mu},\hat{\mu}^*\right\} \text{ that satisfies the necessary (and sufficient) KKT optimality conditions [KKT Constraint Set]}$

SVR Dual objective (contd)

- For $\alpha, \alpha^* \geq 0$ and $\left\{\hat{\mathbf{w}}, \hat{b}, \hat{\xi}, \hat{\xi}^*, \hat{\alpha}, \hat{\alpha}^*, \hat{\mu}, \hat{\mu}^*\right\}$ from [KKT Constraint Set]: $\min_{\substack{\mathbf{w}, b, \xi, \xi^* \\ \mathbf{w}, b, \xi, \xi^*}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m (\xi_i + \xi_i^*) = \max_{\alpha, \alpha^*, \mu, \mu^*} L^*(\alpha, \alpha^*, \mu, \mu^*)$ s.t. $y_i \mathbf{w}^\top \phi(\mathbf{x}_i) b \leq \epsilon \xi_i$, and $\mathbf{w}^\top \phi(\mathbf{x}_i) + b y_i \leq \epsilon \xi_i^*$ and $\xi_i, \xi^* \geq 0$, $\forall i = 1, \dots, n$
- Given strong duality, we can equivalently solve: $\max_{\hat{\alpha},\hat{\alpha}^*,\hat{\mu},\hat{\mu}^*} L^*(\hat{\alpha},\hat{\alpha}^*,\hat{\mu},\hat{\mu}^*)$

- We obtain $\hat{\mathbf{w}}$, \hat{b} , $\hat{\xi}_i$, $\hat{\xi}_i^*$ in terms of $\hat{\alpha}$, $\hat{\alpha}^*$, $\hat{\mu}$ and $\hat{\mu}^*$ by using the KKT conditions derived earlier as $\hat{\mathbf{w}} = \sum_{i=1}^m (\hat{\alpha}_i \hat{\alpha}_i^*) \phi(\mathbf{x}_i)$ and $\sum_{i=1}^m (\hat{\alpha}_i \hat{\alpha}_i^*) = 0$ and $\hat{\alpha}_i + \hat{\mu}_i = C$ and $\hat{\alpha}_i^* + \hat{\mu}_i^* = C$

Dropping the messy î hat notation...

•
$$L(\alpha, \alpha^*, \mu, \mu^*) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m (\xi_i + \xi_i^*) + \sum_{i=1}^m (\alpha_i (y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b - \epsilon - \xi_i) + \alpha_i^* (\mathbf{w}^\top \phi(\mathbf{x}_i) + b - y_i - \epsilon - \xi_i^*) + \sum_{i=1}^m (\mu_i \xi_i + \mu_i^* \xi_i^*)$$

• Invoking $\mathbf{w} = \sum_{i=1}^{m} (\alpha_i - \alpha_i^*) \phi(\mathbf{x}_i)$ and $\sum_{i=1}^{m} (\alpha_i - \alpha_i^*) = 0$ and $\alpha_i + \mu_i = C$ and $\alpha_i^* + \mu_i^* = C$, we get

Dropping the messy î hat notation...

•
$$L(\alpha, \alpha^*, \mu, \mu^*) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m (\xi_i + \xi_i^*) + \sum_{i=1}^m (\alpha_i (y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b - \epsilon - \xi_i) + \alpha_i^* (\mathbf{w}^\top \phi(\mathbf{x}_i) + b - y_i - \epsilon - \xi_i^*) + \sum_{i=1}^m (\mu_i \xi_i + \mu_i^* \xi_i^*)$$

• Invoking $\mathbf{w} = \sum_{i=1}^{n} (\alpha_i - \alpha_i^*) \phi(\mathbf{x}_i)$ and $\sum_{i=1}^{n} (\alpha_i - \alpha_i^*) = 0$ and $\alpha_i + \mu_i = C$ and $\alpha_i^* + \mu_i^* = C$, we get $L(\mathbf{w}, b, \xi, \xi^*, \alpha, \alpha^*, \mu, \mu^*) = \frac{1}{2} \sum_i \sum_j (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) \phi^{\top}(\mathbf{x}_i) \phi(\mathbf{x}_j) + \sum_i (\xi_i (C - \alpha_i - \mu_i) + \xi_i^* (C - \alpha_i^* - \mu_i^*)) - b \sum_i (\alpha_i - \alpha_i^*) - \epsilon \sum_i (\alpha_i + \alpha_i^*) + \sum_i y_i (\alpha_i - \alpha_i^*) - \sum_i \sum_j (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) \phi^{\top}(\mathbf{x}_i) \phi(\mathbf{x}_j)$

Developing further..

•
$$L(\mathbf{w}, b, \xi, \xi^*, \alpha, \alpha^*, \mu, \mu^*) = \frac{1}{2} \sum_i \sum_j (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) \phi^\top(\mathbf{x}_i) \phi(\mathbf{x}_j) + \sum_i (\xi_i (C - \alpha_i - \mu_i) + \xi_i^* (C - \alpha_i^* - \mu_i^*)) - b \sum_i (\alpha_i - \alpha_i^*) - \epsilon \sum_i (\alpha_i + \alpha_i^*) + \sum_i y_i (\alpha_i - \alpha_i^*) - \sum_i \sum_i (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_i^*) \phi^\top(\mathbf{x}_i) \phi(\mathbf{x}_j)$$

Developing further...

$$\mathbf{L}(\alpha, \alpha^*, \mu, \mu^*) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m (\xi_i + \xi_i^*) + \sum_{i=1}^m (\alpha_i (y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b - \epsilon - \xi_i) + \alpha_i^* (\mathbf{w}^\top \phi(\mathbf{x}_i) + b - y_i - \epsilon - \xi_i^*)$$

$$\sum_{i=1}^m (\mu_i \xi_i + \mu_i^* \xi_i^*)$$

•
$$L(\mathbf{w}, b, \xi, \xi^*, \alpha, \alpha^*, \mu, \mu^*) = \frac{1}{2} \sum_i \sum_j (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) \phi^\top(\mathbf{x}_i) \phi(\mathbf{x}_j) + \sum_i (\xi_i (C - \alpha_i - \mu_i) + \xi_i^* (C - \alpha_i^* - \mu_i^*)) - b \sum_i (\alpha_i - \alpha_i^*) - \epsilon \sum_i (\alpha_i + \alpha_i^*) + \sum_i y_i (\alpha_i - \alpha_i^*) - \sum_i \sum_j (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) \phi^\top(\mathbf{x}_i) \phi(\mathbf{x}_j)$$

$$= -\frac{1}{2} \sum_i \sum_j (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) \phi^\top(\mathbf{x}_i) \phi(\mathbf{x}_j) - \epsilon \sum_i (\alpha_i + \alpha_i^*) + \sum_i y_i (\alpha_i - \alpha_i^*)$$

SVR Dual using only dot products $\phi^T(\mathbf{x}_i)\phi(\mathbf{x}_j)$

- $\mathbf{w} = \sum_{i=1}^{m} (\alpha_i \alpha_i^*) \phi(\mathbf{x}_i) \Rightarrow$ the final decision function $f(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b = \sum_{i=1}^{m} (\alpha_i \alpha_i^*) \phi^T(\mathbf{x}_i) \phi(\mathbf{x}) + y_j \sum_{i=1}^{m} (\alpha_i \alpha_i^*) \phi^T(\mathbf{x}_i) \phi(\mathbf{x}_j) \epsilon \mathbf{x}_j$ is any point with $\alpha_j \in (0, C)$.
- The dual optimization problem to compute the α 's for SVR is:

SVR Dual using only dot products $\phi^T(\mathbf{x}_i)\phi(\mathbf{x}_j)$

- $\mathbf{w} = \sum_{i=1}^{m} (\alpha_i \alpha_i^*) \phi(\mathbf{x}_i) \Rightarrow$ the final decision function $f(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b = \sum_{i=1}^{m} (\alpha_i \alpha_i^*) \phi^T(\mathbf{x}_i) \phi(\mathbf{x}) + y_j \sum_{i=1}^{m} (\alpha_i \alpha_i^*) \phi^T(\mathbf{x}_i) \phi(\mathbf{x}_j) \epsilon \mathbf{x}_j$ is any point with $\alpha_j \in (0, C)$.
- The dual optimization problem to compute the α 's for SVR is:
 - $\max_{\alpha_i, \alpha_i^*} \frac{1}{2} \sum_i \sum_j (\alpha_i \alpha_i^*)(\alpha_j \alpha_j^*) \phi^\top(\mathbf{x}_i) \phi(\mathbf{x}_j) \epsilon \sum_i (\alpha_i + \alpha_i^*) + \sum_i y_i (\alpha_i \alpha_i^*)$ • $\mathbf{s.t} \sum_i (\alpha_i - \alpha_i^*) = 0 \& \alpha_i, \alpha_i^* \in [0, C]$
- We notice that the only way these three expressions involve ϕ is through $\phi^{\top}(\mathbf{x}_i)\phi(\mathbf{x}_j) = K(\mathbf{x}_i,\mathbf{x}_j)$, for some i,j

Kernel function: $K(\mathbf{x}_i, \mathbf{x}_j) = \phi^T(\mathbf{x}_i)\phi(\mathbf{x}_j)$

- We call $\phi^{\top}(\mathbf{x}_i)\phi(\mathbf{x}_j)$ a kernel function: $K(\mathbf{x}_i, \mathbf{x}_j) = \phi^{\top}(\mathbf{x}_i)\phi(\mathbf{x}_j)$
- The Kernel Trick: For some important choices of ϕ , compute $K(\mathbf{x}_i, \mathbf{x}_j)$ directly and more efficiently than having to explicitly compute/enumerate $\phi(\mathbf{x}_i)$ and $\phi(\mathbf{x}_j)$
- The expression for decision function becomes $f(x) = \sum_{i=1}^{m} \alpha_i K(\mathbf{x}, \mathbf{x}_i)$
- Computation of α_i is specific to the objective function being minimized: Closed form exists for Ridge regression but NOT for SVR

The Kernelized version of SVR

• The kernelized dual problem:

$$\max_{\alpha_i,\alpha_i^*} -\frac{1}{2} \sum_i \sum_j (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) K(\mathbf{x}_i, \mathbf{x}_j)$$
$$-\epsilon \sum_i (\alpha_i + \alpha_i^*) + \sum_i y_i (\alpha_i - \alpha_i^*)$$

- such that $\sum_{i}(\alpha_{i}-\alpha_{i}^{*})=0$ and $\alpha_{i},\alpha_{i}^{*}\in[0,C]$
- Kernelized decision function: $f(\mathbf{x}) = \sum_{i} (\alpha_i \alpha_i^*) K(\mathbf{x}_i, \mathbf{x}) + b$
- Using any \mathbf{x}_j with $\alpha_j \in (0, C)$: $b = y_j \sum_i (\alpha_i \alpha_i^*) K(\mathbf{x}_i, \mathbf{x}_j)$
- Computing $K(\mathbf{x}_1, \mathbf{x}_2)$ often does not even require computing $\phi(\mathbf{x}_1)$ or $\phi(\mathbf{x}_2)$ explicitly