
Midsem 2013 Solutions

30 Marks, Open Notes, 2 Hours. I have made every effort to en-
sure that all required assumptions have been stated. If absolutely
necessary, do make more assumptions and state them very clearly.

1. In the class, we gave an analytic proof for the strong duality theorem for
Linear Programs. In this question, we will attempt to give a geometrically
motivated proof (for a part of the strong duality theorem) and your task
will be to provide rigourous proofs for claims made in the process.

Let A be an m×n matrix of reals, that is, A ∈ <m×n. Let P be the primal
linear program given in (1)

min
x∈<n

cTx

subject to Ax ≥ b
(1)

and D be the dual program given in (2)

max
y∈<m

bTy

subject to ATy = c

y ≥ 0

(2)

Suppose x∗ is an optimal feasible solution for P . Let aTi x∗ ≥ bi for all
i ∈ I be all the constraints tight1 at x∗. Here, vector aTi is the ith row
of A. In other words, I is the index of all inequalities in the primal, that
become equalities at x∗.

(a) We claim that the objective function vector c is contained in the

cone K =

{
x

∣∣∣∣∣x =
∑
i∈I

λiai, λi ≥ 0

}
generated by the set of vectors

1A constraint aT
i x ≥ bi is tight if aT

i x = bi

1
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{ai}i∈I . Prove this claim. Hints: prove by contradiction and make
use of the separating hyperplane theorem.

ANS: Suppose for contradiction that c does not lie in this cone. Then
there must exist a separating hyperplane between c and K: i.e., there
exists a vector d ∈ <n such that aTi d ≥ 0 for all i ∈ I, but cTd < 0.
Now consider the point z = x∗ + εd for some tiny ε > 0. Note the
following:

i. For small enough ε, the point z satisifes the constraints Az ≥ b.
We prove this as follows.
For j ∈ I, we have aTj z = aTj x∗ + εaTj d = bj + εaTj d ≥ bj since

ε > 0 and aTj d ≥ 0.

For j /∈ I, by choosing small enough ε ≤ min
j

(
bj−aT

j x∗

aT
j x∗

)
, we

have aTj z = aTj x∗ + εaTj d ≥ bj .
ii. The objective function value decreases since cT z = cTx∗+cTd <

cTx∗.

This contradicts the fact that x∗ was optimal.

(b) Therefore, the vector c lies within the coneK =

{
x

∣∣∣∣∣x =
∑
i∈I

λiai, λi ≥ 0

}
generated by the set of vectors {ai}i∈I . Present a choice of λi such

that
∑
i

λibi = cTx∗

ANS: Choose λi for i ∈ I so that c =
∑
i∈I

λiai, λ ≥ 0 and set λj = 0

for j /∈ I.

• We know λ ≥ 0.

• ATλ =
∑
i∈I

λiai = c

• bTλ =
∑
i∈I

biλi =
∑
i∈I

(aTi x∗)λi = cTx∗

Therefore λ is a solution to the dual which yields dual objective value
equal to that of primal.

(c) Prove that, if the primal has an optimal feasible solution, the dual
must have an optimal feasible solution and that the optimal value of
the objective for the dual equals the optimal value of the objective
for the primal.

ANS: From the weak duality theorem, we know that the dual optimal
cannot exceed the primal optimal. Since, for a given primal optimal,
we have found a dual optimal that yields objective value equal to the
primal optimal, we can be assured that the λ obtained above is a
point of dual optimal.

(10 Marks)
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2. We call S a copositive matrix if it is symmetric and satisfies xTSx ≥ 0 for
all x ≥ 0. The set of copositive matrices is denoted by Sn∗ . In other words

Sn∗ =
{
S
∣∣S ∈ Sn, xTSx ≥ 0 ∀ x ≥ 0

}
Is the set Sn∗ of copositive matrices convex? Is Sn∗ affine? Is Sn∗ a convex
cone? Is Sn∗ a proper cone? Prove your claims.

ANS: Sn∗ is a proper cone (and thefore a convex cone) for the following
reason: it is obvious that all positive linear combinations of copositive ma-
trices are also copositive. Hence Sn∗ is a convex cone. Sn∗ has a non-empty
interior, because it includes the proper cone of positive semi-definite matri-
ces (see page 5 of http://www.cse.iitb.ac.in/~CS709/notes/eNotes/
7-21-08-2013.pdf). Sn∗ is pointed because S ∈ Sn∗ and −S ∈ Sn∗ implies
that xTSx = 0 for all x ≥ 0 which implies that S = 0. It is not affine
since the 2 by 2 matrices [5 0; 0 2] and [2 0; 0 3] are copositive BUT [5 0;
0 2] - [2 0; 0 3] is not copositive.

Let A ∈ Sn∗ . Find the dual cone of {Ax |x ≥ 0}, assuming A is a matrix of
reals, x is a vector of reals and dot product in <n to be the inner product.

ANS: dual cone =
{
y |ATy ≥ 0

}
(8 Marks)

3. Prove that the trace of a matrix equals the sum of its eigenvalues and that
the determinant equals the product of its eigenvalues. You can use the

fact that given P (x) =

n∑
i=0

αix
i,

(a) the sum of the roots of the polynomial P (x) is always
−α(n−1)

αn

(b) the product of the roots of the polynomial P (x) is always (−1)n α0

αn

ANS: Eigenvalues are roots of the characteristic polynomial2. You only
need α0, α(n−1) and αn.

(5 Marks)

4. The optimization problem in (3) is an Integer Linear Program (ILP).

minimize f(x) = cTx

subject to Ax ≤ b

xi ∈ {0, 1} for 1 ≤ i ≤ n
(3)

In a general method called relaxation, the constraint that xi be zero or
one is replaced with the linear inequalities 0 ≤ xi ≤ 1. The problem in
(4) is called the Relaxation of the Linear Program (RLP).

2http://en.wikipedia.org/wiki/Characteristic_polynomial
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minimize f(x) = cTx

subject to Ax ≤ b

0 ≤ xi ≤ 1 for 1 ≤ i ≤ n
(4)

It turns out that the RLP (4) is far easier to solve than the original ILP
(3).

(a) What inequality relationship exists between the optimal value of the
RLP (4) and the optimal value of the original ILP (3).

ANS: RLP ≤ ILP

(1 Mark)

(b) What can you say about the original ILP (3) if the RLP (4) is infea-
sible?

ANS: ILP is also infeasible.

(1 Mark)

(c) It sometimes happens that the RLP (4) has a solution with xi ∈ {0, 1}
for all 1 ≤ i ≤ n. What can you say in this case?

ANS: ILP will have the same solution as RLP.

(1 Mark)

5. Consider the half-space C and hyperbolic set D described below:

C =
{
x ∈ <2|x2 ≤ 0

}
and

D =
{
x ∈ <2|x1x2 ≥ 1, x1 ≥ 0, x2 ≥ 0

}
Can C and D be separated by a hyperplane? Prove. State whether they
can be strictly separated (no proof required).

ANS: Yes. They can be separated. All you need to prove is that each of
them is convex and that they are disjoint and hence the separating hy-
perplane theorem can be applied. C is a half-space and obviously convex.
For proving convexity of D, consider two points (x1, x2) and (y1, y2) in D.
You need to show that their convex cominations also lie in D. Consider
two cases: (i) (x1 − y1)(x2 − y2) ≥ 0 and (x1 − y1)(x2 − y2) < 0. In each
case, you just need to show that (θx1 + (1− θ)y1)(θx2 + (1− θ)y2) ≥ 1.

They cannot be strictly separated.

(4 Marks)

6. Write the dual for the following (conic linear) program as compactly as
possible:
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min
x1,x2,x3

2x1 + x2 + x3

subject to
√
x22 + x23 ≤ x1

(5)

(5 Bonus Marks)

ANS: You can write the constraint as a conic constraint in terms of a sec-
ond order cone and use the fact that the dual cone of the second order cone
is itself (the second order cone is self-dual). See page 2 of http://www.
cse.iitb.ac.in/~CS709/notes/eNotes/9-28-08-2013.pdf. Here, A =

I3×3, b = 0 and K =
{
x1, x2, x3|

√
x22 + x23 ≤ x1

}
. However, the problem

is pretty trivial. Objective in the dual is simply 0 – taking cue from the
dual of the LP, which has objective in terms of bTy, we note that the b
vector here is just 0. Hence, the objective of the dual for the linear conic
program will have 0, subject to conic constraints, which will not matter
in the compact representation, other than for finding a feasible solution.

max
z1,z2,w

0

subject to ||z|| ≤ w
z2 = 1

z3 = 1

(6)


