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Abstract
     

The Sequential Minimal Optimization algorithm 
and its variants are well known techniques for 
the fast training of Support Vector Machines. 
SMO solves a linearly constrained quadratic 
programming problem by updating pairs of 
Lagrange multipliers. We propose a variant of 
the classical SVM formulation, which we term as 
the Relaxed SVM. We develop a learning 
algorithm, termed as 1SMO in the sequel, that 
allows individual Lagrange multipliers in the 
dual formulation to be updated, and is linearly 
convergent. On selected benchmark datasets, the 
Relaxed SVM trained with 1SMO is 2-3 times 
faster than LibSVM and SVMLight, while 
comparing very favourably in terms of error rate. 
On larger datasets, where the kernel cannot be 
cached, the speedup is even higher. We next 
extend the proposed 1SMO algorithm to the 
solution of the classical SVM,  through a 
sequence of Relaxed SVM sub-problems. 

 Keywords: Support Vector Machines,  Sequential 
Minimal Optimization, Machine Learning, 
Classification, Function Approximation. 

1.  Introduction 

Over the last decade or more, Support Vector Machines 

(SVMs) have emerged as a popular and powerful 

paradigm for pattern classification and function 

approximation (Vapnik, 1998; Cristianini & Shawe-

Taylor, 2000; Bradley & Mangasarian, 2000; Burges, 

1998). SVMs emerged from research in statistical 

learning theory on how to regulate generalization in 

learning, and the tradeoff between structural complexity 

and empirical risk. SVM classifiers assign data samples to 

one of two half-planes, either in the pattern space or in a 

higher-dimensional feature space. One of the most 

popular SVM classifiers is the "maximum margin" one, 

that aims to minimize an upper bound on the 

generalization error through maximizing the margin 

between two disjoint half planes (Vapnik, 1998; Burges, 

1998). The best known algorithm for training SVMs is 

Platt’s SMO (1998), that updates pairs of Lagrange 
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multipliers at a time to find a solution to the dual 

formulation. 

 

In this paper, we propose a modification of the classical 

SVM formulation, termed as the Relaxed SVM in the 

sequel. We derive an update rule for determining the 

Lagrange multipliers in the dual formulation that allows 

multipliers to be updated individually, instead of in pairs. 

The proposed update rule, termed as one-SMO (1SMO) is 

simple, faster, more scaleable, and linearly convergent. At 

the same time, the generalization performance provided 

by the Relaxed SVM is the same or better than that of the 

classical SVM. We also show that the solution to the 

classical SVM can be obtained as the limit of a sequence 

of Relaxed SVM sub-problems. 

 

Consider a training set consisting of M patterns x
1
, x

2
, …, 

x
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iii xxxx  ..., , , 21=  is a point in ℜN
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label of the i-th pattern is denoted by yi ∈ {-1, 1}. Non-

linearly separable problems are often solved by mapping 

the input data samples x
i
 to a higher dimensional feature 

space φ(x
i
). The classical maximum margin SVM 

classifier aims to find a hyperplane of the form 
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that separates patterns of the two classes. The variables w 
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where e is a vector of ones of dimension M. The solution 

to (1)-(2) yields the soft margin classifier, so termed 

because the distance or margin between the separating 

hyperplane w
Tφ(x) + b = 0 and the image of the k-th 

pattern x
k
 may be reduced from 1 by an amount qk . The 

solution to (1)-(2) is usually determined by considering 

the dual problem, which is given by 
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and bound/box constraints on the dual variables 
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Here, λi , i = 1, 2, … M denote the Lagrange multipliers, 

and the matrix K with entries ( ) ( )[ ]jTi

ij xxK φφ=  is 

termed as a Kernel matrix. 

 

When the sample set size is large, the computational and 

memory costs of solving the constrained Quadratic 

Programming Problem (QPP) can be prohibitive. 

Therefore, a lot of effort has focused on how to efficiently 

solve (3)-(5). Osuna et. al (1997) showed that the QPP 

could be solved through the solution of a series of 

subproblems of a smaller size. Platt’s SMO (1998) is a 

special type of decomposition method for SVMs, that 

solves a problem of size two at each step. Improvements 

to the basic SMO have been suggested in (Platt, 1999; 

Keerthi et. al, 2001; Shevade et. al, 2000; Joachims, 1998; 

Chang & Lin, 2001; Glasmachers and Igel, 2006), which 

largely focus on how to choose a good working set (pair 

of multipliers) at each stage, so that maximum progress 

towards the optimal solution is made. Proofs of 

convergence of decomposition methods may be found in 

Lin (2001). A rigorous proof of SMO convergence was 

provided in (Takahashi & Nishi, 2005). Active set 

methods (Vogt & Kecman, 2005) have also been 

proposed for the efficient computation of the Lagrange 

multipliers. The recent seminal work of Joachims (2006) 

in training linear SVMs in linear time must be pointed 

out, though our present investigation is more relevant to 

nonlinear kernels. 

 

The proposed Relaxed SVM solves the optimization 

problem 
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subject to constraints (5). This formulation is related to 

approaches such as the Kernel Adatron, among others 

(Friess et. al, 1998; Navone & Down, 2001; Mangasarian 

& Musicant, 1999); however, all such prior work may be 

shown to correspond to the special case A = 1. In the 

sequel, we show that in fact this is a very poor choice of 

the value of A.  

 

The dual formulation for the Relaxed SVM has no linear 

equality constraint, but only box constraints. We use this 

to derive an update rule, termed in the sequel as one-SMO 

(1SMO), that allows individual multipliers to be updated, 

without having to consider pairs. The results of this paper 

show that choosing large values of A yields substantial 

improvements in training time. On several selected 

benchmark datasets from the UCI Machine Learning 

repository, the proposed 1SMO update rule converges 2-3 

times faster than state-of-the-art SMO implementations 

such as SVM
Light

 (Joachims, 1999) and LibSVM (Chang 

& Lin, 2001). We also show that on very large datasets, 

where the kernel cannot be pre-computed and cached, the 

1SMO update rule offers larger speedups, since the 

number of kernel computation calls is reduced in view of 

the fewer iterations required to compute the multipliers. 

On a well known dataset with 8000 points, the speedup is 

by a factor of 5. In all cases, the performance of the 

Relaxed SVM is either better than, or the same as that of 

SVM
Light

 and LIBSVM. 

 

The classical SVM corresponds to the case when A = 0, 

but cannot be solved by merely solving the limiting case 

of (6). In Section 3, we show how a 1SMO type algorithm 

can be obtained for the classical SVM by solving a 

sequence of related relaxed SVM sub-problems. This 

approach to solving the classical SVM may have 

advantages when dealing with very large datasets, where 

the kernel cannot be cached.  

 

The remainder of this paper is organized as follows. In 

Section 2, we describe the Relaxed SVM and derive the 

1SMO update rule for determining the Lagrange 

multipliers in the dual formulation. In Section 3, we show 

how the Relaxed SVM is related to the classical SVM 

formulation. We also describe how the solution to a 

classical SVM may be determined by solving a sequence 

of Relaxed SVM sub-problems. Section 4 is devoted to 

experimental results. Section 5 contains concluding 

remarks. 

 

2.  The Relaxed SVM formulation 

2.1  The Classical SVM and the SMO 

The Karush-Kuhn-Tucker optimality conditions for the 
classical SVM formulation (1)-(2) may be obtained in the 
usual way, and require that for a solution to be feasible, 
the multipliers λi must satisfy (4), (5), and meet the 
following requirements. 

( )[ ] 1  0 ≥+⇒= bxwy iT

ii φλ  (7) 

( )[ ] 1  ≤+⇒= bxwyC iT

ii φλ  (8) 

( )[ ] 1  0 =+⇒≤≤ bxwyC iT

ii φλ  (9) 

Platt’s SMO solves a series of subproblems of size 2 by 

updating two multipliers, say λ1 and λ2 such that 

constraints (4) and (5) are always satisfied. Note that the 

updates are done so that the state λ always lies in the 

feasible region. SMO and its variants use a hierarchy of 

heuristics to choose the multipliers to be updated at each 

step. The main requirement is that all pairs of multipliers 

are chosen repeatedly. It is also assumed that for any pair 

(k, l), the kernel matrix satisfies the requirement 
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.02 >−+ klllkk KKK  This condition is satisfied by any 

positive definite kernel.  

 

2.2  The Relaxed SVM 
The relaxed SVM is obtained by solving the following 

optimization problem 
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Here, A is a constant whose choice we will discuss at 

length in the sequel. Note that for A = 1, we obtain the 

formulation of (Mangasarian & Musicant, 1999), which is 

also related to the Kernel Adatron. The Lagrangian for the 

problem (10)-(11) is given by 
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The K.K.T. optimality conditions are given by 
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From (13) and (14), we observe that 
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where the kernel K is defined in the usual manner. The 

dual problem minimizes the objective function 
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subject to the constraints (5). Note that the problem (17) 

subject to constraints (5) is a QPP with only bound 

constraints and without the usual linear constraint. It is 

tempting to relate (10) to a conventional SVM by 

considering the limit as A → 0. However, we defer this 

discussion to the sequel. We will first develop the 1SMO 

update algorithm for the relaxed SVM. 

 

2.2  Updating the Mutlipliers in a Relaxed SVM 

Since the linear constraint of the form (4) that couples the  
multipliers is absent, we propose to update one multiplier 
at a time. Without loss of generality, let λ1 be the 
multiplier being updated. The objective function in (17) 
may be rewritten as a function of λ1 only, as 
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assuming K to be symmetric, and since 12

1 =y . For the 

new value of λ1 to lie at an extremal point of Q(λ1), we 

have , 0
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For the extremal point to be a minimum, we require 
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Note that this condition may be satisfied by matrices K 

that are not necessarily positive definite, as required in the 

case of SMO type update algorithms. From (19), we 

obtain 
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which gives us the update rule  
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where we have written the rule for any λk in place of λ1. 

Since the update rule updates one multiplier at a time, 

updating pairs of multipliers is no longer necessary. 

Figure 1 describes a possible update algorithm for 

determining the Lagrange multipliers. The algorithm is a 

co-ordinate descent method (CDM), and is linearly 

convergent, which follows from the work of Luo and 

Tseng (1993).  

 

 
 

As mentioned before, the special case A = 1 corresponds 

to the Kernel Adatron and the SOR based approach to its 

solution (Mangasarian & Musicant, 1999). Experimental 

1. 1.For each multiplier λk, update λk by using (23). If 

λk  < 0, set λk to 0. If λk > C, set λk = C. 

2. If the values of all multipliers are unchanged 

(within a specified tolerance ε), Stop; Otherwise, 

go to Step 1.  

 
Figure 1: A simple update algorithm (CDM) 
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results in Section V indicate that this choice of A is almost 

always a bad one. In the sequel, we also show how the 

classical SVM can be related to the relaxed SVM. 

 

The update algorithm described in Fig.1 serially updates 

all multipliers. On a large dataset, this leads to 

unnecessary computation for many multipliers that will 

not change at all.  A better update algorithm may 

therefore be obtained by using information about the 

primal to choose which multipliers to update. This leads 

to the 1SMO update algorithm, which is summarized in 

Fig. 2. 

 

The update rule (23) is attractive from many viewpoints. 

The new value of )( ixf  , denoted by  )( inew xf , may be 

computed by computing the incremental change due to 

the update of multiplier λk, which depends only on Kik. 

The denominator for each k can be computed in advance 

and stored, avoiding one division per multiplier per  

iteration.  Advantages in terms of a distributed or parallel 

implementation using O(M) nodes may be a topic of 

future research. 

 

3.  Extension to conventional SVM 

We now discuss the connection between the classical 

SVM formulation and the relaxed SVM one. Given an 

optimization problem of the form 

( ),Min   xf  subject to ( ) , ...,  ,2 ,1  ,0 Ljxh j ==  (24) 

where f(x) is  convex and hj(x), j = 1, 2, …, L,  are linear, 

the solution to (24) may be determined using the theory of 

Sequential Unconstrained Minimization Techniques 

(SUMTs). One approach involves solving a sequence of 

optimization problems (Fiacco & McCormick, 1968) of 

the form 

( ) ,)(  )(Min  
1

2∑ =
+=

L

j jpp xhx fxE α  (25) 

The procedure may be outlined as follows 

 

1. Set p = 0. Choose the value of the co-efficient α0, and 

an initial state x
0
. 

2. Find the minimum of Ep (denoted as x
p*

 ). 

3. If the constraints are satisfied, stop. 

4. If not, choose x
p* 

as the new initial state, and choose 

αp+1 such that αp+1  > αp. Set p = p + 1. Go to step 2. 

5. In the limit, as p → ∞, the sequence of minima x
1*

, 

x
2*

, … x
p*

, …, will converge to the solution of the 

original problem (24). 
 

The above procedure, which is a restriction of Sequential 

Unconstrained Minimization Techniques to convex 

programming problems with equality constraints, allows 

us to extend the 1SMO algorithm to the classical SVM. 

To do this, we consider the optimization problem (3) 

subject to the constraints (4)-(5). We note that our updates 

always ensure that constraints (5) are satisfied, hence 

these are not considered separately; the feasible region 

being convex, we are ensured of convergence to the 

global optimum. The SUMT based procedure outlined 

above indicates that we need to solve a sequence of 

minimization problems (p = 1, 2, …) involving the 

following objective 
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Note that the sequence of minima of (26) subject to (5) 

yields the solution to the classical SVM formulation (3)-

(5) in the limit p → ∞, in which case, we also see that 

αp → ∞. The connection between the relaxed SVM and 

the classical SVM is now clear. Observe that the objective 

function of (26) is identical to that of the relaxed SVM 

formulation of (10), with αp = 2/A. 

 

Therefore, the solution to the classical SVM cannot be 

obtained by setting A=0 in (10), but by solving a sequence 

of problems with diminishing values of A, and with 

A → 0 in the limit. The overall procedure is outlined in 

Fig. 3. 

 

At this point, we remark that the offset b is given by (14) 

for any nonzero value of A. However, when A = 0, the 

1. Pick a multiplier λk that violates (7), (8), or (9). 

Note that  ( ) bxwxf T +≡ φ)(  may be computed by 

using (16). If all multipliers satisfy the K.K.T. 

conditions, then the minimum has been 

attained - Stop. Othewise, proceed to Step 2. 

2. Update λk by using (23). If λk < 0, set λk to 0. If 

λk  > C, set λk = C. 

3. Go to Step 1. 

 
Fig.ure 2: Outline of the 1SMO Algorithm 

1. Set A, and the factor ρ by which A will be changed 

in the sequence of sub-problems. 

2. Pick a multiplier λk that violates (7), (8), or (9). If 

all multipliers satisfy the K.K.T. conditions, then 

the minimum has been attained. Go to Step 4. 

3. Update λk by using (23). If λk < 0, set λk to 0. If 

λk > C, set λk = C. 

4. If  λ
T
y is sufficiently close to 0, Stop. Otherwise, 

go to Step 5. 

5. Update A as A ← ρA. 

6. Go to Step 2. 

 
Figure 3:. The 1SMO Algorithm for the Classical SVM 
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expression for b is a ratio of two quantities that are zero. 

This may be interpreted by noting that in the classical 

SVM, the value of b is indeterminate, since it may be 

determined by considering any of the support vectors, for 

which 
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The value of b may be determined from any support 

vector, or by averaging the values obtained for different 

support vectors. The classical SVM solution may 

therefore be treated as the limit of a sequence of relaxed 

SVMs. 

 

4.  Experimental Evaluation 

4.1 Dataset and Experimental Setup 

 

In order to evaluate the effectiveness of the proposed 

methods, we conducted five different experiments. In our 

first experiment, we compare the performance of the two 

candidate training algorithms, viz., CDM and 1SMO. The 

second experiment was designed to observe the effect of 

the parameter `A’ on the performance of the 1SMO 

algorithm outlined in Fig. 2. The third experiment 

compares the performance of 1SMO with two state-of-the 

art implementations of SVM, viz. LibSVM and SVMLight , 
on 15 benchmark datasets. The fourth experiment was 

performed to study the scalability of 1SMO with respect 

to the number of training instances, in comparison with 

LibSVM and SVMLight. The convergence of the SUMT 

based algorithm outlined in Fig. 3 is studied in our fifth 

and final experiment. 

  

All our algorithms were implemented in C++. The 

experiments were performed on a dual 3.2GHz Xeon 

server with 4 GB RAM. We used the RBF kernel in all 

our experiments, with the value of the exponent (gamma) 

set to 1. The value of the slack parameter C was also 

chosen to be 1. Unless otherwise mentioned, in all our 

experiments, the kernel entries were computed on a need 

basis and cached for further use. All results are reported 

by following the standard 10-fold cross-validation 

methodology.   

 

4.2 Experimental Results 

 

4.2.1 Comparison between CDM and 1SMO 

In our first experiment, we compared the performance of 

our CDM and 1SMO training algorithms on all the 15 

datasets. We observed that 1SMO and CDM give the 

same accuracy and number of support vectors on all 

datasets. However, 1SMO is faster than CDM by 5-15% 

on all datasets – the difference being more pronounced for 

larger datasets. Table 1 reports the training time of the 

two algorithms on some of the larger datasets. This 

observation makes 1SMO a natural choice for all 

subsequent experiments. Throughout the remainder of the 

paper, the experiments therefore refer to the performance 

of the 1SMO algorithm. 

Table 1: Comparison between the training times of the CDM 

and 1SMO algorithms on six large datasets. While the two 

algorithms give the same accuracies and number of support 

vectors, 1SMO is consistently faster than CDM.. 

 TRAINING TIME  

DATASET (CDM) (1SMO) % GAIN 

ADULT 913.85 840.65 08.01 

MUSHROOM 11.976 9.850 17.75 

IONOSPHERE 0.013 0.011 15.38 

KR-VS-KP 1.188 1.060 10.77 

PIMA-INDIA 0.072 0.070 02.78 

 

4.2.2 The effect of A on the performance of 1SMO 

In order to understand the effect of the parameter A, we 

varied it from 1 to 10
4
 and observed its effect on the 

performance of 1SMO, on each dataset. While accuracy is 

unaffected by changes in the value of A, the training time 

reduces drastically with increasing values of A. Figure 4  

shows how training time varies as a function of log(A) for 

the mushroom and kr-vs-kp datasets. The y-coordinate has 

been normalized with respect to the largest training time 

for each dataset, i.e. by dividing the training time with 

that for A = 1. The plot indicates that the rate of decrease 

of training time varies inversely with the value of A; the 

lower the value of A, the greater is the rate at which the 

training time decreases. The training time saturates 

beyond a sufficiently large value of A (10
4
).  This 

behavior may be understood from equation (23). A larger 

value of A corresponds to a larger step size, and the 

algorithm converges faster, leading to a lower value of 

training time. The rate of change of the step size is larger 

for smaller values of A. This explains why the curve has a 

much larger slope for lower values of A. Therefore, a 
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Figure 4:. Plot of variation of training time with 

increasing value of log(A) for the mushroom and kr-vs-kp 

datasets. The training times are averaged over 10 folds. 
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sufficiently large value of A is a prudent choice for 

1SMO.  

 

4.2.3 Comparison between 1SMO, LibSVM and SVM
Light

 

We next conducted a set of experiments on fifteen 

different two-class datasets from the UCI repository. The 

datasets were picked to cover a wide range of number of 

features and instances. The number of instances varied 

from 57 to 48789 and the number of features varied from 

9 to 126. The first column of Table 2 presents the number 

of instances and features for each dataset in the 

corresponding order as comma-separated values along 

with the name of the dataset. The Table indicates the 

training times, accuracy, and number of support vectors 

yielded by 1SMO, LibSVM and SVM
Light

 on each of the 

15 datasets. Based on the results of the first experiment, 

we chose A = 10
4
 for 1SMO. Table 2 summarizes the 

results. The experiments for all datasets except the Adult  

dataset were conducted with kernel caching. In nearly all 

cases, the three algorithms find solutions with the same 

number of support vectors, and show the same 

generalization performance. 

 

In the case of the adult dataset, the size of the required 

cache was over 4 GB. Since different SVM 

implementations might possibly use different cache 

replacement policies, kernel caching was avoided 

altogether in this specific case to allow for a fair 

comparison across all methods. 

 

It can be observed that the training time of 1SMO is 

consistently lower than the training time of LibSVM and 

SVM
Light

. For the larger datasets, 1SMO achieves higher 

speedup factors, roughly between 2 and 4. For each 

dataset, the lowest training time is marked in bold-face in 

Table 2. We note that all three algorithms converge to 

solutions with approximately the same number of support 

vectors, on all datasets. The accuracy of 1SMO on every 

dataset is either equal to or slightly higher than the 

accuracies achieved by LibSVM and SVM
Light

. 1SMO 

therefore emerges as an attractive alternative to the widely 

used SMO approach for training SVMs. 

 

The slight discrepancy between number of support 

vectors and accuracy could be attributed to the difference 

in the ways the value of `b’ is computed in the case of the 

classical SVM and the Relaxed SVM. 

 

4.2.4 Scalability of 1SMO 

SVM training algorithms require the computation of 

elements of the kernel matrix, whose size is quadratic in 

the number of data-points. Most implementations 

typically start with all multipliers initialized to 0. 

However, many Lagrange multipliers remain zero and 

hence the kernel rows for the corresponding datapoints 

never need to be computed. Therefore, kernel entries are 

computed only if required. To avoid re-computation, 

kernel entries are cached as they are computed. For large 

datasets, caching all kernel entries could be prohibitive. 

One of the key bottlenecks in the scalability of SVM 

training algorithms is therefore the requirement of a 

Table 2: Comparison between training times for 1SMO, 

LibSVM and SVMLight. In nearly all cases, the three algorithms 

find solutions with the same number of support vectors, and 

show the same generalization performance. 

DATASET METHOD 
TRAINING 

TIME (S) 

SUPPORT 

VECTORS 
ACC. ± STD. 

LibSVM 0.015 215 67.02±0.98 

SVMLight 0.016 215 67.02±0.98 

BREAST-

CANCER 

(286,51) 1SMO 0.006 215 72.09±1.32 

LibSVM 0.051 353 83.87± 1.12 

SVMLight 0.054 353 83.8± 1.12 
BREAST-W 

(699,10) 
1SMO 0.021 353 93.25± 0.8 

LibSVM 0.389 783 69.78± 0.76 

SVMLight 0.274 783 69.7±0.76 
CREDIT-G 

(1000,64) 
1SMO 0.157 783 69.78± 0.76 

LibSVM 0.03 240 54.72± 1.16 

SVMLight 0.028 240 54.7± 1.16 
HEART-C 

(302,23) 
1SMO 0.013 240 54.72± 1.16 

LibSVM 0.028 233 66.35± 0.85 

SVMLight 0.026 233 66.35± 0.85 
HEART-H 

(294,25) 
1SMO 0.011 233 66.35± 0.85 

LibSVM 0.023 214 58.24± 2.42 

SVMLight 0.019 214 58.24± 2.42 

HEART-

STATLOG 

(270,14) 1SMO 0.008 214 58.24± 2.42 

LibSVM 0.009 123 79.8±1.9 

SVMLight 0.008 123 79.81± 1.9 
HEPATITIS 

(155,30) 
1SMO 0.003 123 79.81± 1.9 

LibSVM 0.021 167 93.14± 0.95 

SVMLight 0.029 167 93.14± 0.95 
IONOSPHERE 

(350,35) 
1SMO 0.011 189 93.05± 0.93 

LibSVM 3.48 2488 96.52± 0.28 

SVMLight 2.76 2488 96.52± 0.28 
KR-VS-KP 

(3196,41) 
1SMO 1.06 2488 97.05± 0.19 

LibSVM 0.001 44 71.71± 3.95 

SVMLight 0.003 44 71.71± 3.95 
LABOR 

(57,30) 
1SMO 0.001 44 82.88± 5.33 

LibSVM 19.62 6340 100± 0 

SVMLight 18.27 6340 100± 0 
MUSHROOM 

(8124,126) 
1SMO 9.85 6340 100± 0 

LibSVM 0.17 601 65.96± 0.95 

SVMLight 0.14 601 65.96± 0.95 
PIMA-INDIAN 

(768,9) 
1SMO 0.07 601 65.96± 0.95 

LibSVM 4.94 2890 93.85± 0.17 

SVMLight 3.93 2890 93.85± 0.17 
SICK 

(3772,33) 
1SMO 1.97 2890 93.85± 0.17 

LibSVM 0.011 134 78.55± 1.48 

SVMLight 0.016 134 78.54± 1.48 

SONAR 

(208,61) 

 1SMO 0.005 134 78.35± 1.74 

LibSVM 4552 38042 76.15± 0.10 

SVMLight 3689 38042 76.15± 0.10 
ADULT 

(48789,106) 
1SMO 1111 38042 76.15± 0.10 
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sufficiently large kernel cache. Algorithms that can 

perform well on large datasets with relatively small kernel 

cache sizes could also be amenable to parallelization with 

lower communication overheads. 

 

In order to compare the scalability of 1SMO with that of 
LibSVM and SVM

Light
, we conducted an experiment on a 

large dataset without using any kernel caching. We used 
subsets of the Adult dataset, whose sizes were integral 
multiples of 1/12

th
 of the total size. In the case of LibSVM 

and SVM
Light 

, the cache size was limited to 5MB, below 
which it was not possible to run them for the larger splits. 
In the case of 1SMO, caching was avoided altogether. 
Figure 5 shows the variation of the training time of 
1SMO, LibSVM and SVM

Light 
with subset size for the 

adult dataset. Least squares fits to the three curves are 
given by: 

tLIBSVM  = 1.7x10
-6

x
2
 + 1.04x10

-2
x - 37.0575 

tSVMLight = 1.4x10
-6

x
2
 + 1.2x10

-3
x   - 17.7995 

t1SMO    = 5x10
-7

x
2
    +  7.12x10

-4
x - 7.8225 

In other words, with increase in the size of the dataset, the 
training time for 1SMO grows at a much slower rate than 
it does for SVM

Light
 and LibSVM, which grow 

quadratically with the number of training instances. This 
indicates that 1SMO scales better than LibSVM and 
SVM

Light
. 

 

4.2.5 Convergence of the SUMT solution  

In our final experiment, we run the SUMT algorithm on 

two datasets, viz., mushroom and breast-cancer. For each 

experiment, we initialize A with a value of 10
4
 

successively reduce A by a factor of ρ=0.9, as described 

in Fig, 3.  We observe the value of λ
T
y after each SUMT-

iteration (comprising steps 2-5 in Fig. 3). Figure 6 shows 

how λ
T
y reduces as a function of the number of SUMT-

iterations. As expected, the value of λ
T
y decreases with 

successive iterations and quickly converges to 0.  

 

Figure 7 shows how the Lagrange multipliers for 1SMO 

converge to the solution obtained by SVM
Light

, as 

iterations progress. The plot demonstrates that the 

sequence of Relaxed SVM sub-problems converges to the 

solution of the classical SVM.
 

5.  Conclusions 

In this paper, we have proposed a linearly convergent 

update rule for training a modified SVM formulation, 

which we term as the Relaxed SVM. On a selection of 

well known benchmark datasets, the Relaxed SVM with 

the proposed update rule yields speedups by a factor of 2- 

over well known SVM implementations, while providing 

very competitive generalization performance. The 

speedups on very large datasets, where caching the entire 
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Figure 7: Plot of ||λSUMT – λ1SVM|| vs. iteration 

number for the SUMT based algorithm on the 

sick dataset. 
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Figure 5: Variation of training time with for the three 

implementations, plotted as a function of number of data 

points sampled from the adult data set. While training times 

for SVMLight and LibSVM grow almost quadratically with 

the size of the data sets, the training time for 1SMO grows 

at a much lower rate. 
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kernel is infeasible, are even higher owing to the fewer 

iterations required to determine the Lagrange multipliers. 

We also show how the Relaxed SVM can be extended to 

solve the classical SVM formulation. 

 

1SMO thus emerges as an attractive alternative to the 

widely used SMO algorithm for training SVMs. It also 

appears to be more amenable to a parallel 

implementation, which is worthy of further investigation 

for large datasets or embedded applications. 
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