
Fast Update Rules for a Relaxed SVM Formulation

Abstract

The Sequential Minimal Optimization algorithm
and its variants are well known techniques for
the fast training of Support Vector Machines.
SMO solves a linearly constrained quadratic
programming problem by updating pairs of
Lagrange multipliers. We propose a variant of
the classical SVM formulation, which we term as
the Relaxed SVM. We develop a learning
algorithm, termed as 1SMO in the sequel, that
allows individual Lagrange multipliers in the
dual formulation to be updated, and is linearly
convergent. On selected benchmark datasets, the
Relaxed SVM trained with 1SMO is 2-3 times
faster than LibSVM and SVMLight, while
comparing very favourably in terms of error rate.
On larger datasets, where the kernel cannot be
cached, the speedup is even higher. We next
extend the proposed 1SMO algorithm to the
solution of the classical SVM, through a
sequence of Relaxed SVM sub-problems.

 Keywords: Support Vector Machines, Sequential
Minimal Optimization, Machine Learning,
Classification, Function Approximation.

1. Introduction

Over the last decade or more, Support Vector Machines

(SVMs) have emerged as a popular and powerful

paradigm for pattern classification and function

approximation (Vapnik, 1998; Cristianini & Shawe-

Taylor, 2000; Bradley & Mangasarian, 2000; Burges,

1998). SVMs emerged from research in statistical

learning theory on how to regulate generalization in

learning, and the tradeoff between structural complexity

and empirical risk. SVM classifiers assign data samples to

one of two half-planes, either in the pattern space or in a

higher-dimensional feature space. One of the most

popular SVM classifiers is the "maximum margin" one,

that aims to minimize an upper bound on the

generalization error through maximizing the margin

between two disjoint half planes (Vapnik, 1998; Burges,

1998). The best known algorithm for training SVMs is

Platt’s SMO (1998), that updates pairs of Lagrange

 Appearing in Proceedings of the 24dthInternational Conference on

Machine Learning, Corvallis, OR, 2007. Copyright 2007 by the

author(s)/owner(s).

multipliers at a time to find a solution to the dual

formulation.

In this paper, we propose a modification of the classical

SVM formulation, termed as the Relaxed SVM in the

sequel. We derive an update rule for determining the

Lagrange multipliers in the dual formulation that allows

multipliers to be updated individually, instead of in pairs.

The proposed update rule, termed as one-SMO (1SMO) is

simple, faster, more scaleable, and linearly convergent. At

the same time, the generalization performance provided

by the Relaxed SVM is the same or better than that of the

classical SVM. We also show that the solution to the

classical SVM can be obtained as the limit of a sequence

of Relaxed SVM sub-problems.

Consider a training set consisting of M patterns x
1
, x

2
, …,

x
M

, where ()Ti

N

iii xxxx ..., , , 21= is a point in ℜN
. The class

label of the i-th pattern is denoted by yi ∈ {-1, 1}. Non-

linearly separable problems are often solved by mapping

the input data samples x
i
 to a higher dimensional feature

space φ(x
i
). The classical maximum margin SVM

classifier aims to find a hyperplane of the form

() ,0=+ bxwTφ

that separates patterns of the two classes. The variables w

and b are determined by solving the optimization problem

qeww
TT

wq
C

2

1
 Minimize

,
+ (1)

subject to the constraints

()[]
, ..., 2, ,1 ,0

,1

Mkq

qbxwy

k

k

kT

k

=≥

−≥+φ
 (2)

where e is a vector of ones of dimension M. The solution

to (1)-(2) yields the soft margin classifier, so termed

because the distance or margin between the separating

hyperplane w
Tφ(x) + b = 0 and the image of the k-th

pattern x
k
 may be reduced from 1 by an amount qk . The

solution to (1)-(2) is usually determined by considering

the dual problem, which is given by

,
2

1
 Minimize

M

1i1 1'
∑∑ ∑ == =

− iijji

M

i j

M

j i Kyy λλλ
λ

 (3)

subject to the linear equality constraint

,0
1

=∑ = i

M

i i yλ (4)

and bound/box constraints on the dual variables

. ..., 2, ,1 ,0 MiCi =≤≤ λ (5)

Fast Update Rules for a Relaxed SVM Formulation

Here, λi , i = 1, 2, … M denote the Lagrange multipliers,

and the matrix K with entries () ()[]jTi

ij xxK φφ= is

termed as a Kernel matrix.

When the sample set size is large, the computational and

memory costs of solving the constrained Quadratic

Programming Problem (QPP) can be prohibitive.

Therefore, a lot of effort has focused on how to efficiently

solve (3)-(5). Osuna et. al (1997) showed that the QPP

could be solved through the solution of a series of

subproblems of a smaller size. Platt’s SMO (1998) is a

special type of decomposition method for SVMs, that

solves a problem of size two at each step. Improvements

to the basic SMO have been suggested in (Platt, 1999;

Keerthi et. al, 2001; Shevade et. al, 2000; Joachims, 1998;

Chang & Lin, 2001; Glasmachers and Igel, 2006), which

largely focus on how to choose a good working set (pair

of multipliers) at each stage, so that maximum progress

towards the optimal solution is made. Proofs of

convergence of decomposition methods may be found in

Lin (2001). A rigorous proof of SMO convergence was

provided in (Takahashi & Nishi, 2005). Active set

methods (Vogt & Kecman, 2005) have also been

proposed for the efficient computation of the Lagrange

multipliers. The recent seminal work of Joachims (2006)

in training linear SVMs in linear time must be pointed

out, though our present investigation is more relevant to

nonlinear kernels.

The proposed Relaxed SVM solves the optimization

problem

qeb
A

ww
TT

wq
C

22

1
 Minimize

2

,
++ (6)

subject to constraints (5). This formulation is related to

approaches such as the Kernel Adatron, among others

(Friess et. al, 1998; Navone & Down, 2001; Mangasarian

& Musicant, 1999); however, all such prior work may be

shown to correspond to the special case A = 1. In the

sequel, we show that in fact this is a very poor choice of

the value of A.

The dual formulation for the Relaxed SVM has no linear

equality constraint, but only box constraints. We use this

to derive an update rule, termed in the sequel as one-SMO

(1SMO), that allows individual multipliers to be updated,

without having to consider pairs. The results of this paper

show that choosing large values of A yields substantial

improvements in training time. On several selected

benchmark datasets from the UCI Machine Learning

repository, the proposed 1SMO update rule converges 2-3

times faster than state-of-the-art SMO implementations

such as SVM
Light

 (Joachims, 1999) and LibSVM (Chang

& Lin, 2001). We also show that on very large datasets,

where the kernel cannot be pre-computed and cached, the

1SMO update rule offers larger speedups, since the

number of kernel computation calls is reduced in view of

the fewer iterations required to compute the multipliers.

On a well known dataset with 8000 points, the speedup is

by a factor of 5. In all cases, the performance of the

Relaxed SVM is either better than, or the same as that of

SVM
Light

 and LIBSVM.

The classical SVM corresponds to the case when A = 0,

but cannot be solved by merely solving the limiting case

of (6). In Section 3, we show how a 1SMO type algorithm

can be obtained for the classical SVM by solving a

sequence of related relaxed SVM sub-problems. This

approach to solving the classical SVM may have

advantages when dealing with very large datasets, where

the kernel cannot be cached.

The remainder of this paper is organized as follows. In

Section 2, we describe the Relaxed SVM and derive the

1SMO update rule for determining the Lagrange

multipliers in the dual formulation. In Section 3, we show

how the Relaxed SVM is related to the classical SVM

formulation. We also describe how the solution to a

classical SVM may be determined by solving a sequence

of Relaxed SVM sub-problems. Section 4 is devoted to

experimental results. Section 5 contains concluding

remarks.

2. The Relaxed SVM formulation

2.1 The Classical SVM and the SMO

The Karush-Kuhn-Tucker optimality conditions for the
classical SVM formulation (1)-(2) may be obtained in the
usual way, and require that for a solution to be feasible,
the multipliers λi must satisfy (4), (5), and meet the
following requirements.

()[] 1 0 ≥+⇒= bxwy iT

ii φλ (7)

()[] 1 ≤+⇒= bxwyC iT

ii φλ (8)

()[] 1 0 =+⇒≤≤ bxwyC iT

ii φλ (9)

Platt’s SMO solves a series of subproblems of size 2 by

updating two multipliers, say λ1 and λ2 such that

constraints (4) and (5) are always satisfied. Note that the

updates are done so that the state λ always lies in the

feasible region. SMO and its variants use a hierarchy of

heuristics to choose the multipliers to be updated at each

step. The main requirement is that all pairs of multipliers

are chosen repeatedly. It is also assumed that for any pair

(k, l), the kernel matrix satisfies the requirement

Fast Update Rules for a Relaxed SVM Formulation

.02 >−+ klllkk KKK This condition is satisfied by any

positive definite kernel.

2.2 The Relaxed SVM
The relaxed SVM is obtained by solving the following

optimization problem

qeb
A

ww
TT

wq
C

22

1
 Minimize

2

,
++ (10)

subject to the constraints

()[]
. ..., 2, ,1 ,0

,1

Mkq

qbxwy

k

k

kT

k

=≥

−≥+φ
 (11)

Here, A is a constant whose choice we will discuss at

length in the sequel. Note that for A = 1, we obtain the

formulation of (Mangasarian & Musicant, 1999), which is

also related to the Kernel Adatron. The Lagrangian for the

problem (10)-(11) is given by

()

()[][].1

2

1

1

1

2

∑

∑

=

=

+−−

−−++=

M

k

kT

kkk

k

M

k k

TT

bxwyq

yqCeAbwwL

φλ

β
 (12)

The K.K.T. optimality conditions are given by

(). 0
1∑ =

=⇒=∇
M

k

k

kkw xywL φλ (13)

∑ =
=⇒=

∂

∂ M

k kk y
A

b
b

L
1

.
1

 0 λ (14)

. 0 0 CC
q

L
kkkk

k

=+⇒=−−⇒=
∂

∂
βλβλ (15)

From (13) and (14), we observe that

() () ,
1

,
1

+=+ ∑ = A

xxKybxw
kM

k kk

T λφ (16)

where the kernel K is defined in the usual manner. The

dual problem minimizes the objective function

∑∑ ∑ == =
−

+

M

i iijji

M

i j

M

j i λ
A

Kλλyy
11 1

1

2

1
 (17)

subject to the constraints (5). Note that the problem (17)

subject to constraints (5) is a QPP with only bound

constraints and without the usual linear constraint. It is

tempting to relate (10) to a conventional SVM by

considering the limit as A → 0. However, we defer this

discussion to the sequel. We will first develop the 1SMO

update algorithm for the relaxed SVM.

2.2 Updating the Mutlipliers in a Relaxed SVM

Since the linear constraint of the form (4) that couples the
multipliers is absent, we propose to update one multiplier
at a time. Without loss of generality, let λ1 be the
multiplier being updated. The objective function in (17)
may be rewritten as a function of λ1 only, as

()

,
1

2

11

2

1

1

2 211

2

1

2 111211

++

+

+

++−−=

∑ ∑

∑∑

= =

==

A
Kλλyy

A
K

A
KyλyλQ

ijji

M

i j

M

j i

M

j jjj

M

j j

λ

λλλ

 (18)

assuming K to be symmetric, and since 12

1 =y . For the

new value of λ1 to lie at an extremal point of Q(λ1), we

have , 0
1

=
∂

∂

λ

Q

.0
11

1
2 11111 =

+−

+−⇒ ∑ =

M

j jjj

new

A
Kyλy

A
Kλ (19)

For the extremal point to be a minimum, we require

.0
1

 0 112

1

2

>

+⇒>

∂

∂

A
K

Q

λ
 (20)

Note that this condition may be satisfied by matrices K

that are not necessarily positive definite, as required in the

case of SMO type update algorithms. From (19), we

obtain

.
1

1
1

2 11111 ∑ =

+−=

+

M

j jjj

new

A
Kyλy

A
Kλ (21)

Defining () ,)(bxwxf T +≡ φ (21) may be written as

(). 1
11

1

1111111 xfy
A

K
A

K
oldoldnew −+

+=

+ λλ (22)

which gives us the update rule

()
.

1

1

+

−
+=

A
K

xfy

kk

kold

kold

k

new

k λλ
(23)

where we have written the rule for any λk in place of λ1.

Since the update rule updates one multiplier at a time,

updating pairs of multipliers is no longer necessary.

Figure 1 describes a possible update algorithm for

determining the Lagrange multipliers. The algorithm is a

co-ordinate descent method (CDM), and is linearly

convergent, which follows from the work of Luo and

Tseng (1993).

As mentioned before, the special case A = 1 corresponds

to the Kernel Adatron and the SOR based approach to its

solution (Mangasarian & Musicant, 1999). Experimental

1. 1.For each multiplier λk, update λk by using (23). If

λk < 0, set λk to 0. If λk > C, set λk = C.

2. If the values of all multipliers are unchanged

(within a specified tolerance ε), Stop; Otherwise,

go to Step 1.

Figure 1: A simple update algorithm (CDM)

Fast Update Rules for a Relaxed SVM Formulation

results in Section V indicate that this choice of A is almost

always a bad one. In the sequel, we also show how the

classical SVM can be related to the relaxed SVM.

The update algorithm described in Fig.1 serially updates

all multipliers. On a large dataset, this leads to

unnecessary computation for many multipliers that will

not change at all. A better update algorithm may

therefore be obtained by using information about the

primal to choose which multipliers to update. This leads

to the 1SMO update algorithm, which is summarized in

Fig. 2.

The update rule (23) is attractive from many viewpoints.

The new value of)(ixf , denoted by)(inew xf , may be

computed by computing the incremental change due to

the update of multiplier λk, which depends only on Kik.

The denominator for each k can be computed in advance

and stored, avoiding one division per multiplier per

iteration. Advantages in terms of a distributed or parallel

implementation using O(M) nodes may be a topic of

future research.

3. Extension to conventional SVM

We now discuss the connection between the classical

SVM formulation and the relaxed SVM one. Given an

optimization problem of the form

(),Min xf subject to () , ..., ,2 ,1 ,0 Ljxh j == (24)

where f(x) is convex and hj(x), j = 1, 2, …, L, are linear,

the solution to (24) may be determined using the theory of

Sequential Unconstrained Minimization Techniques

(SUMTs). One approach involves solving a sequence of

optimization problems (Fiacco & McCormick, 1968) of

the form

() ,)()(Min
1

2∑ =
+=

L

j jpp xhx fxE α (25)

The procedure may be outlined as follows

1. Set p = 0. Choose the value of the co-efficient α0, and

an initial state x
0
.

2. Find the minimum of Ep (denoted as x
p*

).

3. If the constraints are satisfied, stop.

4. If not, choose x
p*

as the new initial state, and choose

αp+1 such that αp+1 > αp. Set p = p + 1. Go to step 2.

5. In the limit, as p → ∞, the sequence of minima x
1*

,

x
2*

, … x
p*

, …, will converge to the solution of the

original problem (24).

The above procedure, which is a restriction of Sequential

Unconstrained Minimization Techniques to convex

programming problems with equality constraints, allows

us to extend the 1SMO algorithm to the classical SVM.

To do this, we consider the optimization problem (3)

subject to the constraints (4)-(5). We note that our updates

always ensure that constraints (5) are satisfied, hence

these are not considered separately; the feasible region

being convex, we are ensured of convergence to the

global optimum. The SUMT based procedure outlined

above indicates that we need to solve a sequence of

minimization problems (p = 1, 2, …) involving the

following objective

() ∑∑ ∑

∑∑∑ ∑

== =

=== =

−+=

+−

M

i ipijji

M

i j

M

j i

M

i iipiijji

M

i j

M

j i

λ αKλλyy

yαKyy

11 1

2

1

M

1i1 1

2
2

1

2

1
λλλλ

 (26)

Note that the sequence of minima of (26) subject to (5)

yields the solution to the classical SVM formulation (3)-

(5) in the limit p → ∞, in which case, we also see that

αp → ∞. The connection between the relaxed SVM and

the classical SVM is now clear. Observe that the objective

function of (26) is identical to that of the relaxed SVM

formulation of (10), with αp = 2/A.

Therefore, the solution to the classical SVM cannot be

obtained by setting A=0 in (10), but by solving a sequence

of problems with diminishing values of A, and with

A → 0 in the limit. The overall procedure is outlined in

Fig. 3.

At this point, we remark that the offset b is given by (14)

for any nonzero value of A. However, when A = 0, the

1. Pick a multiplier λk that violates (7), (8), or (9).

Note that () bxwxf T +≡ φ)(may be computed by

using (16). If all multipliers satisfy the K.K.T.

conditions, then the minimum has been

attained - Stop. Othewise, proceed to Step 2.

2. Update λk by using (23). If λk < 0, set λk to 0. If

λk > C, set λk = C.

3. Go to Step 1.

Fig.ure 2: Outline of the 1SMO Algorithm

1. Set A, and the factor ρ by which A will be changed

in the sequence of sub-problems.

2. Pick a multiplier λk that violates (7), (8), or (9). If

all multipliers satisfy the K.K.T. conditions, then

the minimum has been attained. Go to Step 4.

3. Update λk by using (23). If λk < 0, set λk to 0. If

λk > C, set λk = C.

4. If λ
T
y is sufficiently close to 0, Stop. Otherwise,

go to Step 5.

5. Update A as A ← ρA.

6. Go to Step 2.

Figure 3:. The 1SMO Algorithm for the Classical SVM

Fast Update Rules for a Relaxed SVM Formulation

expression for b is a ratio of two quantities that are zero.

This may be interpreted by noting that in the classical

SVM, the value of b is indeterminate, since it may be

determined by considering any of the support vectors, for

which

()[] ()
()iT

i

i

iTiT

i

xφwyb

ybxwbxwy

−=⇒

=+⇒=+

 1 φφ
 (27)

The value of b may be determined from any support

vector, or by averaging the values obtained for different

support vectors. The classical SVM solution may

therefore be treated as the limit of a sequence of relaxed

SVMs.

4. Experimental Evaluation

4.1 Dataset and Experimental Setup

In order to evaluate the effectiveness of the proposed

methods, we conducted five different experiments. In our

first experiment, we compare the performance of the two

candidate training algorithms, viz., CDM and 1SMO. The

second experiment was designed to observe the effect of

the parameter `A’ on the performance of the 1SMO

algorithm outlined in Fig. 2. The third experiment

compares the performance of 1SMO with two state-of-the

art implementations of SVM, viz. LibSVM and SVMLight ,
on 15 benchmark datasets. The fourth experiment was

performed to study the scalability of 1SMO with respect

to the number of training instances, in comparison with

LibSVM and SVMLight. The convergence of the SUMT

based algorithm outlined in Fig. 3 is studied in our fifth

and final experiment.

All our algorithms were implemented in C++. The

experiments were performed on a dual 3.2GHz Xeon

server with 4 GB RAM. We used the RBF kernel in all

our experiments, with the value of the exponent (gamma)

set to 1. The value of the slack parameter C was also

chosen to be 1. Unless otherwise mentioned, in all our

experiments, the kernel entries were computed on a need

basis and cached for further use. All results are reported

by following the standard 10-fold cross-validation

methodology.

4.2 Experimental Results

4.2.1 Comparison between CDM and 1SMO

In our first experiment, we compared the performance of

our CDM and 1SMO training algorithms on all the 15

datasets. We observed that 1SMO and CDM give the

same accuracy and number of support vectors on all

datasets. However, 1SMO is faster than CDM by 5-15%

on all datasets – the difference being more pronounced for

larger datasets. Table 1 reports the training time of the

two algorithms on some of the larger datasets. This

observation makes 1SMO a natural choice for all

subsequent experiments. Throughout the remainder of the

paper, the experiments therefore refer to the performance

of the 1SMO algorithm.

Table 1: Comparison between the training times of the CDM

and 1SMO algorithms on six large datasets. While the two

algorithms give the same accuracies and number of support

vectors, 1SMO is consistently faster than CDM..

 TRAINING TIME

DATASET (CDM) (1SMO) % GAIN

ADULT 913.85 840.65 08.01

MUSHROOM 11.976 9.850 17.75

IONOSPHERE 0.013 0.011 15.38

KR-VS-KP 1.188 1.060 10.77

PIMA-INDIA 0.072 0.070 02.78

4.2.2 The effect of A on the performance of 1SMO

In order to understand the effect of the parameter A, we

varied it from 1 to 10
4
 and observed its effect on the

performance of 1SMO, on each dataset. While accuracy is

unaffected by changes in the value of A, the training time

reduces drastically with increasing values of A. Figure 4

shows how training time varies as a function of log(A) for

the mushroom and kr-vs-kp datasets. The y-coordinate has

been normalized with respect to the largest training time

for each dataset, i.e. by dividing the training time with

that for A = 1. The plot indicates that the rate of decrease

of training time varies inversely with the value of A; the

lower the value of A, the greater is the rate at which the

training time decreases. The training time saturates

beyond a sufficiently large value of A (10
4
). This

behavior may be understood from equation (23). A larger

value of A corresponds to a larger step size, and the

algorithm converges faster, leading to a lower value of

training time. The rate of change of the step size is larger

for smaller values of A. This explains why the curve has a

much larger slope for lower values of A. Therefore, a

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log(A)

N
o

rm
a

liz
e

d
 T

ra
in

in
g

 T
im

e

kr-vs-kp

mushroom

Figure 4:. Plot of variation of training time with

increasing value of log(A) for the mushroom and kr-vs-kp

datasets. The training times are averaged over 10 folds.

Fast Update Rules for a Relaxed SVM Formulation

sufficiently large value of A is a prudent choice for

1SMO.

4.2.3 Comparison between 1SMO, LibSVM and SVM
Light

We next conducted a set of experiments on fifteen

different two-class datasets from the UCI repository. The

datasets were picked to cover a wide range of number of

features and instances. The number of instances varied

from 57 to 48789 and the number of features varied from

9 to 126. The first column of Table 2 presents the number

of instances and features for each dataset in the

corresponding order as comma-separated values along

with the name of the dataset. The Table indicates the

training times, accuracy, and number of support vectors

yielded by 1SMO, LibSVM and SVM
Light

 on each of the

15 datasets. Based on the results of the first experiment,

we chose A = 10
4
 for 1SMO. Table 2 summarizes the

results. The experiments for all datasets except the Adult

dataset were conducted with kernel caching. In nearly all

cases, the three algorithms find solutions with the same

number of support vectors, and show the same

generalization performance.

In the case of the adult dataset, the size of the required

cache was over 4 GB. Since different SVM

implementations might possibly use different cache

replacement policies, kernel caching was avoided

altogether in this specific case to allow for a fair

comparison across all methods.

It can be observed that the training time of 1SMO is

consistently lower than the training time of LibSVM and

SVM
Light

. For the larger datasets, 1SMO achieves higher

speedup factors, roughly between 2 and 4. For each

dataset, the lowest training time is marked in bold-face in

Table 2. We note that all three algorithms converge to

solutions with approximately the same number of support

vectors, on all datasets. The accuracy of 1SMO on every

dataset is either equal to or slightly higher than the

accuracies achieved by LibSVM and SVM
Light

. 1SMO

therefore emerges as an attractive alternative to the widely

used SMO approach for training SVMs.

The slight discrepancy between number of support

vectors and accuracy could be attributed to the difference

in the ways the value of `b’ is computed in the case of the

classical SVM and the Relaxed SVM.

4.2.4 Scalability of 1SMO

SVM training algorithms require the computation of

elements of the kernel matrix, whose size is quadratic in

the number of data-points. Most implementations

typically start with all multipliers initialized to 0.

However, many Lagrange multipliers remain zero and

hence the kernel rows for the corresponding datapoints

never need to be computed. Therefore, kernel entries are

computed only if required. To avoid re-computation,

kernel entries are cached as they are computed. For large

datasets, caching all kernel entries could be prohibitive.

One of the key bottlenecks in the scalability of SVM

training algorithms is therefore the requirement of a

Table 2: Comparison between training times for 1SMO,

LibSVM and SVMLight. In nearly all cases, the three algorithms

find solutions with the same number of support vectors, and

show the same generalization performance.

DATASET METHOD
TRAINING

TIME (S)

SUPPORT

VECTORS
ACC. ± STD.

LibSVM 0.015 215 67.02±0.98

SVMLight 0.016 215 67.02±0.98

BREAST-

CANCER

(286,51) 1SMO 0.006 215 72.09±1.32

LibSVM 0.051 353 83.87± 1.12

SVMLight 0.054 353 83.8± 1.12
BREAST-W

(699,10)
1SMO 0.021 353 93.25± 0.8

LibSVM 0.389 783 69.78± 0.76

SVMLight 0.274 783 69.7±0.76
CREDIT-G

(1000,64)
1SMO 0.157 783 69.78± 0.76

LibSVM 0.03 240 54.72± 1.16

SVMLight 0.028 240 54.7± 1.16
HEART-C

(302,23)
1SMO 0.013 240 54.72± 1.16

LibSVM 0.028 233 66.35± 0.85

SVMLight 0.026 233 66.35± 0.85
HEART-H

(294,25)
1SMO 0.011 233 66.35± 0.85

LibSVM 0.023 214 58.24± 2.42

SVMLight 0.019 214 58.24± 2.42

HEART-

STATLOG

(270,14) 1SMO 0.008 214 58.24± 2.42

LibSVM 0.009 123 79.8±1.9

SVMLight 0.008 123 79.81± 1.9
HEPATITIS

(155,30)
1SMO 0.003 123 79.81± 1.9

LibSVM 0.021 167 93.14± 0.95

SVMLight 0.029 167 93.14± 0.95
IONOSPHERE

(350,35)
1SMO 0.011 189 93.05± 0.93

LibSVM 3.48 2488 96.52± 0.28

SVMLight 2.76 2488 96.52± 0.28
KR-VS-KP

(3196,41)
1SMO 1.06 2488 97.05± 0.19

LibSVM 0.001 44 71.71± 3.95

SVMLight 0.003 44 71.71± 3.95
LABOR

(57,30)
1SMO 0.001 44 82.88± 5.33

LibSVM 19.62 6340 100± 0

SVMLight 18.27 6340 100± 0
MUSHROOM

(8124,126)
1SMO 9.85 6340 100± 0

LibSVM 0.17 601 65.96± 0.95

SVMLight 0.14 601 65.96± 0.95
PIMA-INDIAN

(768,9)
1SMO 0.07 601 65.96± 0.95

LibSVM 4.94 2890 93.85± 0.17

SVMLight 3.93 2890 93.85± 0.17
SICK

(3772,33)
1SMO 1.97 2890 93.85± 0.17

LibSVM 0.011 134 78.55± 1.48

SVMLight 0.016 134 78.54± 1.48

SONAR

(208,61)

 1SMO 0.005 134 78.35± 1.74

LibSVM 4552 38042 76.15± 0.10

SVMLight 3689 38042 76.15± 0.10
ADULT

(48789,106)
1SMO 1111 38042 76.15± 0.10

Fast Update Rules for a Relaxed SVM Formulation

sufficiently large kernel cache. Algorithms that can

perform well on large datasets with relatively small kernel

cache sizes could also be amenable to parallelization with

lower communication overheads.

In order to compare the scalability of 1SMO with that of
LibSVM and SVM

Light
, we conducted an experiment on a

large dataset without using any kernel caching. We used
subsets of the Adult dataset, whose sizes were integral
multiples of 1/12

th
 of the total size. In the case of LibSVM

and SVM
Light

, the cache size was limited to 5MB, below
which it was not possible to run them for the larger splits.
In the case of 1SMO, caching was avoided altogether.
Figure 5 shows the variation of the training time of
1SMO, LibSVM and SVM

Light
with subset size for the

adult dataset. Least squares fits to the three curves are
given by:

tLIBSVM = 1.7x10
-6

x
2
 + 1.04x10

-2
x - 37.0575

tSVMLight = 1.4x10
-6

x
2
 + 1.2x10

-3
x - 17.7995

t1SMO = 5x10
-7

x
2
 + 7.12x10

-4
x - 7.8225

In other words, with increase in the size of the dataset, the
training time for 1SMO grows at a much slower rate than
it does for SVM

Light
 and LibSVM, which grow

quadratically with the number of training instances. This
indicates that 1SMO scales better than LibSVM and
SVM

Light
.

4.2.5 Convergence of the SUMT solution

In our final experiment, we run the SUMT algorithm on

two datasets, viz., mushroom and breast-cancer. For each

experiment, we initialize A with a value of 10
4

successively reduce A by a factor of ρ=0.9, as described

in Fig, 3. We observe the value of λ
T
y after each SUMT-

iteration (comprising steps 2-5 in Fig. 3). Figure 6 shows

how λ
T
y reduces as a function of the number of SUMT-

iterations. As expected, the value of λ
T
y decreases with

successive iterations and quickly converges to 0.

Figure 7 shows how the Lagrange multipliers for 1SMO

converge to the solution obtained by SVM
Light

, as

iterations progress. The plot demonstrates that the

sequence of Relaxed SVM sub-problems converges to the

solution of the classical SVM.

5. Conclusions

In this paper, we have proposed a linearly convergent

update rule for training a modified SVM formulation,

which we term as the Relaxed SVM. On a selection of

well known benchmark datasets, the Relaxed SVM with

the proposed update rule yields speedups by a factor of 2-

over well known SVM implementations, while providing

very competitive generalization performance. The

speedups on very large datasets, where caching the entire

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

Iteration number

||
λ

S
U

M
T
 -

 λ
S

V
M

||

Figure 7: Plot of ||λSUMT – λ1SVM|| vs. iteration

number for the SUMT based algorithm on the

sick dataset.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Number of data points

T
ra

in
in

g
 T

im
e
 (

in
 s

e
c
o
n
d
s
)

LibSVM

SVMLight

1SMO

Figure 5: Variation of training time with for the three

implementations, plotted as a function of number of data

points sampled from the adult data set. While training times

for SVMLight and LibSVM grow almost quadratically with

the size of the data sets, the training time for 1SMO grows

at a much lower rate.

0 50 100 150 200 250 300 350 400 450 500
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Iteration number

λ
'*

Y

Figure 6: Plot of variation of λ
T
y with

increasing iteration numbers for the SUMT

based algorithm on the sick dataset.

Fast Update Rules for a Relaxed SVM Formulation

kernel is infeasible, are even higher owing to the fewer

iterations required to determine the Lagrange multipliers.

We also show how the Relaxed SVM can be extended to

solve the classical SVM formulation.

1SMO thus emerges as an attractive alternative to the

widely used SMO algorithm for training SVMs. It also

appears to be more amenable to a parallel

implementation, which is worthy of further investigation

for large datasets or embedded applications.

References

Bradley, P. S., & Mangasarian, O. L., (2000). Massive
data discrimination via linear support vector machines,
Optimization Methods and Software, 13, (pp. 1-10).

Burges C. (1998). A tutorial on support vector machines
for pattern recognition, Data Mining and Knowledge
Discovery, 2, (pp. 121-167).

 Chang, C. C., & Lin, C. J. (2001). LIBSVM: a library for
support vector machines, Online at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Cristianini, N., & Shawe-Taylor, J. (2000). An
Introduction to Support Vector Machines and other
kernel based learning methods, Cambridge University
Press.

Fiacco, A. V., & McCormick, G. P. (1968). Nonlinear
Programming: Sequential unconstrained minimization
techniques, Wiley and Sons, New York.

Glasmachers, T., & Igel, C. (2006). Maximum-Gain
Working Set Selection for SVMs, Journal of Machine
Learning Research, 7, (pp. 1437–1466).

Joachims, T. (1999). Making Large-Scale SVM Learning
Practical, In Schölkopf, B., Burges, C., & Smola, A.,
(Eds.), Advances in Kernel Methods - Support Vector
Learning, MIT-Press.

Joachims, T. (2006). Training Linear SVMs in Linear
Time, Proceedings of the ACM Conference on
Knowledge Discovery and Data Mining (KDD), ACM.

Friess, T. T., Cristianini, N. C., & Campbell, C. (1998).
The kernel adatron algorithm: a fast and simple learning
procedure for support vector machines, Proceedings of
15

th
 International Conference on Machine Learning.

Keerthi, S. S., Shevade, S. K., Bhattacharyya, C. &
Murthy, K. R. K. (2001). Improvements to Platt’s SMO
algorithm for SVM classifier design, Neural
Computation, 13, (pp. 637-649).

Lin, C. J. (2001). On the convergence of the
decomposition method for support vector machines,
IEEE Trans. Neural Netw., 12, No. 6, (pp. 1288–1298).

Luo, Z. Q., & Tseng, P. (1993). Error bounds and
convergence analysis of feasible descent methods: A
general approach, Annals of. Operations Research, 46,
(pp. 157–178).

Mangasarian, O. L., & Musicant, D. R. (1999).
Successive overrelaxation for support vector machines,
IEEE Transactions on Neural Networks, 10, No. 5, (pp.
1032-1037).

Navone, H. D., & Down, T. (2001). Variations on a
Kernel-Adatron Theme, Proceedings of the VII
International Congress on Information Engineering,
(pp. 562-572).

Osuna, E., Freund, R., & Girosi, F. (1997). An improved
training algorithm for support vector machines.
Proceedings of IEEE NNSP’97, Amelia Island, Florida.

Platt, J. C., Fast training of support vector machines using
sequential minimal optimization. Advances in Kernel
Methods - Support Vector Learning. MIT Press, 1998.

Platt, J. (1999). Using sparseness and analytic QP to
speed training of support vector machines. Advances in
Neural Information Processing Systems 11. MIT Press.

Shevade, S. K., Keerthi, S. S., Bhattacharyya, C. &
Murthy, K. R. K. (2001). “Improvements to the SMO
algorithm for SVM regression”, IEEE Transactions on
Neural Networks, 11, pp. 1188-1194, 2000.

Takahashi, N., & Nishi, T. (2005). Rigorous Proof of
Termination of SMO Algorithm for Support Vector
Machines, IEEE Transactions on Neural Networks, 16,
No.3, (pp.774-776).

Vogt, M., & Kecman, V. (2005). Active-Set Methods for
Support Vector Machines, In Wang, L., (Ed.), Support
Vector Machines: Theory and Applications, (pp. 133-
158), Studies in Fuzziness and Soft Computing, 177,
Springer-Verlag, Berlin, Heidelberg.

Vapnik, V. (1998). Statistical Learning Theory, Wiley.

