Homework Exercise 2

Due on 24th August, 2009

1. Classify the following matrices as positive definite, positive semidefinite, indefinite ${ }^{1}$, etc., while providing justification and outlining all the steps:
(a)

$$
A=\left[\begin{array}{lll}
5 & 3 & 1 \\
3 & 4 & 2 \\
1 & 2 & 6
\end{array}\right]
$$

(1.5 Marks)
(b)

$$
A=\left[\begin{array}{ccc}
1 & 0 & 4 \\
0 & 2 & 0 \\
4 & 0 & 18
\end{array}\right]
$$

(1.5 Marks)

2. (a) Solve the following minimization problem by using a graphical method to get a precise numerical solution. You could use programming if required.

$$
\begin{array}{ll}
\operatorname{minimize} & f(\mathbf{x})=\frac{1}{4}\left(x_{1}-6\right)^{2}+\left(x_{2}-4\right)^{2} \\
\text { subject to } & g_{1}(\mathbf{x})=\frac{80}{7}-x_{2}-\frac{8}{7} x_{1} \geq 0 \\
& g_{2}(\mathbf{x})=x_{2} \geq 0 \\
& h_{1}(\mathbf{x})=x_{1}-3=0
\end{array}
$$

variable $\mathbf{x}=\left(x_{1}, x_{2}\right)$
(2 Marks)
(b) Indicate the feasible region.
(1 Marks)

[^0]
[^0]: ${ }^{1}$ Note that a matrix A is indefinite if neither A nor $-A$ is positive semi-definite.

