Homework Exercise 3

Due on 12^{th} September, 2009

1. Find and classify (as local or global maximum or minimum or as a saddle point) the stationary points for the following function. Solve using both (computerized) plots as well as analytic method to confirm your solution. Both will be graded.

$$f(x) = 2x_1^2 + x_2^2 - 2x^1x^2 + 2x_1^3 + x_1^4$$

(1 Mark for analytically solving and 1 Mark for illustrating through plot)

2. Let $f(\mathbf{x})$ defined on a domain $\mathcal{D} \subseteq \Re^n$ have a local maximum or minimum at \mathbf{x}^* and let the first-order partial derivatives exist at \mathbf{x}^* . Consider the function

 $g_i(x_i) = f(x_1^*, x_2^*, \dots, x_{i-1}^*, x_i, x_{i+1}^*, \dots, x_n^*)$

Prove that, if f has a local extremum at \mathbf{x}^* , then each function $g_i(x_i)$ must have a local extremum at x_i^* .

(1 Mark)

3. Let $f: \mathcal{D} \to \Re$ where $\mathcal{D} \subseteq \Re^n$. Let $f(\mathbf{x})$ have continuous partial derivatives and continuous mixed partial derivatives in an open ball \mathcal{R} containing a point \mathbf{x}^* where $\nabla f(\mathbf{x}^*) = 0$. Let $\nabla^2 f(\mathbf{x})$ denote an $n \times n$ matrix of mixed partial derivatives of f evaluated at the point \mathbf{x} , such that the ij^{th} entry of the matrix is $f_{x_i x_j}$. The matrix $\nabla^2 f(\mathbf{x})$ is called the Hessian matrix. The Hessian matrix is symmetric¹.

Prove/disprove that if $\nabla^2 f(\mathbf{x}^*)$ is positive definite, *i.e.*, $\nabla^2 f(\mathbf{x}^*) \succ 0$, there exists an $\epsilon > 0$, with $\mathcal{B}(\mathbf{x}^*, \epsilon) \subseteq \mathcal{R}$ such that for all $||\mathbf{h}|| < \epsilon$, $\nabla^2 f(\mathbf{x}^* + \mathbf{h}) \succ 0$.

(2.5 Marks)

¹By Clairauts Theorem, if the partial and mixed derivatives of a function are continuous on an open region containing a point \mathbf{x}^* , then $f_{x_i x_j}(\mathbf{x}^*) = f_{x_j x_i}(\mathbf{x}^*)$, for all $i, j \in [1, n]$.