Homework Exercise 3

Due on $12^{\text {th }}$ September, 2009

1. Find and classify (as local or global maximum or minimum or as a saddle point) the stationary points for the following function. Solve using both (computerized) plots as well as analytic method to confirm your solution. Both will be graded.

$$
f(x)=2 x_{1}^{2}+x_{2}^{2}-2 x^{1} x^{2}+2 x_{1}^{3}+x_{1}^{4}
$$

(1 Mark for analytically solving and 1 Mark for illustrating through plot)

2. Let $f(\mathbf{x})$ defined on a domain $\mathcal{D} \subseteq \Re^{n}$ have a local maximum or minimum at \mathbf{x}^{*} and let the first-order partial derivatives exist at \mathbf{x}^{*}. Consider the function

$$
g_{i}\left(x_{i}\right)=f\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{i-1}^{*}, x_{i}, x_{i+1}^{*}, \ldots, x_{n}^{*}\right)
$$

Prove that, if f has a local extremum at \mathbf{x}^{*}, then each function $g_{i}\left(x_{i}\right)$ must have a local extremum at x_{i}^{*}.
(1 Mark)
3. Let $f: \mathcal{D} \rightarrow \Re$ where $\mathcal{D} \subseteq \Re^{n}$. Let $f(\mathbf{x})$ have continuous partial derivatives and continuous mixed partial derivatives in an open ball \mathcal{R} containing a point \mathbf{x}^{*} where $\nabla f\left(\mathbf{x}^{*}\right)=0$. Let $\nabla^{2} f(\mathbf{x})$ denote an $n \times n$ matrix of mixed partial derivatives of f evaluated at the point \mathbf{x}, such that the $i j^{t h}$ entry of the matrix is $f_{x_{i} x_{j}}$. The matrix $\nabla^{2} f(\mathbf{x})$ is called the Hessian matrix. The Hessian matrix is symmetric ${ }^{1}$.
Prove/disprove that if $\nabla^{2} f\left(\mathbf{x}^{*}\right)$ is positive definite, i.e., $\nabla^{2} f\left(\mathrm{x}^{*}\right) \succ 0$, there exists an $\epsilon>0$, with $\mathcal{B}\left(\mathbf{x}^{*}, \epsilon\right) \subseteq \mathcal{R}$ such that for all $\|\mathbf{h}\|<\epsilon$, $\nabla^{2} f\left(\mathbf{x}^{*}+\mathbf{h}\right) \succ 0$.

(2.5 Marks)

[^0]
[^0]: ${ }^{1}$ By Clairauts Theorem, if the partial and mixed derivatives of a function are continuous on an open region containing a point \mathbf{x}^{*}, then $f_{x_{i} x_{j}}\left(\mathbf{x}^{*}\right)=f_{x_{j} x_{i}}\left(\mathbf{x}^{*}\right)$, for all $i, j \in[1, n]$.

