Homework Exercise 4

Due on $11^{\text {th }}$ October, 2009

1. Let $h: \Re^{k} \rightarrow \Re$ and $g: \Re^{n} \rightarrow \Re^{k}$. Define $f(x)=h(g(x))$. Prove that f is convex if

- g_{i} is convex, h is convex and nondecreasing in each argument
- or g_{i} is concave, h is convex and nonincreasing in each argument
(2 Marks)

2. Figure 1 shows 4 rectangular level sets (in blue) of a function $f(x)$, viz., $A B C D, E F G H, I J K L$ and $M N O P$. The function values (in red) corresponding to the four level sets are: 100, 90,80 and 70 respectively. Can anything be said about the convexity or concavity of the function? Justify your answer.
(2 Marks)
3. Show that the function $f: \Re_{++}^{n} \rightarrow \Re$ is convex for $k<1$ such that $k \neq 0$.

$$
f(\mathbf{x})=-\left(\sum_{i=1}^{n} x_{i}^{k}\right)^{\left(\frac{1}{k}\right)}
$$

(2 Marks)

Figure 1: Level sets of a function $f(x)$.

