Homework Exercise 4

Due on 11^{th} October, 2009

- 1. Let $h: \Re^k \to \Re$ and $g: \Re^n \to \Re^k$. Define f(x) = h(g(x)). Prove that f is convex if
 - g_i is convex, h is convex and nondecreasing in each argument
 - or g_i is concave, h is convex and nonincreasing in each argument

(2 Marks)

2. Figure 1 shows 4 rectangular level sets (in blue) of a function f(x), viz., ABCD, EFGH, IJKL and MNOP. The function values (in red) corresponding to the four level sets are: 100, 90, 80 and 70 respectively. Can anything be said about the convexity or concavity of the function? Justify your answer.

$(\mathbf{2} \ \mathbf{Marks})$

3. Show that the function $f: \Re_{++}^n \to \Re$ is convex for k < 1 such that $k \neq 0$.

$$f(\mathbf{x}) = -\left(\sum_{i=1}^{n} x_i^k\right)^{\left(\frac{1}{k}\right)}$$

(2 Marks)

Figure 1: Level sets of a function f(x).