Homework Exercise 6

Due on 8^{th} November, 2009

1. Consider the objective function

$$f(\mathbf{x}) = (x_1 + 10x_2)^2 + 5(x_3 - x_4)^2 + (x_2 - 2x_3)^4 + 100(x_1 - x_4)^4$$

- (a) Assume throughout that, for the algorithm in Figure 1, $\rho = 0.1$, $\sigma = 0.1$, $\tau = 0.1$ and $\xi = 0.75$. Is the line seach in Figure 1, (i) exact (ii) approximate (iii) inexact using Wolfe conditions (iv) inexact using Goldstein conditions or (v) none of these? Reason it out.
- (b) Solve the problem using the steepest-descent method with stopping criterion $||\alpha_k \mathbf{d}^k|| < \epsilon$ where $\epsilon = 10^{-6}$, using the line search in Figure 1. Report using both initial points $[-2 1 \ 1 \ 2]^T$ and $[200 \ -200 \ 100 \ -100]^T$.
- (c) Solve the problem using the modified Newton method:

$$\widehat{H}^k = \frac{\nabla^2 f(\mathbf{x}^k) + \beta I}{1 + \beta}$$

where

$$\beta = \begin{cases} 0 & \text{if } \lambda_{min} \left(\nabla^2 f(\mathbf{x}^k) \right) > 0 \\ 0.25 - \lambda_{min} \left(\nabla^2 f(\mathbf{x}^k) \right) & \text{if } \lambda_{min} \left(\nabla^2 f(\mathbf{x}^k) \right) \le 0 \end{cases}$$
(1)

with the same termination tolerance and initial points as in (b). You should use the line search in Figure 1 where needed.

- (d) Solve the problem using the Gauss-Newton method with the same termination tolerance and initial points as in (b). You should use the line search in Figure 1 where needed.
- (e) Based on the results of (b)-(d), compare the computational efficiency and solution accuracy of the three methods.

(8 Marks)

Step 1 Input \mathbf{x}^k , \mathbf{d}^k . Initialize algorithm parameters ρ , σ , τ , and ξ . Set $\alpha_L = 0$ and $\alpha_U = 10^{99}$. Step 2 Compute $f_L = f(\mathbf{x}^k + \alpha_L \mathbf{d}^k)$. Compute $f'_L = \nabla^T f(\mathbf{x}^k + \alpha_L \mathbf{d}^k) \mathbf{d}^k$. Step 3 Estimate α_0 by exact line search on the quadratic approximation for $g(\alpha) =$ $f(\mathbf{x}^k + \alpha \mathbf{d}^k)$, as was discussed in class. Step 4 Compute $f_0 = f(\mathbf{x}^k + \alpha_0 \mathbf{d}^k)$. Step 5 (Interpolation) if $f_0 > f_L + \rho(\alpha_0 - \alpha_L)f'_L$ then If $\alpha_0 < \alpha_U$, then set $\alpha_U = \alpha_0$. $\hat{\alpha}_0 = \alpha_L + \frac{(\alpha_0 - \alpha_L)^2 f'_L}{2[f_L - f_0 + (\alpha_0 - \alpha_L) f'_L]}.$ If $\hat{\alpha}_0 < \alpha_L + \tau(\alpha_U - \alpha_L)$ then set $\hat{\alpha}_0 = \alpha_L + \tau(\alpha_U - \alpha_L).$ If $\widehat{\alpha}_0 > \alpha_U - \tau(\alpha_U - \alpha_L)$ then set $\widehat{\alpha}_0 = \alpha_U - \tau(\alpha_U - \alpha_L)$. Set $\alpha_0 = \hat{\alpha}_0$ and go to **Step 4**. end if Step 6 Compute $f'_0 = \nabla^T f(\mathbf{x}^k + \alpha_0 \mathbf{d}^k) \mathbf{d}^k$. Step 7 (Extrapolation) if $f_0' < \sigma f_L'$ then Compute $\Delta \alpha_0 = \frac{(\alpha_0 - \alpha_L)f'_0}{(f'_L - f'_0)}$. If $\Delta \alpha_0 < \tau(\alpha_0 - \alpha_L)$, then set $\Delta \alpha_0 = \tau(\alpha_0 - \alpha_L)$. If $\Delta \alpha_0 > \xi(\alpha_0 - \alpha_L)$, then set $\Delta \alpha_0 = \xi(\alpha_0 - \alpha_L)$. Compute $\widehat{\alpha}_0 = \alpha_0 + \Delta \alpha_0$. Set $\alpha_L = \alpha_0$, $\alpha_0 = \hat{\alpha}_0$, $f_L = f_0$, $f'_L = f'_0$, and go to Step 4. end if Step 8 Output α_0 and $f_0 = f(\mathbf{x}^k + \alpha_0 \mathbf{d}^k)$, and stop.

Figure 1: Line search.