1. Let f: ®"™ — R be a convex function and let C € 1™ bhe such that the
following set

Cs=1{z| ||z —x|| <4, for some x € closure(C)}

is compact®, that is, ('; is closed and bounded, for all § > 0. Show that f
is Lipschitz continuous on C, 1.e., there exists L = 0 such that

|f(x) = fy)| £ L|x—y]|, Vz,yeC
State the value for L.

Hint: Use the Weierstrass® theorem, which implies that a continuous fune-
tion f : ™ — R over a compact set .4 C R™ attains extreme values on

A.
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2. As discussed in the class, directon d is a descent direction of a function f
at a point x if the directional derivative of f along d is strictly negative.
That is d”Vf(x) < 0. In this exercise, we provide a method for gener-
ating descent direction in cases in which obtaining a single subgradient is
relatively simple.

(a) Let gf:'-:'[xj be a subgradient of f at x in the *" step of the algo-
rithm. (For ¢ = 0, you just pick any subgradient.) Let w; be the (k—1)
, _ , _ g (X
vector of minimum p-norm (for any p = 1) in the convex hull of
':”(:h:j (2 ] (%), .. .g}k_]:'[xj. Present an algorithm for computing

By
w;. when p = 2. What about the case of any other value of p?
(4 Marks}
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(b) Stop if —wy, is a descent direction of f at x. Since f may not be
differentiable, the criterion for —wj being a descent direction of f at
X is obtained by replacing V f(x) with g(x):

—wigs(x) <0
If the stopping criterion is not met, let gfrh:'{x} € df such that

LLI;EE.J,- I:xh—éng}ukg

Prove that this process returns a descent direction of f at X in a
finite number of iterations. You can assume that @f is compact.
(Note that since df C R"™, this is equivalent to saying that f is
closed and bounded).

(T Marks)
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3. Consider the equality constrained optimization problem in (1):

minimize %]{T(}K +cTx+p (1)
subject to Ax =D

Assume that A has full row rank (that is no equality is redundant /conflicting).
Let NV be the basis for the null space of A. Show that this optimization

problem is unbounded below if NT(QN has negative eigenvalues.

(5 Marks)
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Now consider the inequality constrained optimization problem in (2) and
the primal active set method for the same that we had discussed in the
class. If the same unboundedness problem persists in this case, then the
algorithm might never terminate. Can that actually happen if A has full
row rank and N7 QN has negative eigenvalues? Explain.

minimize  ix'Qx+c'x+p
subject to Ax>b

(2)
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4. Motivate and explain the dual ascent method, the augmented lagrangian

method and the alternating direction method of multipliers (ADMM)
methods.

(2 Marks)
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Recall that the angmented lagrangian was to make the optimization prob-
lem strongly convex?, and therefore improve convergence. We will simi-
larly try to modify the barrier (interior-point) method that was discussed
in class.



The general inequality constrained convex minimization problem is

minimize  f(x)
subject to g;(x) <0, i=1,...,m (3)

The Barrier method solves (3) by making a sequence of approximations
in terms of solutions to problem (4):

minimize  B(x, pu) = f(x) — p> -, In(—gi(x))

. _ (4)
subject to Ax =10

The objective function B(x,p) is called the logarithmic barrier function.
This function is convex, which can be proved by invoking the composition
rules.

Now we add the constraint ||x||? < p? to the problem in (3) to get (5)

minimize  f(x)

subject to  g;(x) <0, i=1,...,m
Ax =0b
Ix][* < p?

(3)

Let B(x, it) denote the (modified) logarithmic barrier function to this mod-
ified problem. Prove that this modified logarithmic barrier function is
strongly convex in x. Determine the strong convexity factor m.

(8 Marks)
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