1. Let f: ®"™ — R be a convex function and let C € 1™ bhe such that the
following set

Cs=1{z| ||z —x|| <4, for some x € closure(C)}

is compact®, that is, ('; is closed and bounded, for all § > 0. Show that f
is Lipschitz continuous on C, 1.e., there exists L = 0 such that

|f(x) = fy)| £ L|x—y]|, Vz,yeC
State the value for L.

Hint: Use the Weierstrass® theorem, which implies that a continuous fune-
tion f : ™ — R over a compact set .4 C R™ attains extreme values on

A.
(7 Marks)
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2. As discussed in the class, directon d is a descent direction of a function f
at a point x if the directional derivative of f along d is strictly negative.
That is d”Vf(x) < 0. In this exercise, we provide a method for gener-

ating descent direction in cases in which obtaining a single subgradient is
relatively simple. —

(a) Let g;?:' (x) be a subgradient of f at x in the i*" step of the algo- o

rithm. (For ¢ = 0, you just pick any subgradient.) Let w; be the g (1),
vector of minimum p-norm (for any p = 1) in the convex hull of -
g}”{xj (2) (%), . {k ”{:{j Present an algorithm for computing o
Wi when p=2. What about the case of any other value of p?
(4 Marks)
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(b) Stop if —wy, is a descent direction of f at x. Since f may not be
differentiable, the criterion for —wj being a descent direction of f at
X is obtained by replacing V f(x) with g(x):

—wigs(x) <0
If the stopping criterion is not met, let gfrh:'{x} € df such that

LLI;EE.J,- I:xh—éng}ukg

Prove that this process returns a descent direction of f at X in a
finite number of iterations. You can assume that @f is compact.
(Note that since df C R"™, this is equivalent to saying that f is
closed and bounded).

(T Marks)
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3. Consider the equality constrained optimization problem in (1):

o minimize % TOx+c™x+ 1

(1)

subject to Ax=Db

— Assume that A has full row rank (that is no equality is redundant /conflicting).
Let NV be the basis for the null space of A. Show that this optimization

problem is unbounded below if NTQN has negative eigenvalues.
(5 Marks)
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