Quadratic Optimization: Primal Active-Set Algorithm

Consider the quadratic optimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2} \mathbf{x}^{T} Q \mathbf{x}+\mathbf{c}^{T} \mathbf{x}+\beta \tag{1}\\
\text { subject to } & A \mathbf{x} \geq \mathbf{b}
\end{array}
$$

where $Q \succ 0$.
Below, we reproduce the primal active-set method (the motivation for each step was discussed in class) for optimization.

Step 1

Input a feasible point, \mathbf{x}^{0}, identify the active set \mathcal{I}^{0}, form matrix $A_{\mathcal{I}^{0}}$, and set $k=0$.

Step 2

Compute $\mathbf{g}^{k}=Q \mathbf{x}^{k}+\mathbf{c}$.
Check the rank condition $\operatorname{rank}\left[A_{\mathcal{I}^{k}}^{T} \mathbf{g}^{k}\right]=\operatorname{rank}\left[A_{\mathcal{I}^{k}}^{T}\right]$. If it does not hold, go to Step 4.
Step 3
Solve the system $A_{\mathcal{I}^{k}}^{T} \widehat{\lambda}=\mathbf{g}^{k}$. If $\widehat{\lambda} \geq \mathbf{0}$, output \mathbf{x}^{k} as the solution and stop; otherwise, remove the index that is associated with the most negative Lagrange multiplier (some $\widehat{\lambda}_{t}$) from \mathcal{I}^{k}.
Step 4
Compute the value of \mathbf{d}^{k} :

$$
\begin{array}{rlr}
\mathbf{d}^{k}= & \underset{\mathbf{d}}{\operatorname{argmin}} & \frac{1}{2} \mathbf{d}^{T} Q \mathbf{d}+\left(\mathbf{g}^{k}\right)^{T} \mathbf{d} \tag{2}\\
& \text { subject to } & \mathbf{a}_{i}^{T} \mathbf{d}=0
\end{array} \quad \text { for } i \in \mathcal{I}^{k}
$$

Step 5

Compute α_{k} :

$$
\begin{equation*}
\alpha_{k}=\min \left\{1, \min _{\substack{j \notin \mathcal{I}^{k} \\ \mathbf{a}_{j}^{T} \mathrm{~d}^{k}<0}} \frac{\mathbf{a}_{j}^{T} \mathbf{x}^{k}-b_{j}}{-\mathbf{a}_{j}^{T} \mathbf{d}^{k}}\right\} \tag{3}
\end{equation*}
$$

Set $\mathbf{x}^{k+1}=\mathbf{x}^{k}+\alpha_{k} \mathbf{d}^{k}$.
Step 6
If $\alpha_{k}<1$, construct \mathcal{I}^{k+1} by adding the index that yields the minimum value of α_{k} in (??). Otherwise, let $\mathcal{I}^{k+1}=\mathcal{I}^{k}$.

Step 7

Set $k=k+1$ and repeat from Step 2.

Figure 1: Optimization for the quadratic problem in (??) using Primal Activeset Method.

