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We investigate the family of Augmented Lagrangian (AL) methods for min-

imizing the sum of two convex functions. In the context of machine learn-

ing, minimization of such a composite objective function is useful in enforc-

ing various structures, such as sparsity, on the solution in a learning task.

We introduce a particularly efficient instance of an augmented Lagrangian

method called the Dual Augmented Lagrangian (DAL) algorithm, and discuss

its connection to proximal minimization and operator splitting algorithms in

the primal. Furthermore, we demonstrate that the DAL algorithm for the

trace norm regularization can be used to learn features from multiple data

sources and optimally combine them in a convex optimization problem.
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9.1 Introduction

Sparse estimation has recently been attracting attention from both the the-

oretical side (Candès et al., 2006; Bach, 2008; Ng, 2004) and the practical

side, for example, magnetic resonance imaging (Weaver et al., 1991; Lustig

et al., 2007), natural language processing (Gao et al., 2007), and bioinfor-

matics (Shevade and Keerthi, 2003).

Sparse estimation is commonly formulated in two ways: the regularized

estimation (or MAP estimation) framework (Tibshirani, 1996), and the em-

pirical Bayesian estimation (also known as the automatic relevance deter-

mination) (Neal, 1996; Tipping, 2001). Both approaches are based on opti-

mizing some objective functions, though the former is usually formulated as

a convex optimization and the later is usually nonconvex.

Recently, a connection between the two formulations has been discussed

in Wipf and Nagarajan (2008) which showed that in some special cases the

(nonconvex) empirical Bayesian estimation can be carried out by iteratively

solving reweighted (convex) regularized estimation problems. Therefore, in

this chapter we will focus on the convex approach.

A regularization-based sparse estimation problem can be formulated as

min
x∈Rn

L(x) +R(x)︸ ︷︷ ︸
=:f(x)

, (9.1)

where L : Rn → R is called the loss term, which we assume to be convex

and differentiable; R : Rn → R is called the regularizer, which is assumed to

be convex but may be non-differentiable, and for convenience we denote the

sum of the two by f . In addition, we assume that f(x)→∞ as ‖x‖ → ∞.

Problem (9.1) is closely related to solving an operator equation

(A+B)(x) & 0, (9.2)

where A and B are nonlinear maximal monotone operators. In fact, if A

and B are the subdifferentials of L and R, respectively, problems (9.1)

and (9.2) are equivalent. Algorithms to solve the operator equation (9.2)

are extensively studied and are called operator splitting methods (see Lions

and Mercier (1979); Eckstein and Bertsekas (1992)). We will discuss their

connections to minimization algorithms for (9.1) in sections 9.2.2 and 9.5.

We will distinguish between a simple sparse estimation problem, and a

structured sparse estimation problem. A simple sparse estimation problem
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is written as

min
x∈Rn

L(x) + φλ(x), (9.3)

where φλ is a closed proper convex function1 and is “simple” in the sense

of separability and sparsity, which we define in section 9.2.1. Examples of a

simple sparse estimation problem include the Lasso (Tibshirani, 1996), also

known as basis pursuit denoising (Chen et al., 1998); the group Lasso (Yuan

and Lin, 2006); and the trace norm regularization (Fazel et al., 2001; Srebro

et al., 2005; Tomioka and Aihara, 2007; Yuan et al., 2007).

A structured sparse estimation problem is written as

min
x∈Rn

L(x) + φλ(Bx), (9.4)

where B ∈ R
l×n is a matrix and φλ is a simple sparse regularizer as in

the simple sparse estimation problem (9.3). Examples of a structured sparse

estimation problem include total variation denoising (Rudin et al., 1992),

wavelet shrinkage (Weaver et al., 1991; Donoho, 1995), the fused Lasso (Tib-

shirani et al., 2005), and structured sparsity-inducing norms (Jenatton et al.,

2009).

In this chapter, we present an augmented Lagrangian (AL) method

(Hestenes, 1969; Powell, 1969) for the dual of the simple sparse estimation

problem. We show that the proposed dual augmented Lagrangian (DAL) is

equivalent to the proximal minimization algorithm in the primal, converges

super-linearly2, and each step is computationally efficient because DAL can

exploit the sparsity in the intermediate solution. There has been a series of

studies that derive AL approaches using Bregman divergence (see Yin et al.

(2008); Cai et al. (2008); Setzer (2010)).

Although our focus will be mostly on the simple sparse estimation problem

(9.3), the methods we discuss are also relevant for the structured sparse

estimation problem (9.4). In fact, by taking the Fenchel dual (Rockafellar,

1970, theorem 31.2), we notice that solving the structured sparse estimation

problem (9.4) is equivalent to solving the following minimization problem:

min
β∈Rl

L∗(BTβ) + φ∗
λ(−β), (9.5)

1. “Closed” means that the epigraph {(z, y) ∈ R
m+1 : y ≥ φλ(z)} is a closed set, and

“proper” means that the function is not everywhere +∞; see, e.g., Rockafellar (1970). In
the sequel, we use the term “convex function” in the meaning of “closed proper convex
function”.
2. A sequence xt (t = 1, 2, . . .) converges to x∗ super-linearly, if ‖xt+1−x∗‖ ≤ ct‖xt−x∗‖,
where 0 ≤ ct < 1 and ct → 0 as t → ∞.
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where L∗ and φ∗
λ are the convex conjugate functions of L and φλ, respec-

tively. The above minimization problem resembles the simple sparse esti-

mation problem (9.3) (the matrix BT can be considered as part of the loss

function). This fact was effectively used by Goldstein and Osher (2009) to

develop the split Bregman iteration (SBI) algorithm (see also Setzer (2010)).

See section 9.5 for more detailed discussion.

This chapter is organized as follows. In the next section, we introduce some

simple sparse regularizers and review different types of sparsity they produce

through the so-called proximity operator. A brief operator theoretic back-

ground for the proximity operator is also given. In section 9.3, we present the

proximal minimization algorithm, which is the primal representation of the

DAL algorithm. The proposed DAL algorithm is introduced in section 9.4

and we discuss both why the dual formulation is particularly suitable for the

simple sparse estimation problem, and its rate of convergence. We discuss

connections between approximate AL methods and two operator splitting

algorithms, the forward-backward splitting and the Douglas-Rachford split-

ting, in section 9.5. In section 9.6, we apply the trace norm regularization to

a real brain-computer interface data set for learning feature extractors and

their optimal combination. The computational efficiency of the DAL algo-

rithm is also demonstrated. Finally, we summarize the chapter in section 9.7.

Some background material on convex analysis is given in the appendix.

9.2 Background

In this section, we define “simple” sparse regularizers through the associ-

ated proximity operators. In addition, section 9.2.2 provides some operator

theoretic backgrounds, which we use in later sections, especially section 9.5.

9.2.1 Simple sparse regularizers

Here, we provide three examples of simple sparse regularizers: the �1-

regularizer, the group Lasso regularizer, and the trace norm regularizer.

Other regularizers obtained by applying these three regularizers in a block-

wise manner will also be called simple; for example, the �1-regularizer for the

first 10 variables and the group Lasso regularizer for the remaining variables.

These regularizers share two important properties. First, they are separa-

ble (in some manner). Second, the so-called proximity operators they define

return “sparse” vectors (with respect to their separability).

First, we need to define the proximity operator as below (see also Moreau

(1965); Rockafellar (1970); Combettes and Wajs (2005)).
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Definition 9.1. The proximity operator corresponding to a convex function

f : Rn → R over R
n is a mapping from R

n to itself and is defined as

proxf (z) = argmin
x∈Rn

(
f(x) +

1

2
‖x− z‖2

)
, (9.6)

where ‖ · ‖ denotes the Euclidean norm.

Note that the minimizer is unique because the objective is strongly convex.

Although the above definition is given in terms of a function f over Rn, the

definition extends naturally to a function over a general Hilbert space (see

Moreau (1965); Rockafellar (1970)).

The proximity operator (9.6) defines a unique decomposition of a vector

z as

z = x+ y,

where x = proxf (z) and y = proxf∗(z) (f∗ is the convex conjugate of

f). This is called Moreau’s decomposition (see appendix 9.8.2). We denote

Moreau’s decomposition corresponding to the function f as follows:

(x,y) = decompf (z). (9.7)

Note that the above expression implies y ∈ ∂f(x) because x minimizes the

objective (9.6) and ∂f(x)+x−z & 0, where ∂f(x) denotes the subdifferential

of f at x.

The first example of sparse regularizers is the �1-regularizer, or the Lasso

regularizer (Tibshirani, 1996), which is defined as follows:

φ�1
λ (x) = λ‖x‖1 = λ

n∑
j=1

|xj |, (9.8)

where | · | denotes the absolute value. We can also allow each component

to have a different regularization constant, which can be used to include an

unregularized bias term.

The proximity operator corresponding to the �1-regularizer is known as

the soft threshold operator (Donoho, 1995) and can be defined elementwise

as follows:

prox�1λ (z) :=

(
max(|zj | − λ, 0)

zj
|zj |
)n

j=1

, (9.9)

where the ratio zj/|zj | is defined to be zero if zj = 0. The above expression

can easily be derived because the objective (9.6) can be minimized for each

component xj independently for the �1-regularizer.
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The second example of sparse regularizers is the group Lasso (Yuan and

Lin, 2006) regularizer

φG
λ (x) = λ

∑
g∈G

‖xg‖, (9.10)

where G is a nonoverlapping partition of {1, . . . , n}, g ∈ G is an index set

g ⊆ {1, . . . , n}, and xg is a sub-vector of x specified by the indices in g.

For example, the group Lasso regularizer arises when we are estimating a

vector field on a grid over a two-dimensional vector space. Shrinking each

component of the vectors individually through �1-regularization can produce

vectors pointing along either the x-axis or the y-axis but not necessarily

sparse as a vector field. We can group the x- and y-components of the vectors

and apply the group Lasso regularizer (9.10) to shrink both components of

the vectors simultaneously.

The proximity operator corresponding to the group Lasso regularizer can

be written blockwise as follows:

proxGλ (z) :=

(
max(‖zg‖ − λ, 0)

zg
‖zg‖

)
g∈G

, (9.11)

where the ratio zg/‖zg‖2 is defined to be zero if ‖zg‖2 is zero. The above

expression can be derived in a way analogous to the �1-case, because the

objective (9.6) can be minimized for each block, and from the Cauchy-

Schwarz inequality we have

‖xg − zg‖2 + λ‖xg‖ ≥ (‖xg‖ − ‖zg‖)2 + λ‖xg‖,
where the equality is obtained when xg = czg; the coefficient c can be

obtained by solving the one-dimensional minimization.

The last example of sparse regularizers is the trace-norm3 regularizer,

which is defined as

φmat
λ (x) = λ‖X‖∗ = λ

r∑
j=1

σj(X), (9.12)

where X is a matrix obtained by rearranging the elements of x into a matrix

of a prespecified size, σj(X) is the jth largest singular value of X, and r

is the minimum of the number of rows and columns of X. The proximity

3. The trace norm is also known as the nuclear norm (Boyd and Vandenberghe, 2004) and
also as the Ky Fan r-norm (Yuan et al., 2007).
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operator corresponding to the trace norm regularizer can be written as

proxmat
λ (z) := vec

(
U max(S − λ, 0)V T

)
, (9.13)

where Z = USV T is the singular value decomposition of the matrix

Z obtained by appropriately rearranging the elements of z. The above

expression can again be obtained by using the separability of φλ as follows:

‖X −Z‖2F + λ

r∑
j=1

σj(X)

=

r∑
j=1

σ2
j (X)− 2〈X, Z〉+

r∑
j=1

σ2
j (Z) + λ

r∑
j=1

σj(Z)

≥
r∑

j=1

σ2
j (X)− 2

r∑
j=1

σj(X)σj(Z) +

r∑
j=1

σ2
j (Z) + λ

r∑
j=1

σj(Z)

=

r∑
j=1

(
(σj(X)− σj(Z))2 + λσj(Z)

)
,

where ‖·‖F denotes the Frobenius norm and the inequality in the second line

is due to von Neumann’s trace theorem (Horn and Johnson, 1991), for which

equality is obtained when the singular vectors of X and Z are the same.

Singular values σj(X) are obtained by the one-dimensional minimization in

the last line.

Note again that the above three regularizers are separable. The �1-

regularizer (9.8) decomposes into the sum of the absolute values of com-

ponents of x. The group Lasso regularizer (9.10) decomposes into the sum

of the Euclidean norms of the groups of variables. Finally, the trace norm

regularizer (9.12) decomposes into the sum of singular values. Moreover,

the proximity operators they define sparsify vectors with respect to the

separability of the regularizers, see equations (9.9), (9.11), and (9.13).

Note that the regularizer in the dual of the structured sparse estimation

problem (9.5) is also separable, but the corresponding proximity operator

does not sparsify a vector, see section 9.4.4 for more discussion.

The sparsity produced by the proximity operator (9.6) is a computational

advantage of algorithms that iteratively compute the proximity operator,

see Figueiredo and Nowak (2003); Daubechies et al. (2004); Combettes

and Wajs (2005); Figueiredo et al. (2007); Wright et al. (2009); Beck and

Teboulle (2009); Nesterov (2007). Other methods, such as interior point

methods (Koh et al., 2007; Kim et al., 2007; Boyd and Vandenberghe, 2004),

achieve sparsity only asymptotically.
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9.2.2 Monotone Operator Theory Background

The proximity operator has been studied intensively in the context of

monotone operator theory. This framework provides an alternative view on

proximity operator-based algorithms and forms the foundation of operator

splitting algorithms, which we discuss in section 9.5. In this section, we

briefly provide background on monotone operator theory, see Rockafellar

(1976a); Lions and Mercier (1979); Eckstein and Bertsekas (1992) for more

details.

A nonlinear set-valued operator T : R
n → 2R

n

is called monotone if

∀x,x′ ∈ R
n,

〈y′ − y, x′ − x〉 ≥ 0, for all y ∈ T (x),y′ ∈ T (x′),

where 〈y, x〉 denotes the inner product of two vectors y,x ∈ R
n.

The graph of a set-valued operator T is the set {(x,y) : x ∈ R
n,y ∈

T (x)} ⊆ R
n × R

n. A monotone operator T is called maximal if the graph

of T is not strictly contained in that of any other monotone operator on

R
n. The subdifferential of a convex function over R

n is an example of a

maximal monotone operator. A set-valued operator T is called single-valued

if the set T (x) consists of a single vector for every x ∈ R
n. With a slight

abuse of notation we denote y = T (x) in this case. The subdifferential of the

function f defined over Rn is single-valued if and only if f is differentiable.

The sum of two set-valued operators A and B is defined by the graph

{(x,y + z) : y ∈ A(x), z ∈ B(x),x ∈ R
n}. The inverse T−1 of a set-valued

operator T is the operator defined by the graph {(x,y) : x ∈ T (y), y ∈ R
n}.

Denoting the subdifferential of the function f by Tf := ∂f , we can rewrite

the proximity operator (9.6) as

proxf (z) = (I + Tf )
−1 (z), (9.14)

where I denotes the identity mapping. The above expression can be de-

rived from the optimality condition Tf (x) +x− z & 0. Note that the above

expression is single-valued, because the minimizer defining the proximity

operator (9.6) is unique. Moreover, the monotonicity of the operator Tf

guarantees that the proximity operator (9.14) is firmly nonexpansive4. Fur-

thermore, proxf (z) = z if and only if 0 ∈ Tf (z), because if z′ = proxf (z),

then z − z′ ∈ Tf (z
′) and 0 ≤ 〈z′ − z, z − z′ − y〉 for all y ∈ Tf (z).

4. An operator T is called firmly nonexpansive if ‖y′ − y‖2 ≤ 〈x′ − x, y′ − y〉 holds
for all y ∈ T (x), y′ ∈ T (x′), x,x′ ∈ R

n. This is clearly stronger than the ordinary
nonexpansiveness defined by ‖y′ − y‖ ≤ ‖x′ − x‖.
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9.3 Proximal Minimization Algorithm

The proximal minimization algorithm (or the proximal point algorithm)

iteratively applies the proximity operator (9.6) to obtain the minimizer of

some convex function f . Although in practice it is probably never used in

its original form, it functions as a foundation for the analysis of both AL

algorithms and operator splitting algorithms.

Let f : Rn → R ∪ {+∞} be a convex function that we wish to minimize.

Without loss of generality, we focus on unconstrained minimization of f ;

minimizing a function f0(x) in a convex set C is equivalent to minimizing

f(x) := f0(x) + δC(x) where δC(x) is the indicator function of C.

A proximal minimization algorithm for minimizing f starts from some

initial solution x0 and iteratively solves the minimization problem

xt+1 = argmin
x∈Rn

(
f(x) +

1

2ηt
‖x− xt‖2

)
. (9.15)

The second term in the iteration (9.15) keeps the next iterate xt+1 in the

proximity of the current iterate xt; the parameter ηt controls the strength

of the proximity term. From the above iteration, one can easily see that

f(xt+1) ≤ f(xt)− 1

2ηt
‖xt+1 − xt‖2.

Thus, the objective value f(xt) decreases monotonically as long as xt+1 �=
xt.

The iteration (9.15) can also be expressed in terms of the proximity

operator (9.6) as follows:

xt+1 = proxηtf (x
t) = (I + ηtTf )

−1(xt), (9.16)

which is called the proximal point algorithm (Rockafellar, 1976a). Since

each step is an application of the proximity operator (9.16), it is a firmly

nonexpansive mapping for any choice of ηt. Actually, any iterative algorithm

that uses a firmly nonexpansive mapping can be considered as a proximal

point algorithm (Eckstein and Bertsekas, 1992). Moreover, xt+1 = xt if and

only if 0 ∈ Tf (x
t); that is, xt is a minimizer of f . The connection between

minimizing a convex function and finding a zero of a maximal monotone

operator can be summarized as in table 9.1.

The iteration (9.15) can also be considered as an implicit gradient step

because

xt+1 − xt ∈ −ηt∂f(xt+1). (9.17)
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Table 9.1: Comparison of the proximal minimization algorithm for convex opti-
mization and the proximal point algorithm for solving operator equations

Convex optimization Operator equation

Objective minimize f(x) find 0 ∈ Tf (x)

Algorithm Proximal minimization algorithm Proximal point algorithm

xt+1 = proxηtf
(xt) xt+1 = (I + ηtTf )

−1(xt)

Note that the subdifferential in the right-hand side is evaluated at the new

point xt+1.

Rockafellar (1976a) has shown under mild assumptions, which also allow

errors in the minimization (9.15), that the sequence x0,x1,x2, . . . converges5

to a point x∞ that satisfies 0 ∈ Tf (x
∞). Rockafellar (1976a) has also shown

that the convergence of the proximal minimization algorithm is super-linear

under the assumption that T−1
f is locally Lipschitz around the origin.

The following theorem states the super-linear convergence of the proximal

minimization algorithm in a non-asymptotic sense.

Theorem 9.1. Let x0,x1,x2 . . . be the sequence generated by the exact

proximal minimization algorithm (9.15) and let x∗ be a minimizer of the

objective function f . Assume that there is a positive constant σ and a scalar

α (1 ≤ α ≤ 2) such that

(A1) f(xt+1)− f(x∗) ≥ σ‖xt+1 − x∗‖α (t = 0, 1, 2, . . .).

Then the following inequality is true:

‖xt+1 − x∗‖
1+(α−1)σηt

1+σηt ≤ 1

1 + σηt
‖xt − x∗‖.

That is, xt converges to x∗ super-linearly if α < 2 or α = 2 and ηt is

increasing, in a global and non-asymptotic sense.

Proof. See Tomioka et al. (2010a).

Assumption (A1) is implied by assuming the strong convexity of f .

However, it is weaker because we require (A1) only on the points generated

by the algorithm. For example, the �1-regularizer (9.8) is not strongly convex,

but it can be lower-bounded, as in assumption (A1), inside any bounded set

centered at the origin. In fact, the assumption on the Lipschitz continuity of

∂f−1 around the origin used in Rockafellar (1976b) implies assumption (A1)

5. The original statement was “converges in the weak topology”, which is equivalent to
strong convergence in a finite dimensional vector space.
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due to the nonexpansiveness of the proximity operator (9.16), see Tomioka

et al. (2010a) for a detailed discussion.

So far we have ignored the cost of the minimization (9.15). The conver-

gence rate in the above theorem becomes faster as the proximity parameter

ηt increases. However, typically the cost of the minimization (9.15) increases

as ηt increases. In the next section, we focus on how we can carry out the

update step (9.15) efficiently.

9.4 Dual Augmented Lagrangian (DAL) Algorithm

In this section, we introduce the Dual Augmented Lagrangian (DAL) (Tomioka

and Sugiyama, 2009; Tomioka et al., 2010a) and show that it is equivalent

to the proximal minimization algorithm discussed in the previous section.

For the simple sparse estimation problem (9.3) each step in DAL is com-

putationally efficient. Thus it is practical and can be analyzed through the

proximal minimization framework.

9.4.1 DAL as Augmented Lagrangian Applied to the Dual Problem

DAL is an application of the augmented Lagrangian (AL) algorithm (Hestenes,

1969; Powell, 1969) to the dual of the simple sparse estimation problem

(P) min
x∈Rn

f�(Ax) + φλ(x), (9.18)

where f� : Rm → R is a loss function, which we assume to be a smooth

convex function; A ∈ R
m×n is a design matrix. Note that we have further

introduced a structure L(x) = f�(Ax) from the simple sparse estimation

problem (9.3). This is useful in decoupling the property of the loss function

f� from that of the design matrix A. In a machine learning problem, it is

easy to discuss properties of the loss function (because we choose it), but

we have to live with whatever property is possessed by the design matrix

(the data matrix). For notational convenience we assume that for η > 0,

ηφλ(x) = φλη(x); for example, see the �1-regularizer (9.8).

The dual problem of (P) can be written as the following minimization

problem:

(D) min
α∈Rm,v∈Rn

f∗
� (−α) + φ∗

λ(v), (9.19)

subject to v = ATα, (9.20)

where f∗
� and φ∗

λ are the convex conjugate functions of f� and φλ, respec-

tively.
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Let η be a nonnegative real number. The augmented Lagrangian (AL)

function Jη(α,v;x) is written as follows:

Jη(α,v;x) := f∗
� (−α) + φ∗

λ(v) + 〈x, ATα− v〉+ η

2
‖ATα− v‖2.

(9.21)

Note that the AL function is reduced to the ordinary Lagrangian if η = 0;

the primal variable x appears in the AL function (9.21) as a Lagrangian

multiplier vector; it is easy to verify that minα,v J0(α,v;x) gives the (sign

inverted) primal objective function (9.18).

Similar to the proximal minimization approach discussed in the previous

section, we choose a sequence of positive step size parameters η0, η1, . . . , and

an initial Lagrangian multiplier x0. At every iteration, the DAL algorithm

minimizes the AL function Jηt
(α,v;xt) (9.21) with respect to (α,v), and

the minimizer (αt+1,vt+1) is used to update the Lagrangian multiplier xt

as follows:

(αt+1,vt+1) := argmin
α,v

Jηt
(α,v;xt), (9.22)

xt+1 := xt + ηt(A
Tαt+1 − vt+1). (9.23)

Intuitively speaking, we minimize an inner objective (9.22) and update (9.23)

the Lagrangian multiplier xt proportionally to the violation of the equality

constraint (9.20). In fact, it can be shown that the direction (ATαt+1−vt+1)

is the negative gradient direction of the differentiable auxiliary function

fηt
(x) := −minα,v Jηt

(α,v;x), which coincides with f(x) at the optimum

(see Bertsekas (1982)).

Note that the terms in the AL function (9.21) that involve v are linear,

quadratic, and the convex conjugate of the regularizer φλ. Accordingly, by

defining Moreau’s envelope function (see appendix 9.8.2 and also Moreau

(1965); Rockafellar (1970)) Φ∗
λ as

Φ∗
λ(y) := min

y′∈Rn

(
φ∗
λ(y

′) +
1

2
‖y − y′‖2

)
, (9.24)

we can rewrite the update equations (9.22) and (9.23) as follows:

αt+1 = argmin
α∈Rm

(
f∗
� (−α) +

1

ηt
Φ∗
ληt

(xt + ηtA
Tα)︸ ︷︷ ︸

=:ϕt(α)

)
, (9.25)

xt+1 := proxφληt

(
xt + ηtA

Tαt+1
)
, (9.26)

where we use the identity proxf (x) + proxf∗(x) = x (see appendix 9.8.2).

See Tomioka and Sugiyama (2009); Tomioka et al. (2010a) for the derivation.
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9.4.2 DAL as a Primal Proximal Minimization

The following proposition states that the DAL algorithm is equivalent to

the proximal minimization algorithm in the primal (and thus the algorithm

is stable for any positive step size ηt); see also table 9.2.

Proposition 9.2. The iteration (9.25)-(9.26) is equivalent to the proximal

minimization algorithm (9.15) on the primal problem (P).

Proof. The proximal minimization algorithm for the problem (9.18) is writ-

ten as follows:

xt+1 := argmin
x∈Rn

(
f�(Ax) + φλ(x) +

1

2ηt
‖x− xt‖2

)
= argmin

x∈Rn

(
f�(Ax) +

1

ηt

(
φληt

(x) +
1

2
‖x− xt‖2

))
.

Now we define

Φλ(x;xt) := φλ(x) +
1

2
‖x− xt‖2 (9.27)

and use the Fenchel duality to obtain

min
x∈Rn

(
f�(Ax) +

1

ηt
Φληt

(x;xt)

)
= max

α∈Rm

(
−f∗

� (−α)− 1

ηt
Φ∗
ληt

(ηtA
Tα;xt)

)
,

(9.28)

where f∗
� and Φ∗

λ(·;xt) are the convex conjugate functions of f� and Φλ(·;xt),

respectively. Here, since Φλ(·;xt) is a sum of two convex functions, its convex

conjugate is the infimal convolution (see appendix 9.8.1) of the convex

conjugates, that is,

Φ∗
λ(y;x

t) = inf
ṽ∈Rn

(
φ∗
λ(ṽ) +

1

2
‖y − ṽ‖2 + 〈y − ṽ, xt〉

)
. (9.29)

Since Φ∗
λ(y;x

t) = Φ∗
λ(x

t + y;0) = Φ∗
λ(x

t + y), ignoring a constant term

that does not depend on y, we have the inner minimization problem (9.25).

In order to obtain the update equation (9.26), we turn back to the Fenchel

duality theorem and notice that the minimizer xt+1 in the left-hand side of

equation (9.28) satisfies

xt+1 ∈ ∂yΦ
∗
ληt

(y;xt)|y=ηtATαt+1 .

Since Φ∗
λ(y;x

t) is Moreau’s envelope function of φ∗
λ (ignoring constants), it

is differentiable and the derivative ∇yΦ
∗
ληt

(ηtA
Tαt+1;xt) is given as follows
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Figure 9.1: Comparison of Φλ(x; 0) (left) and Φ∗
λ(y; 0) (right) for the one-

dimensional �1-regularizer φλ(x) = λ|x|.

(see appendix 9.8.2):

xt+1 = ∇yΦ
∗
ληt

(ηtA
Tαt+1;xt)

= ∇yΦ
∗
ληt

(xt + ηtA
Tαt+1;0) = proxφληt

(xt + ηtA
Tαt+1),

from which we have the update equation (9.26).

The equivalence of proximal minimization and augmented Lagrangian we

have shown above is not novel; it can be found, for example, in Rockafellar

(1976b); Ibaraki et al. (1992). However, the above derivation can easily be

generalized to the case when the loss function f� is not differentiable (Suzuki

and Tomioka, 2010).

It is worth noting that Φλ(·;xt) is not differentiable but Φ∗
λ(·;xt) is. See

figure 9.1 for a schematic illustration of the case of the one-dimensional

�1-regularizer. Both the �1-regularizer φλ and its convex conjugate φ∗
λ are

nondifferentiable at some points. The function Φλ(x) := Φλ(x;0) is obtained

by adding a quadratic proximity term to φλ (see equation (9.27)). Although

Φλ is still nondifferentiable, its convex conjugate Φ∗
λ is differentiable due

to the infimal convolution operator (see appendix 9.8.1) with the proximity

term (see Equation (9.29)).

The differentiability of Moreau’s envelope function Φ∗
λ makes the DAL

approach (9.25)-(9.26) computationally efficient. At every step, we minimize

a differentiable inner objective (9.25) and use the minimizer to compute the

update step (9.26).
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9.4.3 Exemplary Instance: �1-Regularizer

In order to understand the efficiency of minimizing the inner objective (9.25),

let us consider the simplest sparse estimation problem: the �1-regularization.

For the �1-regularizer, φλ(x) = λ‖x‖1, the update equations (9.25) and

(9.26) can be rewritten as follows:

αt+1 = argmin
α∈Rm

(
f∗
� (−α) +

1

2ηt

∥∥∥prox�1ληt
(xt + ηtA

Tα)
∥∥∥2︸ ︷︷ ︸

=:ϕt(α)

)
, (9.30)

xt+1 = prox�1ληt

(
xt + ηtA

Tαt+1
)
, (9.31)

where prox�1λ is the soft threshold function (9.9); see Tomioka and Sugiyama

(2009) and Tomioka et al. (2010a) for the derivation.

Note that the second term in the inner objective function ϕt(α) (9.30) is

the squared sum of n one-dimensional soft thresholds. Thus we only need

to compute the sum over the active components J+ := {j : |xtj(α)| > ληt}
where xt(α) := xt + ηtA

Tα. In fact,∥∥∥prox�1ληt
(xt(α))

∥∥∥2 = n∑
j=1

(prox�1ληt
(xtj(α)))2 =

∑
j∈J+

(prox�1ληt
(xtj(α)))2.

Note that the flat area in the plot of Φ∗
λ(y) in figure 9.1 corresponds to an

inactive component.

Moreover, the gradient and the Hessian of ϕt(α) can be computed as

follows:

∇ϕt(α) = −∇f∗
� (−α) +A prox�1ληt

(xt + ηtA
Tα),

∇2ϕt(α) = ∇2f∗
� (−α) + ηtA+A

T
+,

where A+ is the submatrix of A that consists of columns of A that

correspond to the active components J+. Again, notice that only the active

components enter the computation of the gradient and the Hessian.

Looking at figure 9.1 carefully, one might wonder what happens if the

minimizer αt+1 lands on a point where Φ∗
λ(y) starts to diverge from φ∗

λ(y)

(y = −λ, λ in figure 9.1). In fact, the second derivative of Φ∗
λ is discontinuous

on such a point. Nevertheless, we can show that such an event is rare as in

the following theorem.

Theorem 9.3. Assume the regularizer φλ(x) = λ
∑n

j=1 |xj | (�1-regularizer).
A minimizer x∗ of the objective (9.18) has no component located exactly at

the threshold λ for most λ in the sense that it can be avoided by an arbitrary

small perturbation of λ.
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Proof. The optimality condition for the objective (9.18) with the �1-

regularizer can be written as

x∗ = prox�1λ (x∗ + v∗), v∗ = −AT∇f�(Ax∗),

which implies ‖v‖∞ ≤ λ and the complementary slackness conditions

xj ≥ 0 if vj = λ, (9.32a)

xj = 0 if − λ < vj < λ, (9.32b)

xj ≤ 0 if vj = −λ, (9.32c)

for all j = 1, . . . , n. Since the event xj = 0 and vj = −λ, or xj = 0

and vj = λ, can be avoided by an arbitrary small perturbation of λ for

a generic design matrix A and a differentiable loss function f�, either

x∗j + v∗j > λ (9.32a), −λ < x∗j + v∗j < λ (9.32b), or x∗j + v∗j < −λ (9.32c)

holds, which concludes the proof.

The above theorem guarantees that the inner objective (9.30) behaves like

a twice differentiable function around the optimum for a generic choice of

λ and A. The theorem can immediately be generalized to the group Lasso

regularizer (9.10) and the trace-norm regularizer (9.12) by appropriately

defining the complementary slackness conditions (9.32a)–(9.32c).

9.4.4 Why Do We Apply the AL Method to the Dual?

One reason for applying the AL method to the dual problem (D) is that

some loss functions are strongly convex only in the dual; for instance, the

logistic loss, which is not strongly convex, becomes strongly convex by taking

the convex conjugate. In general loss functions with Lipschitz continuous

gradients become strongly convex in the dual (see also section 9.4.5).

Another reason is that the inner objective function does not have the

sparsity discussed in section 9.4.3 when the AL method is applied to the

primal. In fact, applying the AL method to the primal problem (P) is

equivalent to applying the proximal minimization algorithm to the dual

problem (D). Therefore, for the �1-case, the regularizer φλ(x) is defined as

φλ(x) := (φ�1
λ )∗(x) =

{
0 (if ‖x‖∞ ≤ λ),

+∞ (otherwise),

which is the convex conjugate of the �1-regularizer φ
�1
λ . Adding a quadratic

proximity term, we obtain Φλ. By taking the convex conjugate of φλ and of

Φλ, we obtain the �1-regularizer φ∗
λ := φ�1

λ and Moreau’s envelope function

Φ∗
λ of the �1-regularizer (see figure 9.2).
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Figure 9.2: Comparison of Φλ(x) (left) and Φ∗
λ(y) (right) for the primal applica-

tion of the AL method to the one-dimensional �1-problem.

Now, from figure 9.2, we can see that the envelope function Φ∗
λ(y) is

quadratic for |y| ≤ λ, which corresponds to inactive components and is

linear for |y| > λ, which corresponds to active components. Thus, we need

to compute the terms in the envelope function Φ∗
λ that correspond to both

the active and the inactive components. Moreover, for the active components

the envelope function behaves like a linear function around the minimum,

which might be difficult to optimize, especially when combined with a loss

function that is not strongly convex.

9.4.5 Super-linear Convergence of DAL

The asymptotic convergence rate of the DAL approach is guaranteed by

classic results (see Rockafellar (1976a); Kort and Bertsekas (1976)) under

mild conditions even when the inner minimization (9.25) is carried out

only approximately. However, the condition to stop the inner minimization

proposed in Rockafellar (1976a) is often difficult to check in practice. In

addition, the analysis in Kort and Bertsekas (1976) assumes strong convexity

of the objective. In our setting, the dual objective (9.19) is not necessarily

strongly convex as a function of α and v; thus we cannot directly apply

the result of Kort and Bertsekas (1976) to our problem, though the result

is very similar to ours.

Here we provide a non-asymptotic convergence rate of DAL, which gener-

alizes theorem 9.1 to allow for approximate inner minimization (9.25) with

a practical stopping criterion.

Theorem 9.4. Let x1,x2, . . . be the sequence generated by the DAL algo-
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rithm (9.25)-(9.26) and let x∗ be a minimizer of the objective function f .

Assume the same condition (A1) as in theorem 9.1 and in addition assume

that the following conditions hold:

(A2) The loss function f� has a Lipschitz continuous gradient with modulus

1/γ, that is,

‖∇f�(z)−∇f�(z
′)‖ ≤ 1

γ
‖z − z′‖ (∀z, z′ ∈ R

m). (9.33)

(A3) The proximity operator corresponding to φλ can be computed exactly.

(A4) The inner minimization (9.25) is solved to the following tolerance:

‖∇ϕt(α
t+1)‖ ≤

√
γ

ηt
‖xt+1 − xt‖,

where γ is the constant in assumption (A2).

Under assumptions (A1)-(A4), the following inequality is true:

‖xt+1 − x∗‖
1+ασηt
1+2σηt ≤ 1√

1 + 2σηt
‖xt − x∗‖.

That is, xt converges to x∗ super-linearly if α < 2 or α = 2 and ηt is

increasing.

Proof. See Tomioka et al. (2010a).

Note that the above stopping criterion (A4) is computable, since the

Lipschitz constant γ depends only on the loss function used and not on

the data matrix A. Although the constant σ in assumption (A1) is difficult

to quantify in practice, it is enough to know that it exists, because we do not

need σ to compute the stopping criterion (A4). See Tomioka et al. (2010a)

for more details.

9.5 Connections

The AL formulation in the dual is connected to various operator theoretic

algorithms in the primal. We have already seen that the exact application

of DAL corresponds to the proximal point algorithm in the primal (sec-

tion 9.4.2). In this section, we show that two well-known operator splitting

algorithms—forward-backward splitting and Douglas-Rachford splitting in

the primal—can be regarded as approximate computations of the DAL ap-

proach. The results in this section are not novel and are based on Lions and

Mercier (1979); Eckstein and Bertsekas (1992); Tseng (1991), see also recent
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Table 9.2: Primal-dual correspondence of operator splitting algorithms and aug-
mented Lagrangian algorithms

Primal Dual

Exact Proximal minimization Augmented Lagrangian
algorithm (Rockafellar,
1976b)

Approximation Forward-backward splitting Alternating minimiza-
tion algorithm (Tseng,
1991)

Douglas-Rachford splitting Alternating direction
method of multipli-
ers (Gabay and Mercier,
1976)

reviews in Yin et al. (2008); Setzer (2010); Combettes and Pesquet (2010).

The methods we discuss in this section are summarized in table 9.2.

Note that these approximations are most valuable when the inner min-

imization problem (9.22) is not easy to minimize. In Goldstein and Osher

(2009), an approximate AL method was applied to a structured sparse esti-

mation problem, namely, the total variation denoising.

In this section we use the notation L(x) = f�(Ax) for simplicity, since the

discussions do not require the separation between the loss function and the

design matrix as in section 9.4.

9.5.1 Forward-Backward Splitting

When the loss function L is differentiable, replacing the inner minimiza-

tion (9.22) with the following sequential minimization steps

αt+1 = argmin
α∈Rm

J0(α,vt;xt), (9.34)

vt+1 = argmin
v∈Rn

Jηt
(αt+1,v;xt) (9.35)

gives the forward-backward splitting (FBS) algorithm (Lions and Mercier,

1979; Combettes and Wajs, 2005; Combettes and Pesquet, 2010):

xt+1 = proxφληt

(
xt − ηt∇L(xt)

)
. (9.36)

Note that in the first step (9.34), the ordinary Lagrangian (η = 0) is used

and the augmented Lagrangian is used only in the second step (9.35). The

above sequential procedure is proposed in Han and Lou (1988) and analyzed

in Tseng (1991) under the name “alternating minimization algorithm”.
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The FBS algorithm was proposed in the context of finding a zero of the

operator equation (9.2). When the operator A is single valued, the operator

equation (9.2) implies

(I + ηB)(x) & (I − ηA)(x).

This motivates us to use the iteration

xt+1 = (I + ηB)−1(I − ηA)(xt).

The above iteration converges to the solution of the operator equation (9.2)

if A is Lipschitz continuous and the step size η is small enough (see Lions

and Mercier (1979); Combettes and Wajs (2005)). The iteration (9.36) is ob-

tained by identifying A = ∇L and B = ∂φλ. Intuitively, the FBS algorithm

takes an explicit (forward) gradient step with respect to the differentiable

term L and then takes an implicit (backward) gradient step (9.17) with

respect to the nondifferentiable term φλ.

The FBS algorithm is also known as the iterative shrinkage/thresholding

(IST) algorithm (see Figueiredo and Nowak (2003); Daubechies et al. (2004);

Figueiredo et al. (2007); Wright et al. (2009); Beck and Teboulle (2009) and

the references therein). The FBS algorithm converges as fast as the gradient

descent on the loss term in problem (9.3). For example, when the loss term

has a Lipschitz continuous gradient and is strongly convex, it converges

linearly (Tseng, 1991). However, this is rarely the case in sparse estimation

because typically the number of unknowns n is larger than the number

of observations m. Beck and Teboulle (2009) proved that FBS converges

as O(1/k) without the strong convexity assumption. However, since the

Lipschitz constant depends on the design matrix A, it is difficult to quantify

it for a machine learning problem. Nesterov (2007) and Beck and Teboulle

(2009) proposed accelerated IST algorithms that converge as O(1/k2), which

is also optimal under the first-order black-box model (Nesterov, 2007). The

connection between the accelerated IST algorithm and the operator splitting

framework is unknown.

9.5.2 Douglas-Rachford Splitting

Another commonly used approximation to minimize the inner objective

function (9.22) is to perform minimization with respect to α and v alter-

nately, which is called the alternating direction method of multipliers (Gabay

and Mercier, 1976). This approach is known to be equivalent to the Douglas-

Rachford splitting (DRS) algorithm (Douglas Jr. and Rachford Jr., 1956;

Lions and Mercier, 1979; Eckstein and Bertsekas, 1992; Combettes and Pes-
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quet, 2010) when the proximity parameter ηt is chosen to be constant ηt = η.

Similar to the FBS algorithm, the DRS algorithm splits the operator

equation (9.2) as follows:

(I + ηB)(x) & x− ηy, (I + ηA)(x) & x+ ηy.

Accordingly, starting from some appropriate initial point (x0,y0), the DRS

algorithm performs the iteration(
xt+1, ηyt+1

)
= decompηA

(
(I + ηB)−1(xt − ηyt) + ηyt

)
,

where with a slight abuse of notation, we denote by (x,y) = decompA (z)

the decomposition x+ y = z with x = (I +A)−1(z). Note that this implies

y ∈ A(x); see the original definition (9.7).

Turning back to the DAL algorithm (9.22)-(9.23), due to the symmetry

between α and v, there are two ways to convert the DAL algorithm to a

DRS algorithm. First, by replacing the inner minimization (9.22) with the

steps

vt+1 = argmin
v∈Rn

Jη(α
t,v;xt), αt+1 = argmin

α∈Rm

Jη(α,vt+1;xt),

we obtain the (primal) DRS algorithm:(
xt+1,−ηATαt+1

)
= decompηL

(
proxφλη

(
xt + ηATαt

)− ηATαt
)
,

(9.37)

where (x,y) = decompηL(z) denotes Moreau’s decomposition (9.7). We can

identify A = ∂L and B = ∂φλ in update equation (9.37). This version

of DRS (regularizer inside, loss outside) was considered in Combettes and

Pesquet (2007) for image denoising with non-Gaussian likelihood models.

When the loss function L is differentiable, the update equation (9.37) can

be simplified as follows:

xt+1 = proxηL

(
proxφλη

(xt − η∇L(xt)) + η∇L(xt)
)
,

which more closely resembles the FBS iteration (9.36).

On the other hand, by replacing the inner minimization (9.22) with the

steps

αt+1 = argmin
α∈Rm

Jη(α,vt;xt),

vt+1 = argmin
v∈Rn

Jη(α
t+1,v;xt),
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we obtain another (primal) DRS algorithm:(
xt+1, ηvt+1

)
= decompφλη

(
proxηL(x

t − ηvt) + ηvt
)
. (9.38)

Here, we can identify A = ∂φλ and B = ∂L in the update equation (9.38).

This version of DRS (loss inside, regularizer outside) was proposed by

Goldstein and Osher (2009) as an alternating direction method for the total

variation denoising problem (9.5).

Each step of DRS is a firmly nonexpansive mapping, and thus DRS is

unconditionally stable (Lions and Mercier, 1979), whereas the stability of

FBS depends on the choice of the proximity parameter η. Moreover, DRS

can be applied in both ways (see update equations (9.37) and (9.38)). In

other words, both the loss function L and the regularizer φλ may be nondif-

ferentiable, whereas FBS assumes that the loss function L is differentiable.

However, this also means that both proximity operators need to be imple-

mented for DRS, whereas FBS requires only one of them (Combettes and

Pesquet, 2010).

9.6 Application

In this section, we demonstrate that the trace norm regularizer (9.12) can be

used to learn features from multiple sources and combine them in an optimal

way in a single optimization problem. We also demonstrate that DAL can

efficiently optimize the associated minimization problem.

9.6.1 Problem setting

The problem we solve is a classification problem with multiple matrix-valued

inputs (Tomioka et al., 2010b):

min
W (1),...,W (K),

b∈R

m∑
i=1

�
(∑K

k=1〈X(k)
i , W (k)〉+ b, yi

)
+ λ

K∑
k=1

‖W (k)‖∗,

(9.39)

where the loss function � is the logistic loss function

�(z, y) = log(1 + exp(−yz)), (9.40)

and ‖ · ‖∗ denotes the trace norm (9.12).
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By defining

x =
(
vec(W (1))T , . . . , vec(W (K))T , b

)T
,

f�(z) =

m∑
i=1

�(zi, yi),

A : an m× n matrix whose ith row is given as

Ai =
(
vec(X

(1)
i )T , . . . , vec(X

(K)
i )T , 1

)
,

φλ(x) = λ

K∑
k=1

‖W (k)‖∗,

we can see that problem (9.39) is a special case of problem (9.18).

As a concrete example, we take a data set from a real brain-computer

interface (BCI) experiment, where the task is to predict whether the up-

coming voluntary finger movement is either right or left hand from the

electroencephalography (EEG) measurements (Blankertz et al., 2002). The

data set is publicly available through the BCI competition 2003 (data set

IV) (Blankertz et al., 2004). More specifically, the data set consists of short

segments of 28 channel multivariate signals of length 50 (500 ms long at 100

Hz sampling). The training set consists of m = 316 input segments (159 left

and 157 right), and we tested the classifier on a separate test set consisting

of 100 test segments.

Following the preprocessing used in Tomioka and Müller (2010), we com-

pute three matrices from each segment. The first matrix is 28 × 50 and is

obtained directly from the original signal by low-pass filtering at 20Hz. The

second matrix is 28×28 and is derived by computing the covariance between

the channels in the frequency band 7–15Hz (known as the α-band). Finally,

the third matrix is 28× 28 and is computed similarly to the second matrix

in the frequency band 15–30Hz (known as the β-band). The total number

of unknown variables is n = 2969.

We chose 20 log-linearly separated values of the regularization constant

λ from 10 to 0.001. The proximity parameter is increased geometrically as

ηt = 1, 2, 4, 8, . . .; after 22 iterations it was as large as 221 ' 2.1×106, which

shows that DAL is stable across a wide range of ηt. The Lipschitz constant

γ (see assumption (A2) in theorem 9.4) for the logistic loss (9.40) is γ = 4.

We used the Newton method for the inner minimization problem (9.25). We

implemented DAL in Matlab6. Each optimization was terminated when the

6. The code is available from http://www.ibis.t.u-tokyo.ac.jp/RyotaTomioka/Softwares.
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Figure 9.3: Convergence of DAL algorithm applied to a classification problem
in BCI. The duality gap is plotted against the number of iterations. Each curve
corresponds to a different regularization constant λ (shown on the right). Note that
no warm start is used. Each iteration consumed roughly 1.2 seconds.

duality gap fell below 10−3; see section 9.8.3.

9.6.2 Results

Figure 9.3 shows the sequence of the duality gap obtained by running the

DAL algorithm on 20 different values of the regularization constant λ against

the number of iterations. Note that the vertical axis is logarithmically scaled.

We can see that the convergence of DAL becomes faster as the iteration pro-

ceeds; that is, it converges super-linearly. Each iteration consumed roughly

1.2 seconds on a Linux server with two 3.33 GHz Xeon processors, and the

computation for 20 values of the regularization constant λ took about 350

seconds. Note that applying a simple warm start can significantly speedup

the computation (about 70 percent reduction), but it is not used here be-

cause we are interested in the basic behavior of the DAL algorithm.

Figure 9.4 shows the singular value spectra of the coefficient matrices

W (1), W (2), and W (3) obtained at the regularization constant λ = 0.5456,

which achieved the highest test accuracy, 85 percent. The classifier has se-

lected three components from the first data source (first-order component),

four components from the second data source (second-order (α-band) com-

ponent), and five components from the third data source (second-order (β-

band) component). From the magnitude of the singular values, it seems
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Figure 9.4: Singular value spectra of W (1), W (2), and W (3), which corre-
spond to the first-order component, the second-order (alpha) component, and
the second-order (beta) component, respectively, obtained by solving optimization
problem (9.39) at λ = 0.5456.
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Figure 9.5: The visualization of the left singular vector (filter) and the right
singular vector (time course) corresponding to the largest singular value of W (1).
Both filter and pattern are shown topographically on a head seen from above. The
pattern shows the typical activity captured by the filter. See Tomioka and Müller
(2010) for more details.

that the first-order component and the β-component are the most impor-

tant for the classification, whereas the contribution of the α-component is

less prominent (see Tomioka and Müller (2010)).

Within each data source, the trace norm regularization automatically

learns feature extractors. Figure 9.5 visualizes the spatiotemporal profile of

the learned feature extractor that corresponds to the leading singular value

of W (1) in figure 9.4. The filter (left) and the pattern (center) visualize

the left singular-vector topographically according to the geometry of the

EEG sensors. The time course (right) shows the right singular vector as a

time series. Both the filter and the pattern show a clear lateralized bipolar

structure. This bipolar structure, together with the downward trend in the
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time course is physiologically known as the lateralized readiness potential (or

Bereitschaftspotential) (Cui et al., 1999). Note that the time course starts

630 ms and ends 130 ms prior to the actual movement because the task is

to predict the laterality of the movement before it is executed.

9.7 Summary

In this chapter, we have presented the dual augmented Lagrangian (DAL)

algorithm for sparse estimation problems, and discussed its connections to

proximal minimization and other operator splitting algorithms.

The DAL algorithm is an augmented Lagrangian algorithm (Powell, 1969;

Hestenes, 1969; Rockafellar, 1976b; Bertsekas, 1982) applied to the dual of

the simple sparse estimation problem (9.3). For this problem, the sparsity

of the intermediate solution can effectively be exploited to efficiently solve

the inner minimization problem. This link between the sparsity and the

efficiency distinguishes DAL from other AL algorithms.

We have shown that DAL is equivalent to the proximal minimization algo-

rithm in the primal, which enabled us to rigorously analyze the convergence

rate of DAL through the proximal minimization framework. We have shown

that DAL converges superlinearly even in the case of inexact inner mini-

mization. Importantly, the stopping criterion we used can be computed in

practice; this is because we have separated the loss function f� from the

design matrix A (see section 9.4.1).

The structured sparse estimation problem (9.4) can also be tackled through

augmented Lagrangian algorithms in the primal (see Goldstein and Osher

(2009); Lin et al. (2009)). However, as was discussed in section 9.4.4, for

these algorithms the inner minimization is not easy to carry out exactly,

because the convex conjugate regularizer φ∗
λ does not produce a sparse vector

through the associated proximity operator.

Currently we are interested in how much the insights we gained about

DAL transfer to approximate augmented Lagrangian algorithms, such as

the alternating direction method, applied to the primal problem (structured

sparse estimation) and the dual problem (simple sparse estimation), and the

associated operator splitting methods in their respective dual problems. Ap-

plication of augmented Lagrangian algorithms to kernel methods is another

interesting direction (Suzuki and Tomioka, 2010).
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Appendix: Mathematical Details

9.8.1 Infimal Convolution

Let f : Rn → R and g : Rn → R be two convex functions, and let f∗ and g∗

be their convex conjugate functions, respectively; That is,

f∗(y) = sup
x∈Rn

(〈y, x〉 − f(x)) , g∗(y) = sup
x∈Rn

(〈y, x〉 − g(x)) .

Then,

(f + g)∗(y) = inf
y′∈Rn

(
f∗(y′) + g∗(y − y′)

)
=: (f∗�g∗)(y),

where � denotes the infimal convolution.

See (Rockafellar, 1970, Theorem 16.4) for the proof.

9.8.2 Moreau’s Theorem

Let f : Rn → R be convex and f∗ its conjugate. Then, for x ∈ R
n

proxf (x) + proxf∗(x) = x. (9.41)

Moreover,

f̂(x) + f̂∗(x) =
1

2
‖x‖2, (9.42)

where f̂ is Moreau’s envelope function of f , namely,

f̂(x) = min
x′∈Rn

(
f(x′) +

1

2
‖x′ − x‖2

)
.

Furthermore, the envelope f̂ is differentiable, and its gradient is:

∇f̂(x) = proxf∗(x), ∇f̂∗(x) = proxf (x).

See Moreau (1965) and (Rockafellar, 1970, theorem 31.5) for the proof.

Danskin’s theorem (Bertsekas, 1999, proposition B.25) can also be used to
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show the result. Note that by differentiating both sides of equation (9.42), we

obtain equation (9.41), which confirms the validity of the above statement.

9.8.3 Computation of the Duality Gap

We use the same strategy as in Koh et al. (2007) and Wright et al. (2009)

to compute the duality gap as a stopping criterion for the DAL algorithm.

Let ᾱt := −∇f�(Axt). Note that the vector AT ᾱt does not necessarily

lie in the domain of φ∗
λ in the dual problem (9.19). For trace norm regular-

ization, the domain of φ∗
λ is matrices with maximum singular value equal to

or smaller than λ. Thus we define α̃t = ᾱtmin(1, λ/‖AT ᾱt‖), where ‖ · ‖
is the spectral norm. Notice that ‖AT α̃t‖ ≤ λ by construction. We com-

pute the dual objective value as d(xt) = −f∗
� (−α̃t); and the duality gap is

Gapt = f(xt)− d(xt), where f is the primal objective function (9.18).
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