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Sébastien Bubeck sebastien.bubeck@inria.fr

Sequel Project, INRIA Lille - Nord Europe

Lille, France
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This chapter deals with the problem of making the best use of a finite

number of noisy evaluations to optimize an unknown function. We are

concerned primarily with the case where the function is defined over a finite

set. In this discrete setting, we discuss various objectives for the learner,

from optimizing the allocation of a given budget of evaluations to optimal

stopping time problems with (ε, δ)-PAC guarantees. We also consider the

so-called online optimization framework, where the result of an evaluation is

associated to a reward, and the goal is to maximize the sum of obtained

rewards. In this case, we extend the algorithms to continuous sets and

(weakly) Lipschitzian functions (with respect to a prespecified metric).

16.1 Introduction

In this chapter, we investigate the problem of function optimization with

a finite number of noisy evaluations. While at first one may think that

simple repeated sampling can overcome the difficulty introduced by noisy

evaluations, it is far from being an optimal strategy. Indeed, to make the
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best use of the evaluations, one may want to estimate the seemingly best

options more precisely, while for bad options a rough estimate might be

enough. This reasoning leads to non-trivial algorithms, which depend on the

objective criterion that we set and on how we define the budget constraint on

the number of evaluations. The main mathematical tool that we use to build

good strategies is a set of concentration inequalities that we briefly recall in

section 16.2. Then in section 16.3, we discuss the fundamental case of discrete

optimization under various budget constraints. Finally, in section 16.4 we

consider the case where the optimization has to be performed online, in the

sense that the value of an evaluation can be considered a reward, and the

goal of the learner is to maximize his or her cumulative rewards. In this case,

we also consider the extension to continuous optimization.

16.1.1 Problem Setup and Notation

Consider a finite set of options {1, . . . ,K}, also called actions or arms

(in reference to the multi-armed bandit terminology). To each option i ∈
{1, . . . ,K} we associate a (reward) distribution νi on [0, 1], with mean μi.

Let i∗ denote an optimal arm, that is, μi∗ = max1≤j≤K μj . We denote the

suboptimality gap of option i by Δi = μi∗ − μi, and the minimal positive

gap by Δ = mini:Δi>0Δi. We assume that when one evaluates an option

i, one receives a random variable drawn from the underlying probability

distribution νi (independently from the previous draws). We investigate

strategies that perform sequential evaluations of the options to find the one

with the highest mean. More precisely, at each time step t ∈ N, a strategy

chooses an option It to evaluate. We denote by Ti(t) the number of times we

evaluated option i up to time t, and by X̂i,Ti(t) the empirical mean estimate

of option i at time t (based on Ti(t) i.i.d. random variables). In this chapter,

we consider two objectives for the strategy.

1. The learner possesses an evaluation budget, and once this budget is

exhausted, he or she has to select an option J as the candidate for being the

best option. The performance of the learner is evaluated only through the

quality of option J . This setting corresponds to the pure exploration multi-

armed bandit setting (Bubeck et al., 2009; Audibert et al., 2010). We study

this problem under two different assumptions on the evaluation budget in

Section 16.3.

2. The result of an evaluation is associated to a reward, and the learner

wants to maximize his or her cumulative rewards. This setting corresponds

to the classical multi-armed bandit setting (Robbins, 1952; Lai and Robbins,

1985; Auer et al., 2002). We study this problem in Section 16.4.
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16.2 Concentration Inequalities

In this section, we state the fundamental concentration properties of sums

of random variables. While we do not directly use the following theorems

in this chapter (since we do not provide any proof), this concentration

phenomenon is the cornerstone of our reasoning, and a good understanding

of it is necessary to get the insights behind our proposed algorithms.

We start with the celebrated Hoeffding-Azuma inequality (Hoeffding,

1963) for the sum of martingale differences. See, for instance, Williams

(1991) for an introductory-level textbook on martingales, and Lugosi (1998)

and Massart (2007) for lecture notes on concentration inequalities.

Theorem 16.1 (Hoeffding-Azuma inequality for martingales). Let F1 ⊂
· · · ⊂ Fn be a filtration, and X1, . . . , Xn be real random variables such that

Xt is Ft-measurable, E(Xt|Ft−1) = 0 and Xt ∈ [At, At + ct] where At is a

random variable Ft−1-measurable and ct is a positive constant. Then, for

any ε > 0, we have

P

( n∑
t=1

Xt ≥ ε
)
≤ exp

(
− 2ε2∑n

t=1 c
2
t

)
, (16.1)

or equivalently, for any δ > 0, with probability at least 1− δ, we have

n∑
t=1

Xt ≤
√√√√ log(δ−1)

2

n∑
t=1

c2t . (16.2)

In particular, when X1, . . . , Xn are i.i.d. centered random variables taking

their values in [a, b] for some real numbers a and b, with probability at least

1− δ, we have

n∑
t=1

Xt ≤ (b− a)

√
n log(δ−1)

2
. (16.3)

The next result is a refinement of the previous concentration inequality

which takes into account the variance of the random variables. More precisely

up to a second-order term it replaces the range (squared) of the random

variables with their variances.

Theorem 16.2 (Bernstein’s inequality for martingales). Let F1 ⊂ · · · ⊂ Fn

be a filtration, and X1, . . . , Xn real random variables such that Xt is Ft-

measurable, E(Xt|Ft−1) = 0, |Xt| ≤ b for some b > 0, and E(X2
t |Ft−1) ≤ v
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for some v > 0. Then, for any ε > 0, we have

P

( n∑
t=1

Xt ≥ ε
)
≤ exp

(
− ε2

2nv + 2bε/3

)
, (16.4)

and for any δ > 0, with probability at least 1− δ, we have

n∑
t=1

Xt ≤
√

2nv log(δ−1) +
b log(δ−1)

3
. (16.5)

Inequalities (16.4) and (16.5) are two ways of expressing the concentration

of the mean of i.i.d. random variables. They are almost equivalent to the

extent that up to minor modification of the constants, one can go from (16.4)

to (16.5) and conversely by a change of variables.

The next inequality was proved by Audibert et al. (2009). It allows to

replace the true variance with its empirical estimate in Bernstein’s bound.

Theorem 16.3 (Empirical Bernstein bound). Let X1, . . . , Xn be i.i.d. cen-

tered real random variables in [a, b] for some a, b ∈ R. Then, for any δ > 0

and s ∈ {1, . . . , n}, with probability at least 1− δ, we have

s∑
t=1

Xt ≤
√

2nVs log(3δ−1) + 3(b− a) log(3δ−1),

where Vs =
1
s

∑s
t=1

(
Xt − 1

s

∑s
�=1X�

)2
.

Variants and refinement of this bound can be found in Maurer and Pontil

(2009) and Audibert (2010).

16.3 Discrete Optimization

In this section, we focus on strategies that use a finite budget of evaluations

to find the best option. We consider two different (but related) assumptions

on this budget.

There is a fixed budget of n evaluations (Bubeck et al., 2009; Audibert

et al., 2010). The value of n can be known or unknown by the learner. When

it is unknown, the learner has thus to design an anytime strategy, that is, a

policy with good theoretical guarantees whatever the budget is.

The strategy must stop as soon as possible with the guarantee that an

ε-optimal option has been found with probability at least 1−δ, where ε and

δ are fixed before the procedure starts (Maron and Moore, 1993; Domingo

et al., 2002; Dagum et al., 2000; Even-Dar et al., 2006; Mnih et al., 2008).
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Let A1 = {1, . . . ,K}, log(K) = 1
2 +
∑K

i=2
1
i , n0 = 0 and for k ∈ {1, . . . ,K− 1},

nk =

⌈
1

log(K)

n−K

K + 1− k

⌉
.

For each phase k = 1, 2, . . . ,K − 1:

(1) For each i ∈ Ak, select option i for nk − nk−1 evaluations.

(2) Let Ak+1 = Ak\argmini∈Ak
X̂i,nk

(we remove only one element from Ak; if
there is a tie, randomly select the option to dismiss among the worst options).

Recommend the unique element of AK .

Figure 16.1: SR (successive rejects) algorithm.

16.3.1 Fixed Budget

In this section, the number of evaluations is fixed, and the goal is to make

the best use of the budget. We propose a strategy, that is simple, yet

almost optimal in a strong sense (see theorem 16.4). The algorithm, called

SR (successive rejects) is described precisely in figure 16.1. Informally, it

proceeds as follows. First the algorithm divides the budget (i.e., the n

evaluations) in K − 1 phases. At the end of each phase, the algorithm

dismisses the option with the lowest empirical mean. During the next phase,

it equally often evaluates all the options which have not been dismissed.

The recommended arm J is the last surviving option. The lengths of the

phases are carefully chosen to obtain an optimal (up to a logarithmic factor)

convergence rate. More precisely, one option is evaluated n1 =
⌈

1
log(K)

n−K
K

⌉
times, one n2 =

⌈
1

log(K)
n−K
K−1

⌉
times, ..., and two options are evaluated

nK−1 =
⌈

1
log(K)

n−K
2

⌉
times. SR does not exceed the budget of n evaluations,

since, from the definition log(K) = 1
2 +
∑K

i=2
1
i we have

n1 + . . .+ nK−1 + nK−1 ≤ K +
n−K

log(K)

(
1

2
+

K−1∑
k=1

1

K + 1− k

)
= n.

Theorem 16.4 (Successive rejects). Assume that there is a unique arm i∗

with maximal mean and let H = 1
Δ +
∑

i �=i∗
1
Δi

. Then the probability of error
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of SR satisfies

P(J �= i∗) ≤ K(K − 1)

2
exp

(
− n−K

log(2K)H

)
. (16.6)

Moreover, if ν1, . . . , νK are Bernoulli distributions with parameters in [p, 1−
p], p ∈ (0, 1/2), then for any strategy there exists a permutation σ :

{1, . . . ,K} → {1, . . . ,K} such that the probability of error of the strategy

on the problem defined by ν̃1 = νσ(1), . . . , ν̃K = νσ(K) satisfies

P(J �= i∗) ≥ exp

(
−(5 + o(1))n log(2K)

p(1− p)H

)
, (16.7)

where the o(1) term depends only on K and n, and goes to 0 when n goes

to infinity.

16.3.1.1 Interpretation of Theorem 16.4

Essentially, equation (16.6) indicates that if the number of evaluations is on

the order of H log2K, then SR finds the best option with high probability.

On the other hand, equation (16.7) shows that it is statistically impossible

to find the best option with fewer than (order of) H/ logK evaluations.

Thus H is a good measure of the hardness of the task; it characterizes the

order of magnitude of the number of evaluations required to find the best

option with a reasonable probability.

Closing the logarithmic gap between the upper and lower bounds in

theorem 16.4 is an open problem. Audibert et al. (2010) exhibit an algorithm

which requires only (on the order of) H log n evaluations to find the best

option with high probability. However, this algorithm needs to know the

value of H to tune its parameters. One can overcome this difficulty by trying

to estimate H online, which leads to the algorithm Adaptive UCB-E that is

described precisely in figure 16.2. We do not give any further details about

this algorithm and refer the interested reader to Audibert et al. (2010);

we simply point out that in our numerical simulations, Adaptive UCB-E

outperformed SR.

16.3.1.2 Anytime Versions of SR and Adaptive UCB-E.

Both algorithms that we propose depend heavily on the knowledge of the

number of evaluations n. However in many natural cases this number is only

implicitly defined (for instance through CPU time). Thus, it is important

to have strategies which do not need to know the time horizon in advance.
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Parameter: exploration rate c > 0.

Definitions: For k ∈ {1, . . . ,K − 1}, let nk =
⌈

1
log(K)

n−K
K+1−k

⌉
, t0 = 0,

t1 = Kn1, and for k > 1, tk = n1 + . . . nk−1 + (K − k + 1)nk.
For i ∈ {1, . . . ,K} and a > 0, let Bi,s(a) = X̂i,s+

√
a
s for s ≥ 1 and Bi,0 = +∞.

Algorithm: For each phase k = 0, 1, . . . ,K − 1:
Let Ĥk = K if k = 0, and otherwise

Ĥk = max
K−k+1≤i≤K

iΔ̂−2
<i>,

where Δ̂i =
(
max1≤j≤K X̂j,Tj(tk)

) − X̂i,Ti(tk) and < i > is an ordering such

that Δ̂<1> ≤ . . . ≤ Δ̂<K>.

For t = tk + 1, . . . , tk+1:
Evaluate It ∈ argmaxi∈{1,...,K} Bi,Ti(t−1)(cn/Ĥk).

Recommendation: Let J ∈ argmaxi∈{1,...,K} X̂i,Ti(n).

Figure 16.2: Adaptive UCB-E (Upper Confidence Bound Exploration).

One simple and famous trick for this purpose is the doubling trick. The idea

is to introduce metaphases, s = 1, 2, . . . , such that from the evaluations

t = 2s−1 + 1 to t = 2s, one runs a new instance of the algorithm with n

replaced by 2s−1. While it is often assumed that the new instance of the

algorithm does not use the samples obtained in the previous phases, here we

do not need to make this assumption. For instance, the anytime version of SR

would work as follows. At time 2s there is only one surviving option. Then

at time 2s+1 we “revive” all the options and run SR with n replaced by 2s+1

(to define the length of the phases of SR). However, the empirical mean of

each option is computed over the whole run of the algorithm, starting with

t = 1.

16.3.2 Hoeffding and Bernstein Races

Racing algorithms aim to reduce the computational burden of performing

tasks such as model selection using a holdout set by discarding poor models

quickly (Maron and Moore, 1993; Ortiz and Kaelbling, 2000). A racing

algorithm terminates either when it runs out of time (i.e., at the end of

the n-th round) or when it can say that with probability at least 1 − δ, it

has found the best option, that is, an option i∗ ∈ argmaxi∈{1,...,K} μi. The

goal is to stop as soon as possible, and the time constraint n is here to stop

the algorithm when the two best options have (almost) equal mean rewards.



438 Bandit View on Noisy Optimization

Parameter: the confidence level δ.

Let A = {1, . . . ,K} and t = 1

While |A| > 1

(1) sample every option in A for the t-th time.

(2) remove from A all the options having an empirical mean differing from the
highest empirical mean by more than

√
2 log(nK/δ)/t, that is,

A← A \
{
j ∈ A : X̂j,t ≤ max

1≤i≤K
X̂i,t −

√
2 log(nK/δ)

t

}
.

(3) t← t+ 1.

Output the unique element of A.

Figure 16.3: Hoeffding race.

The Hoeffding race introduced by Maron and Moore (1993) is an algorithm

based on discarding options which are likely to have a smaller mean than the

optimal one until only one option remains. Precisely, for each time step and

each option i, δ/(nK)-confidence intervals are constructed for the mean μi.

Options with an upper confidence bound smaller than the lower confidence

bound of another option are discarded. The algorithm samples one by one

all the options that have not been discarded. The process is detailed in

Figure 16.3. The correctness of this algorithm is proved by Maron and Moore

(1993), and its sample complexity is given by the following theorem (Even-

Dar et al., 2006; Mnih et al., 2008).

Theorem 16.5 (Hoeffding race). With probability at least 1−δ, the optimal

option is not discarded, and the non-discarded option(s) (which can be

multiple when the algorithm runs out of time) satisfy(ies)

Δi = O

(√
log(nK/δ)

n/K

)
.

Besides, if there is a unique optimal arm i∗, with probability at least 1− δ,

the Hoeffding race stops after at most O
(∑

i �=i∗
1
Δ2

i
log
(
nK
δ

))
time steps.

Empirical and theoretical studies show that replacing the Hoeffding in-

equality with the empirical Bernstein bound to build the confidence intervals

generally leads to significant improvements. The algorithm based on the em-

pirical Bernstein bound is described in Figure 16.4. Theorem 16.6 provides
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its theoretical guarantee, and table 16.1 shows the percentage of work saved

by each method (1− number of samples taken by method divided by nK),

as well as the number of options remaining after termination (see Mnih et al.

(2008) for a more detailed description of the experiments).

Theorem 16.6 (Bernstein race). Let σi denote the standard deviation of

νi. With probability at least 1 − δ, the optimal option is not discarded, and

the non-discarded option(s) (which can be multiple when the algorithm runs

out of time) satisfy(ies)

Δi = O

(
(σi + σi∗)

√
log(nK/δ)

n/K
+

log(nK/δ)

n/K

)
.

Besides, if there is a unique optimal arm i∗, with probability at least 1− δ,

the Bernstein race stops after at most O
(∑

i �=i∗
σ2
i+σ2

i∗+Δi

Δ2
i

log
(
nK
δ

))
time

steps.

Parameter: the confidence level δ.

Let A = {1, . . . ,K} and t = 1

While |A| > 1

(1) sample every option in A for the t-th time.

(2) remove suboptimal options from A:

A← A \
{
j ∈ A : X̂j,t +

√
2Vj,t log(nK/δ)

t
+ 6

log(nK/δ)

t

≤ max
1≤i≤K

(
X̂i,t −

√
2Vi,t log(nK/δ)

t

)}
,

where Vi,t =
1
t

∑t
s=1

(
Xi,s − X̂i,t

)2
is the empirical variance of option i.

(3) t← t+ 1.

Output the unique element of A.

Figure 16.4: Bernstein race.
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Data set Hoeffding Empirical Bernstein

SARCOS 0.0% / 11 44.9% / 4
Covertype2 14.9% / 8 29.3% / 5
Local 6.0% / 9 33.1% / 6

Table 16.1: Percentage of work saved/number of options left after termination

16.3.3 Optimal Stopping Times

Section 16.3.3.1 takes a step back since it considers the single option case

(that is, when K = 1). The additive and multiplicative stopping time

problems are tackled there. Section 16.3.3.2 then deals with the multiple

options case for the additive stopping time problem.

16.3.3.1 For a Single Option

Algorithms described in section 16.3 rely on either the Hoeffding or the

(empirical) Bernstein inequality, and on a probabilistic union bound corre-

sponding to both the different options and the different time steps. Maximal

inequalities based on a martingale argument due to Doob (1953) (see also

Freedman (1975) for maximal inequalities more similar to the one below)

allow one to reduce the impact on the confidence levels of the union bound

across time steps. Precisely, one can write the following version of the em-

pirical Bernstein inequality, which holds uniformly over time.

Theorem 16.7. Let X1, . . . , Xn be n ≥ 1 i.i.d. random variables taking

their values in [a, b]. Let μ = EX1 be their common expected value. For

any 1 ≤ t ≤ n, introduce the empirical mean X̂t and variance Vt, defined

respectively by

X̂t =

∑t
i=1Xi

t
and Vt =

∑t
i=1(Xi − X̂t)

2

t
.

For any x > 0, with probability at least

1− 3 inf
1<α≤3

min
( log n
logα

, n
)
e−x/α, (16.8)

the following inequality holds simultaneously for any t ∈ {1, 2, . . . , n}:

|X̂t − μ| ≤
√

2Vtx

t
+

3(b− a)x

t
. (16.9)

This theorem allows one to address the additive stopping time problem in

which the learner stops sampling an unknown distribution ν supported in
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[a, b] as soon as it can output an estimate μ̂ of the mean μ of ν with additive

error at most ε with probability at least 1− δ, that is,

P
(|μ̂− μ| ≤ ε

) ≥ 1− δ, (16.10)

with the time constraint that the learner is not allowed to sample more than

n times. Indeed, from Theorem 16.7, it suffices to stop sampling at time t

such that the right-hand side of (16.9) is below ε where x is set such that

(16.8) equals 1 − δ. Besides, it can be shown that the sampling complexity

is in expectation

O

((
log(δ−1) + log

(
log(3n)

))
max

(
σ2

ε2
,
b− a

ε

))
,

where σ2 is the variance of the sampling distribution. This is optimal up to

the log-log term.

In the multiplicative stopping time problem, the learner stops sampling

an unknown distribution ν supported in [a, b] as soon as it can output an

estimate μ̂ of the mean μ of ν with relative error at most ε with probability

at least 1− δ, that is,

P
(|μ̂− μ| ≤ ε|μ|) ≥ 1− δ, (16.11)

with the time constraint that the learner is not allowed to sample more

than n times. The multiplicative stopping time problem is similar to the

additive one, except when μ is close to 0 (but nonzero). Considering relative

errors introduces an asymmetry between the left and right bounds of the

confidence intervals, which requires more involved algorithms to get better

practical performances. The state-of-the-art method to handle the task is

the geometric empirical Bernstein stopping proposed by Mnih et al. (2008)

and detailed in Figure 16.5. A slightly refined version is given in Audibert

(2010).

It uses a geometric grid and parameters ensuring that the event E =

{|X̂t − μ| ≤ ct, t ≥ t1} occurs with probability at least 1 − δ. It oper-

ates by maintaining a lower bound, LB, and an upper bound, UB, on the

absolute value of the mean of the random variable being sampled, ter-

minates when (1 + ε)LB < (1 − ε)UB, and returns the mean estimate

μ̂ = sign(X̂t)
(1+ε)LB+(1−ε)UB

2 . Mnih et al. (2008) proved that the output

satisfies (16.11) and that the expected stopping time of the policy is

O

((
log
(1
δ

)
+ log

(
log

3

ε|μ|
))

max

(
σ2

ε2μ2
,
b− a

ε|μ|
))

.
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Parameters: q > 0, t1 ≥ 1, and α > 1 defining the geometric grid tk = +αtk−1,.
(Good default choice: q = 0.1, t1 = 20, and α = 1.1.)

Initialization:
c = 3

δtq1(1−α−q)

LB ← 0
UB ←∞
For t = 1, . . . , t1 − 1,

sample Xt from ν
End For

For k = 1, 2, . . . ,
For t = tk, . . . , tk+1 − 1,
sample Xt from ν
compute �t =

tk+1

t2 log(ctqk) and ct =
√
2�tVt + 3(b− a)�t

LB ← max(LB, |X̂t| − ct)
UB ← min(UB, |X̂t|+ ct)
If (1 + ε)LB < (1− ε)UB, Then

stop simulating X and return the mean estimate
sign(X̂t)

(1+ε)LB+(1−ε)UB
2 End If

End For
End For

Figure 16.5: Geometric empirical Bernstein stopping rule.

Up to the log-log term, this is optimal from the work of Dagum et al. (2000).

16.3.3.2 For Multiple Options

Let us go back to the case where we consider K > 1 options. A natural

variant of the best option identification problems addressed in sections 16.3.1

and 16.3.2 is to find, with high probability, a near-optimal option while not

sampling for too long a time. Precisely, the learner wants to stop sampling

as soon as he or she can say that with probability at least 1 − δ, he or she

has identified an option i with μi ≥ max1≤j≤K μj − ε. An algorithm solving

this problem will be called an (ε, δ)-correct policy. A simple way to get such

a policy is to adapt the Hoeffding or Bernstein race (figures 16.3 and 16.4)

by adding an ε in the right-hand side of the inequality defining the removal

step. It can easily be shown that this strategy is (ε, δ)-correct and has an

expected sampling time of O
(
K
ε2 log

(
nK
δ

))
. This is minimax optimal up to

the log(nK) term in view of the following lower bound due to Mannor and

Tsitsiklis (2004).

Theorem 16.8 (Additive optimal sampling lower bound). There exist
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positive constants c1, c2 such that for any K ≥ 2, 0 < δ < 1/250,

0 < ε < 1/8, and any (ε, δ)-correct policy, there exist distributions ν1, . . . , νK
on [0, 1] such that the average stopping time of the policy is greater than

c1
K
ε2 log

(
c2
δ

)
.

Parameters: ε > 0, δ > 0.

Let A = {1, . . . ,K}, ε̃ = ε/4 and δ̃ = δ/2.

While |A| > 1

(1) sample every option in A for
⌊

4
ε̃2 log(3/δ̃)

⌋
times.

(2) remove from A suboptimal options:

A← A \ {j ∈ A : X̂j,t is smaller than the median of (X̂i,t)i∈A

}
,

(3) ε̃← 3
4 ε̃ and δ̃ ← 1

2 δ̃.

Output the unique element of A.

Figure 16.6: Median elimination.

Even-Dar et al. (2006) propose a policy, called median elimination (de-

tailed in figure 16.6), with a sampling complexity matching the previous

lower bound according to the following sampling complexity result.

Theorem 16.9 (Median elimination). The median elimination algorithm is

(ε, δ)-correct and stops after at most O
(
K
ε2 log

(
2
δ

))
.

16.4 Online Optimization

In this section we consider a setting different from the one presented in

section 16.3. We assume that the result of an evaluation is associated to

a reward, and the objective is to maximize the sum of obtained rewards.

This notion induces an explicit trade-off between exploration and exploita-

tion: at each time step the strategy has to balance between trying to obtain

more information about the options and selecting the option which seems to

yield (in expectation) the highest rewards. As we shall see in section 16.4.1,

good strategies perform both exploration and exploitation at the same time.

This framework is known as the multi-armed bandit problem. It was
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introduced by Robbins (1952). Since about 2000 there has been a flurry of

activity around this type of problem, with many different extensions. In this

section we concentrate on the basic version where there is a finite number

of options, as well as on the extension to an arbitrary set of options with a

Lipschitz assumption on the mapping from options to expected rewards. A

more extensive review of the existing literature (as well as the proofs of the

results of section 16.4.1) can be found in Bubeck (2010, chapter 2).

16.4.1 Discrete Case

We propose three strategies for the case of a finite number of options. We

describe these algorithms in figure 16.7. They are all based on the same

underlying principle: optimism in face of uncertainty. More precisely, these

methods assign an upper confidence bound on the mean reward of each

option (which holds with high probability), and then select the option with

the highest bound.

We now review the theoretical performances of the proposed strategies,

and briefly discuss the implications of the different results. In particular, as

we shall see, none of these strategies is uniformly (over all possible K-tuple

of distributions) better (in the sense that it would have a larger expected

sum of rewards) than the others.

To assess a strategy, we use the expected cumulative regret, defined as

Rn = n max
1≤i≤K

μi −
n∑

t=1

EμIt .

That is, Rn represents the difference in expected reward between the optimal

strategy (which always selects the best option) and the strategy we used.

16.4.1.1 UCB (Auer et al., 2002).

This strategy relies on the basic Hoeffding’s inequality (16.3) to build the

upper confidence bound. This leads to a simple and natural algorithm, yet

one that is almost optimal. More precisely, the distribution-dependent upper

bound (16.12) has the optimal logarithmic rate in n, but not the optimal

distribution-dependent constant (see theorem 16.13 for the corresponding

lower bound). On the other hand, the distribution-free upper bound (16.13)

is optimal up to a logarithmic term (see theorem 16.14 for the corresponding

lower bound). The two other strategies, UCB-V and MOSS, are designed to

improve on these weaknesses.

Theorem 16.10 (Upper Confidence Bound algorithm). UCB with α > 1/2
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UCB (Upper Confidence Bound), UCB-V (Upper Confidence Bound with Vari-
ance), and MOSS (Minimax Optimal Strategy for the Stochastic case):

Parameter: exploration rate α > 0.

For an arm i, define its index Bi,s,t by

UCB index: Bi,s,t = X̂i,s +

√
α log(t)

s
,

UCB-V index: Bi,s,t = X̂i,s +

√
2αVi,s log(t)

s
+ 3α

log(t)

s
,

MOSS index: Bi,s,t = X̂i,s +

√
max

(
log( n

Ks ) , 0
)

s
,

for s, t ≥ 1, and Bi,0,t = +∞.
At time t, evaluate an option It maximizing Bi,Ti(t−1),t, where Ti(t−1) denotes
the number of times we evaluated option i during the t− 1 first steps.

Figure 16.7: Upper confidence bound-based policies.

satisfies

Rn ≤
∑

i:Δi>0

4α

Δi
log(n) + Δi

(
1 +

4

log(α+ 1/2)

(
α+ 1/2

α− 1/2

)2
)
, (16.12)

and

Rn ≤
√√√√nK

(
4α log n+ 1 +

4

log(α+ 1/2)

(
α+ 1/2

α− 1/2

)2
)
. (16.13)

16.4.1.2 UCB-V (Audibert et al., 2009).

Here the confidence intervals are derived from an empirical version of

Bernstein’s inequality (see theorem 16.3). This leads to an improvement in

the distribution-dependent rate, where basically one can replace the range

of the distributions with their variances.

Theorem 16.11 (Upper Confidence Bound with Variance algorithm).
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UCB-V with α > 1 satisfies1

Rn ≤ 8α
∑

i:Δi>0

(
σ2
i

Δi
+ 2

)
log(n)+Δi

(
2 +

12

log(α+ 1)

(
α+ 1

α− 1

)2
)
. (16.14)

16.4.1.3 MOSS (Audibert and Bubeck, 2009).

In this second modification of UCB, one combines the Hoeffding-type confi-

dence intervals by using a tight peeling device. This leads to a minimax strat-

egy, in the sense that the distribution-free upper bound (16.16) is optimal

up to a numerical constant. On the other hand, the distribution-dependent

bound (16.15) can be slightly worse than the one for UCB. Note also that,

contrary to UCB and UCB-V, MOSS needs to know in advance the number

of evaluations. Again, one can overcome this difficulty with the doubling

trick.

Theorem 16.12 (Minimax Optimal Strategy for the Stochastic case).

MOSS satisfies

Rn ≤ 23K

Δ
log

(
max

(
110nΔ2

K
, 104

))
(16.15)

and

Rn ≤ 25
√
nK. (16.16)

16.4.1.4 Lower Bounds (Lai and Robbins, 1985; Auer et al., 2003).

For the sake of completeness, we state here the two main lower bounds

for multi-armed bandits. In theorem 16.13, we use the Kullback-Leibler

divergence between two Bernoulli distributions of parameters p, q ∈ (0, 1),

defined as

KL(p, q) = p log

(
p

q

)
+ (1− p) log

(
1− p

1− q

)
.

1. In the context of UCB-V it is interesting to see the influence of the range of the
distributions. Precisely, if the support of all distributions νi are included in [0, b], and if
one uses the upper confidence bound sequence Bi,s,t = X̂i,s+

√
2αVi,s log(t)/s+3bα log(t)

s
,

then one can easily prove that the leading constant in the bound becomes
σ2
i

Δi
+2b, which

can be much smaller than the b2/Δi factor characterizing the regret bound of UCB.
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A useful inequality to compare the lower bound of theorem 16.13 with (16.12)

and (16.14) is the following:

2(p− q)2 ≤ KL(p, q) ≤ (p− q)2

q(1− q)
.

Theorem 16.13 (Distribution-dependent lower bound). Let us consider a

strategy such that for any set of K distributions, any arm i such that Δi > 0

and any a > 0, we have ETi(n) = o(na). Then, if ν1, . . . , νK are Bernoulli

distributions, all different from a Dirac distribution at 1, the following holds

true:

lim inf
n→+∞

Rn

log n
≥
∑

i:Δi>0

Δi

KL(μi,max1≤j≤K μj)
. (16.17)

An extension of Theorem 16.13 can be found in Burnetas and Katehakis

(1996).

Theorem 16.14 (Distribution-free lower bound). Let sup represent the

supremum taken over all sets of K distributions on [0, 1] and inf the infimum

taken over all strategies. Then the following holds true:

inf supRn ≥ 1

20

√
nK. (16.18)

16.4.2 Continuous Case

In many natural examples, the number of options is extremely large, poten-

tially infinite. One particularly important and ubiquitous case is when the

set of options is identified by a finite number of continuous-valued parame-

ters. Unfortunately, this type of problem can be arbitrarily difficult without

further assumptions. One standard way to constrain the problem is to make

a smoothness assumption on the mapping from options to expected reward

(the mean payoff function). In this section we present the approach pro-

posed in Bubeck et al. (2008), where there is essentially a weak compactness

assumption on the set of options, and a weak Lipschitz assumption on the

mean payoff. We make these assumptions more precise in section 16.4.3.

Then section 16.4.4 details the algorithm called HOO (Hierarchical Opti-

mistic Optimization), which is based on the recent successful tree optimiza-

tion algorithms (Kocsis and Szepesvári, 2006; Coquelin and Munos, 2007).

Finally, section 16.4.5 provides the theoretical guarantees that one can de-

rive for HOO. The latter can be informally summed up as follows: if one

knows the local smoothness of the mean payoff function around its maxi-

mum, then with n evaluations it is possible to find an option which is (on

the order of) 1/
√
n-optimal (no matter what the ambient dimension is).
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16.4.3 Assumptions and Notation

Let X denote the set of options, f the mean payoff function, and f∗ =

supx∈X f(x) the supremum of f over X. Recall that when one evaluates a

point x ∈ X, one receives an independent random variable in [0, 1] with

expectation f(x). Let Xt be the tth point that one chooses to evaluate.

As we said, one needs to place some restriction on the set of possible mean

payoff functions. We shall do this by resorting to some (weakly) Lipschitz

condition. However, somewhat unconventionally, we shall use dissimilarity

functions rather than metric distances, which allows us to deal with function

classes of highly different smoothness orders in a unified manner. Formally,

a dissimilarity � over X is a non-negative mapping � : X2 → R satisfying

�(x, x) = 0 for all x ∈ X. The weakly Lipschitz assumption on the mean

payoff requires that for all x, y ∈ X,

f∗ − f(y) ≤ f∗ − f(x) + max
{
f∗ − f(x), �(x, y)

}
. (16.19)

The choice of this terminology follows from the fact that if f is 1–Lipschitz

w.r.t. �, so that for all x, y ∈ X, one has |f(x) − f(y)| ≤ �(x, y), then it

is also weakly Lipschitz w.r.t. �. On the other hand, weak Lipschitzness is

a milder requirement. It implies local (one-sided) 1–Lipschitzness at any

global maximum (if one exists) x∗ (i.e., such that f(x∗) = f∗), since in that

case the criterion (16.19) rewrites to f(x∗)− f(y) ≤ �(x∗, y). In the vicinity

of other options x, the constraint is milder as the option x gets worse (as

f∗ − f(x) increases) since the condition (16.19) rewrites to

∀ y ∈ X, f(x)− f(y) ≤ max
{
f∗ − f(x), �(x, y)

}
.

In fact, it is possible to relax (16.19) and require it only to hold locally at

the global maximum (or the set of maxima if there are several). We refer

the interested reader to Bubeck et al. (2010) for further details.

We also make a mild assumption on the set X which can be viewed as

some sort of compacity w.r.t. �. More precisely, we assume that there exists

a sequence (Ph,i)h≥0,1≤i≤2h of subsets of X satisfying

P0,1 = X, and for all h ≥ 0, 1 ≤ i ≤ 2h, Ph,i = Ph+1,2i−1 ∪ Ph,2i.

There exist ν1, ν2 > 0 and ρ ∈ (0, 1) such that each Ph,i is included in a

ball of radius ν1ρ
h (w.r.t. �) and contains a ball of radius ν2ρ

h. Moreover,

for a given h, the balls of radius ν2ρ
h are all disjoint.

Intuitively, for a given h, the sets (Ph,i)1≤i≤2h represent a covering of X at

“scale” h.

The proposed algorithm takes this sequence of subsets and the real num-
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bers ν1, ρ as inputs. Moreover, the sequence (Ph,i) will be represented as an

infinite binary tree, where the nodes are indexed by pairs of integers (h, i),

such that the nodes (h+ 1, 2i− 1) and (h+ 1, 2i) are the children of (h, i).

The subset Ph,i is associated with node (h, i).

16.4.4 The Hierarchical Optimistic Optimization (HOO) Strategy

The HOO strategy (see algorithm 16.1) incrementally builds an estimate of

the mean payoff function f over X. The core idea is to estimate f precisely

around its maxima, while estimating it loosely in other parts of the space

X. To implement this idea, HOO maintains the binary tree described in

section 16.4.3, whose nodes are associated with subsets of X such that the

regions associated with nodes deeper in the tree (farther from the root)

represent increasingly smaller subsets of X. The tree is built in an incre-

mental manner. At each node of the tree, HOO stores some statistics based

on the information received in previous evaluations. In particular, HOO

keeps track of the number of times a node was traversed up to round n and

the corresponding empirical average of the rewards received so far. Based

on these, HOO assigns an optimistic estimate (denoted by B) to the max-

imum mean payoff associated with each node. These estimates are then

used to select the next node to “play”. This is done by traversing the tree,

beginning from the root and always following the node with the highest

B–value (see lines 4–14 of algorithm 16.1). Once a node is selected, a point

in the region associated with it is chosen (line 16) and is evaluated. Based on

the point selected and the reward received, the tree is updated (lines 18–33).

Note that the total running time up to the nth evaluation is quadratic

in n. However, it is possible to modify the algorithm slightly to obtain a

running time of order O(n log n). The details can be found in Bubeck et al.

(2010).

16.4.5 Regret Bound for HOO

In this section, we show that the regret of HOO depends on how fast the

volumes of the set Xε of ε–optimal options shrink as ε → 0. We formalize

this notion with the near-optimality dimension of the mean payoff function.

We start by recalling the definition of packing numbers.

Definition 16.1 (Packing number). The ε–packing number N(X, �, ε) of

X w.r.t. the dissimilarity � is the largest integer k such that there exist k

disjoint �–open balls with radius ε contained in X.
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Algorithm 16.1 The HOO strategy

Parameters: Two real numbers ν1 > 0 and ρ ∈ (0, 1), a sequence (Ph,i)h≥0,1≤i≤2h of
subsets of X.

Auxiliary function Leaf(T): outputs a leaf of T.

Initialization: T =
{
(0, 1)

}
and B1,2 = B2,2 = +∞.

1: for n = 1, 2, . . . do � Strategy HOO in round n ≥ 1
2: (h, i) ← (0, 1) � Start at the root
3: P ← {(h, i)} � P stores the path traversed in the tree
4: while (h, i) ∈ T do � Search the tree T

5: if Bh+1,2i−1 > Bh+1,2i then � Select the “more promising” child
6: (h, i) ← (h+ 1, 2i− 1)
7: else if Bh+1,2i−1 < Bh+1,2i then
8: (h, i) ← (h+ 1, 2i)
9: else � Tie-breaking rule
10: Z ∼ Ber(0.5) � e.g., choose a child at random
11: (h, i) ← (h+ 1, 2i− Z)
12: end if
13: P ← P ∪ {(h, i)}
14: end while
15: (H, I) ← (h, i) � The selected node
16: Choose option x in PH,I and evaluate it � Arbitrary selection of an option
17: Receive corresponding reward Y
18: T ← T ∪ {(H, I)} � Extend the tree
19: for all (h, i) ∈ P do � Update the statistics T and μ̂ stored in the path
20: Th,i ← Th,i + 1 � Increment the counter of node (h, i)
21: μ̂h,i ←

(
1− 1/Th,i

)
μ̂h,i + Y/Th,i � Update the mean μ̂h,i of node (h, i)

22: end for
23: for all (h, i) ∈ T do � Update the statistics U stored in the tree
24: Uh,i ← μ̂h,i +

√
(2 log n)/Th,i + ν1ρ

h � Update the U–value of node (h, i)
25: end for
26: BH+1,2I−1 ← +∞ � B–values of the children of the new leaf
27: BH+1,2I ← +∞
28: T′ ← T � Local copy of the current tree T

29: while T′ �= {
(0, 1)

}
do � Backward computation of the B–values

30: (h, i) ← Leaf(T′) � Take any remaining leaf

31: Bh,i ← min
{
Uh,i, max

{
Bh+1,2i−1, Bh+1,2i

}}
� Backward computation

32: T′ ← T′ \ {(h, i)} � Drop updated leaf (h, i)
33: end while
34: end for
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We now define the c–near-optimality dimension, which characterizes the

size of the sets Xcε as a function of ε. It can be seen as some growth rate in

ε of the metric entropy (measured in terms of � and with packing numbers

rather than covering numbers) of the set of cε–optimal options.

Definition 16.2 (Near-optimality dimension). For c > 0, the c–near-

optimality dimension of f w.r.t. � equals

max

{
0, lim sup

ε→0

log N
(
Xcε, �, ε

)
log
(
ε−1
) }

.

Theorem 16.15 (Hierarchical Optimistic Optimization). Let d be the

4ν1/ν2–near-optimality dimension of the mean payoff function f w.r.t. �.

Then, for all d′ > d, there exists a constant γ such that for all n ≥ 1, HOO

satisfies

Rn = nf∗ − E

n∑
t=1

f(Xt) ≤ γ n(d′+1)/(d′+2)
(
log n

)1/(d′+2)
.

To put this result in perspective, we present the following example. Equip

X = [0, 1]D with a norm ‖ · ‖ and assume that the mean payoff function

f satisfies the Hölder-type property at any global maximum x∗ of f (these

maxima being additionally assumed to be in finite number):

f(x∗)− f(x) = Θ
(‖x− x∗‖α) as x→ x∗,

for some smoothness order α ∈ [0,∞). This means that there exist c1, c2, δ >

0 such that for all x satisfying ‖x− x∗‖ ≤ δ,

c2‖x− x∗‖α ≤ f(x∗)− f(x) ≤ c1‖x− x∗‖α .
In particular, one can check that f is locally weakly Lipschitz for the

dissimilarity defined by �c,β(x, y) = c‖x − y‖β , where β ≤ α (and c ≥ c1
when β = α) (see Bubeck et al. (2010) for a precise definition). We further

assume that HOO is run with parameters ν1 and ρ and a tree of dyadic

partitions such that the assumptions of Section 16.4.3 are satisfied. The

following statements can then be formulated on the regret of HOO:

Known smoothness: If we know the true smoothness of f around its

maxima, then we set β = α and c ≥ c1. This choice �c1,α of a dissimilarity

is such that f is locally weakly Lipschitz with respect to it and the near-

optimality dimension is d = 0. Theorem 16.15 thus implies that the expected

regret of HOO is Õ(
√
n), that is, the rate of the bound is independent of the

dimension D.
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Smoothness underestimated: Here, we assume that the true smooth-

ness of f around its maxima is unknown and that it is underestimated

by choosing β < α (and some c). Then f is still locally weakly Lipschitz

with respect to the dissimilarity �c,β and the near-optimality dimension is

d = D(1/β − 1/α); the regret of HOO is Õ
(
n(d+1)/(d+2)

)
.

Smoothness overestimated: Now, if the true smoothness is overesti-

mated by choosing β > α or α = β and c < c1, then the assumption of weak

Lipschitzness is violated and we are unable to provide any guarantee on the

behavior of HOO. The latter, when used with an overestimated smoothness

parameter, may lack exploration and exploit too heavily from the beginning.

As a consequence, it may get stuck in some local optimum of f , missing the

global one(s) for a very long time (possibly indefinitely). Such a behavior

is illustrated in the example provided in Coquelin and Munos (2007) and

shows the possible problematic behavior of the closely related algorithm

UCT of Kocsis and Szepesvári (2006). UCT is an example of an algorithm

overestimating the smoothness of the function; this is because the B–values

of UCT are defined similarly to the ones of the HOO algorithm but without

the additional third term in the definition of the U–values. In such cases,

the corresponding B–values do not provide high-probability upper bounds

on the supremum of f over the corresponding domains, and the resulting

algorithms no longer implement the idea of “optimistism in the face of un-

certainty”.
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