
2 Convex Optimization with

Sparsity-Inducing Norms

Francis Bach francis.bach@inria.fr

INRIA - Willow Project-Team

23, avenue d’Italie, 75013 PARIS

Rodolphe Jenatton rodolphe.jenatton@inria.fr

INRIA - Willow Project-Team

23, avenue d’Italie, 75013 PARIS

Julien Mairal julien.mairal@inria.fr

INRIA - Willow Project-Team

23, avenue d’Italie, 75013 PARIS

Guillaume Obozinski guillaume.obozinski@inria.fr

INRIA - Willow Project-Team

23, avenue d’Italie, 75013 PARIS

2.1 Introduction

The principle of parsimony is central to many areas of science: the simplest

explanation of a given phenomenon should be preferred over more compli-

cated ones. In the context of machine learning, it takes the form of variable

or feature selection, and it is commonly used in two situations. First, to make

the model or the prediction more interpretable or computationally cheaper

to use, that is, even if the underlying problem is not sparse, one looks for

the best sparse approximation. Second, sparsity can also be used given prior

knowledge that the model should be sparse.

20 Convex Optimization with Sparsity-Inducing Norms

For variable selection in linear models, parsimony may be achieved directly

by penalization of the empirical risk or the log-likelihood by the cardinality of

the support of the weight vector. However, this leads to hard combinatorial

problems (see, e.g., Tropp, 2004). A traditional convex approximation of

the problem is to replace the cardinality of the support with the �1-norm.

Estimators may then be obtained as solutions of convex programs.

Casting sparse estimation as convex optimization problems has two main

benefits. First, it leads to efficient estimation algorithms—and this chapter

focuses primarily on these. Second, it allows a fruitful theoretical analysis

answering fundamental questions related to estimation consistency, predic-

tion efficiency (Bickel et al., 2009; Negahban et al., 2009), or model con-

sistency (Zhao and Yu, 2006; Wainwright, 2009). In particular, when the

sparse model is assumed to be well specified, regularization by the �1-norm

is adapted to high-dimensional problems, where the number of variables to

learn from may be exponential in the number of observations.

Reducing parsimony to finding the model of lowest cardinality turns

out to be limiting, and structured parsimony has emerged as a natural

extension, with applications to computer vision (Jenatton et al., 2010b),

text processing (Jenatton et al., 2010a) and bioinformatics (Kim and Xing,

2010; Jacob et al., 2009). Structured sparsity may be achieved through

regularizing by norms other than the �1-norm. In this chapter, we focus

primarily on norms which can be written as linear combinations of norms

on subsets of variables (section 2.1.1). One main objective of this chapter

is to present methods which are adapted to most sparsity-inducing norms

with loss functions potentially beyond least squares.

Finally, similar tools are used in other communities such as signal process-

ing. While the objectives and the problem setup are different, the resulting

convex optimization problems are often very similar, and most of the tech-

niques reviewed in this chapter also apply to sparse estimation problems in

signal processing.

This chapter is organized as follows. In section 2.1.1, we present the opti-

mization problems related to sparse methods, and in section 2.1.2, we review

various optimization tools that will be needed throughout the chapter. We

then quickly present in section 2.2 generic techniques that are not best suited

to sparse methods. In subsequent sections, we present methods which are

well adapted to regularized problems: proximal methods in section 2.3, block

coordinate descent in section 2.4, reweighted �2-methods in section 2.5, and

working set methods in section 2.6. We provide quantitative evaluations of

all of these methods in section 2.7.

2.1 Introduction 21

2.1.1 Loss Functions and Sparsity-Inducing Norms

We consider in this chapter convex optimization problems of the form

min
w∈Rp

f(w) + λΩ(w), (2.1)

where f : Rp → R is a convex differentiable function and Ω : Rp → R is a

sparsity-inducing—typically nonsmooth and non-Euclidean—norm.

In supervised learning, we predict outputs y in Y from observations x in X;

these observations are usually represented by p-dimensional vectors, so that

X = R
p. In this supervised setting, f generally corresponds to the empirical

risk of a loss function � : Y × R → R+. More precisely, given n pairs of

data points {(x(i), y(i)) ∈ R
p×Y; i = 1, . . . , n}, we have for linear models

f(w) := 1
n

∑n
i=1 �(y

(i),wTx(i)). Typical examples of loss functions are the

square loss for least squares regression, that is, �(y, ŷ) = 1
2(y− ŷ)2 with y in

R, and the logistic loss �(y, ŷ) = log(1 + e−yŷ) for logistic regression, with y

in {−1, 1}. We refer the reader to Shawe-Taylor and Cristianini (2004) for

a more complete description of loss functions.

When one knows a priori that the solutions w� of problem (2.1) have only

a few non-zero coefficients, Ω is often chosen to be the �1-norm, that is,

Ω(w) =
∑p

j=1 |wj |. This leads, for instance, to the Lasso (Tibshirani, 1996)

with the square loss and to the �1-regularized logistic regression (see, for

instance, Shevade and Keerthi, 2003; Koh et al., 2007) with the logistic loss.

Regularizing by the �1-norm is known to induce sparsity in the sense that a

number of coefficients ofw�, depending on the strength of the regularization,

will be exactly equal to zero.

In some situations, for example, when encoding categorical variables by

binary dummy variables, the coefficients of w� are naturally partitioned in

subsets, or groups, of variables. It is then natural to simultaneously select or

remove all the variables forming a group. A regularization norm explicitly

exploiting this group structure can be shown to improve the prediction

performance and/or interpretability of the learned models (Yuan and Lin,

2006; Roth and Fischer, 2008; Huang and Zhang, 2010; Obozinski et al.,

2010; Lounici et al., 2009). Such a norm might, for instance, take the form

Ω(w) :=
∑
g∈G

dg‖wg‖2, (2.2)

where G is a partition of {1, . . . , p}, (dg)g∈G are positive weights, and wg

denotes the vector in R
|g| recording the coefficients of w indexed by g in G.

Without loss of generality we may assume all weights (dg)g∈G to be equal to

one. As defined in Eq. (2.2), Ω is known as a mixed �1/�2-norm. It behaves

22 Convex Optimization with Sparsity-Inducing Norms

like an �1-norm on the vector (‖wg‖2)g∈G in R
|G|, and therefore Ω induces

group sparsity. In other words, each ‖wg‖2, and equivalently each wg, is

encouraged to be set to zero. On the other hand, within the groups g in G,

the �2-norm does not promote sparsity. Combined with the square loss, it

leads to the group Lasso formulation (Yuan and Lin, 2006). Note that when G

is the set of singletons, we retrieve the �1-norm. More general mixed �1/�q-

norms for q > 1 are also used in the literature (Zhao et al., 2009):

Ω(w) =
∑
g∈G

‖wg‖q :=
∑
g∈G

{∑
j∈g
|wj |q

}1/q

.

In practice, though, the �1/�2- and �1/�∞-settings remain the most popular

ones.

In an attempt to better encode structural links between variables at play

(e.g., spatial or hierarchical links related to the physics of the problem at

hand), recent research has explored the setting where G can contain groups of

variables that overlap (Zhao et al., 2009; Bach, 2008a; Jenatton et al., 2009;

Jacob et al., 2009; Kim and Xing, 2010; Schmidt and Murphy, 2010). In this

case, Ω is still a norm, and it yields sparsity in the form of specific patterns

of variables. More precisely, the solutions w� of problem (2.1) can be shown

to have a set of zero coefficients, or simply zero pattern, that corresponds

to a union of some groups g in G (Jenatton et al., 2009). This property

makes it possible to control the sparsity patterns of w� by appropriately

defining the groups in G. This form of structured sparsity has proved to be

useful notably in the context of hierarchical variable selection (Zhao et al.,

2009; Bach, 2008a; Schmidt and Murphy, 2010), multitask regression of gene

expressions (Kim and Xing, 2010), and the design of localized features in

face recognition (Jenatton et al., 2010b).

2.1.2 Optimization Tools

The tools used in this chapter are relatively basic and should be accessible

to a broad audience. Most of them can be found in classic books on convex

optimization (Boyd and Vandenberghe, 2004; Bertsekas, 1999; Borwein and

Lewis, 2006; Nocedal and Wright, 2006), but for self-containedness, we

present here a few of them related to nonsmooth unconstrained optimization.

2.1 Introduction 23

2.1.2.1 Subgradients

Given a convex function g : Rp → R and a vector w in R
p, let us define the

subdifferential of g at w as

∂g(w) := {z ∈ R
p | g(w)+zT (w′−w) ≤ g(w′) for all vectors w′ ∈ R

p}.
The elements of ∂g(w) are called the subgradients of g at w. This defini-

tion admits a clear geometric interpretation: any subgradient z in ∂g(w)

defines an affine function w′ �→ g(w) + zT (w′ −w) which is tangent to the

graph of the function g. Moreover, there is a bijection (one-to-one corre-

spondence) between such tangent affine functions and the subgradients. Let

us now illustrate how subdifferentials can be useful for studying nonsmooth

optimization problems with the following proposition:

Proposition 2.1 (subgradients at optimality).

For any convex function g : Rp → R, a point w in R
p is a global minimum

of g if and only if the condition 0 ∈ ∂g(w) holds.

Note that the concept of a subdifferential is useful mainly for nonsmooth

functions. If g is differentiable at w, the set ∂g(w) is indeed the singleton

{∇g(w)}, and the condition 0 ∈ ∂g(w) reduces to the classical first-order

optimality condition ∇g(w) = 0. As a simple example, let us consider the

following optimization problem:

min
w∈R

1

2
(x− w)2 + λ|w|.

Applying proposition 2.1 and noting that the subdifferential ∂| · | is {+1}
for w > 0, {−1} for w < 0, and [−1, 1] for w = 0, it is easy to show that the

unique solution admits a closed form called the soft-thresholding operator,

following a terminology introduced by Donoho and Johnstone (1995); it can

be written

w� =

{
0 if |x| ≤ λ

(1− λ
|x|)x otherwise.

(2.3)

This operator is a core component of many optimization techniques for

sparse methods, as we shall see later.

2.1.2.2 Dual Norm and Optimality Conditions

The next concept we introduce is the dual norm, which is important to

the study of sparsity-inducing regularizations (Jenatton et al., 2009; Bach,

2008a; Negahban et al., 2009). It arises notably in the analysis of estimation

24 Convex Optimization with Sparsity-Inducing Norms

bounds (Negahban et al., 2009) and in the design of working-set strategies,

as will be shown in section 2.6. The dual norm Ω∗ of the norm Ω is defined

for any vector z in R
p by

Ω∗(z) := max
w∈Rp

zTw such that Ω(w) ≤ 1.

Moreover, the dual norm of Ω∗ is Ω itself, and as a consequence, the formula

above also holds if the roles of Ω and Ω∗ are exchanged. It is easy to show

that in the case of an �q-norm, q ∈ [1; +∞], the dual norm is the �q′-norm,

with q′ in [1;+∞] such that 1
q +

1
q′ = 1. In particular, the �1- and �∞-norms

are dual to each other, and the �2-norm is self-dual (dual to itself).

The dual norm plays a direct role in computing optimality conditions of

sparse regularized problems. By applying proposition 2.1 to equation (2.1),

a little calculation shows that a vector w in R
p is optimal for equation (2.1)

if and only if − 1
λ∇f(w) ∈ ∂Ω(w) with

∂Ω(w) =

{
{z ∈ R

p; Ω∗(z) ≤ 1} if w = 0,

{z ∈ R
p; Ω∗(z) ≤ 1 and zTw = Ω(w)} otherwise.

(2.4)

As a consequence, the vector 0 is a solution if and only if Ω∗(∇f(0)
) ≤ λ.

These general optimality conditions can be specified to the Lasso prob-

lem (Tibshirani, 1996), also known as basis pursuit (Chen et al., 1999):

min
w∈Rp

1

2
‖y −Xw‖22 + λ‖w‖1, (2.5)

where y is in R
n, and X is a design matrix in R

n×p. From equation (2.4)

and since the �∞-norm is the dual of the �1-norm, we obtain that necessary

and sufficient optimality conditions are

∀j = 1, . . . , p,

{
|XT

j (y −Xw)| ≤ λ if wj = 0,

XT
j (y −Xw) = λ sgn(wj) if wj �= 0,

(2.6)

where Xj denotes the jth column of X, and wj the jth entry of w. As we

will see in section 2.6.1, it is possible to derive interesting properties of the

Lasso from these conditions, as well as efficient algorithms for solving it. We

have presented a useful duality tool for norms. More generally, there exists

a related concept for convex functions, which we now introduce.

2.1.2.3 Fenchel Conjugate and Duality Gaps

Let us denote by f∗ the Fenchel conjugate of f (Rockafellar, 1997), defined by

f∗(z) := sup
w∈Rp

[zTw − f(w)].

2.1 Introduction 25

The Fenchel conjugate is related to the dual norm. Let us define the indicator

function ιΩ such that ιΩ(w) is equal to 0 if Ω(w) ≤ 1 and +∞ otherwise.

Then ιΩ is a convex function and its conjugate is exactly the dual norm Ω∗.
For many objective functions, the Fenchel conjugate admits closed forms,

and therefore can be computed efficiently (Borwein and Lewis, 2006). Then

it is possible to derive a duality gap for problem (2.1) from standard Fenchel

duality arguments (see Borwein and Lewis, 2006), as shown below.

Proposition 2.2 (duality for problem (2.1)).

If f∗ and Ω∗ are respectively the Fenchel conjugate of a convex and differ-

entiable function f , and the dual norm of Ω, then we have

max
z∈Rp: Ω∗(z)≤λ

−f∗(z) ≤ min
w∈Rp

f(w) + λΩ(w). (2.7)

Moreover, equality holds as soon as the domain of f has a non-empty

interior.

Proof. This result is a specific instance of theorem 3.3.5 in Borwein and

Lewis (2006). In particular, we use the facts that (a) the conjugate of a

norm Ω is the indicator function ιΩ∗ of the unit ball of the dual norm Ω∗,
and that (b) the subdifferential of a differentiable function (here, f) reduces

to its gradient.

If w� is a solution of equation (2.1), and w, z in R
p are such that

Ω∗(z) ≤ λ, this proposition implies that we have

f(w) + λΩ(w) ≥ f(w�) + λΩ(w�) ≥ −f∗(z). (2.8)

The difference between the left and right terms of equation (2.8) is called

a duality gap. It represents the difference between the value of the primal

objective function f(w) + λΩ(w) and a dual objective function −f∗(z),
where z is a dual variable. The proposition says that the duality gap for a

pair of optima w� and z� of the primal and dual problem is equal to zero.

When the optimal duality gap is zero, we say that strong duality holds.

Duality gaps are important in convex optimization because they provide

an upper bound on the difference between the current value of an objective

function and the optimal value which allows setting proper stopping criteria

for iterative optimization algorithms. Given a current iterate w, computing

a duality gap requires choosing a “good” value for z (and in particular

a feasible one). Given that at optimality, z(w�) = ∇f(w�) is the unique

solution to the dual problem, a natural choice of dual variable is z =

min
(
1, λ

Ω∗(∇f(w))

)∇f(w), which reduces to z(w�) at the optimum and

therefore yields a zero duality gap at optimality.

26 Convex Optimization with Sparsity-Inducing Norms

Note that in most formulations we will consider, the function f is of the

form f(w) = ψ(Xw) with ψ : Rn → R, and X is a design matrix; typically,

the Fenchel conjugate of ψ is easy to compute, whereas the design matrix

X makes it hard1 to compute f∗. In that case, (2.1) can be rewritten as

min
w∈Rp,u∈Rn

ψ(u) + λ Ω(w) s.t. u = Xw, (2.9)

and equivalently as the optimization of the Lagrangian

min
w∈Rp,u∈Rn

max
α∈Rn

(
ψ(u)− λαTu

)
+ λ

(
Ω(w) +αTXw

)
, (2.10)

which is obtained by introducing the Lagrange multiplier α. The correspond-

ing Fenchel dual2 is then

max
α∈Rn

−ψ∗(λα) such that Ω∗(XTα) ≤ λ, (2.11)

which does not require any inversion of X.

2.2 Generic Methods

The problem defined in equation (2.1) is convex as soon as both the loss f

and the regularizer Ω are convex functions. In this section, we consider opti-

mization strategies which are essentially blind to problem structure, namely,

subgradient descent (e.g., see Bertsekas, 1999), which is applicable under

weak assumptions, and interior-point methods solving reformulations such as

linear programs (LP), quadratic programs (QP) or, more generally, second-

order cone programming (SOCP) or semidefinite programming (SDP) prob-

lems (e.g., see Boyd and Vandenberghe, 2004). The latter strategy is usually

possible only with the square loss and makes use of general-purpose opti-

mization toolboxes.

2.2.1 Subgradient descent

For all convex unconstrained problems, subgradient descent can be used as

soon as one subgradient can be computed efficiently. In our setting, this is

possible when a subgradient of the loss f , and a subgradient of the regularizer

Ω can be computed. This is true for all classical settings, and leads to the

1. It would require computing the pseudo-inverse of X.
2. Fenchel conjugacy naturally extends to this case (for more details see Borwein and
Lewis, 2006, theorem 3.3.5).

2.3 Proximal Methods 27

iterative algorithm

wt+1 = wt − α

t
(s+ λs′), where s ∈ ∂f(wt), s′ ∈ ∂Ω(wt)

with α a positive parameter. These updates are globally convergent. More

precisely, we have, from Nesterov (2004), F (wt)−minw∈Rp F (w) = O(1√
t
).

However, the convergence is in practice slow (i.e., many iterations are

needed), and the solutions obtained are usually not sparse. This is to be

contrasted with the proximal methods presented in the next section, which

are less generic but more adapted to sparse problems.

2.2.2 Reformulation as LP, QP, SOCP, or SDP

For all the sparsity-inducing norms we consider in this chapter, the corre-

sponding regularized least-squares problem can be represented by standard

mathematical programming problems, all of them being SDPs, and often

simpler (e.g., QP). For example, for the �1-norm regularized least-squares

regression, we can reformulate minw∈Rp
1
2n‖y −Xw‖22 + λΩ(w) as

min
w+,w−∈Rp

+

1

2n
‖y −Xw+ +Xw−‖22 + λ(1	w+ + 1	w−),

which is a quadratic program. Other problems can be cast similarly (for the

trace-norm, see Fazel et al., 2001; Bach, 2008b).

General-purpose toolboxes can then be used to get solutions with high

precision (low duality gap). However, in the context of machine learning,

this is inefficient for two reasons: (1) these toolboxes are generic and blind

to problem structure and tend to be too slow, or cannot even run because

of memory problems; (2) as outlined by Bottou and Bousquet (2007), high

precision is not necessary for machine learning problems, and a duality gap

of the order of machine precision (which would be a typical result from

toolboxes) is not necessary.

2.3 Proximal Methods

2.3.1 Principle of Proximal Methods

Proximal methods are specifically tailored to optimize an objective of the

form (2.1), that is, an objective which can be written as the sum of a generic

differentiable function f with Lipschitz gradient, and a non-differentiable

function λΩ. They have drawn increasing attention in the machine learning

community, especially because of their convergence rates (optimal for the

28 Convex Optimization with Sparsity-Inducing Norms

class of first-order techniques) and their ability to deal with large nonsmooth

convex problems (e.g., Nesterov 2007; Beck and Teboulle 2009; Wright et al.

2009; Combettes and Pesquet 2010).

Proximal methods can be described as follows. At each iteration the

function f is linearized around the current point and a problem of the form

min
w∈Rp

f(wt)+∇f(wt)T (w −wt) + λΩ(w) +
L

2
‖w −wt‖22 (2.12)

is solved. The quadratic term, called the proximal term, keeps the update

in a neighborhood of the current iterate wt where f is close to its linear

approximation; L> 0 is a parameter which should essentially be an upper

bound on the Lipschitz constant of ∇f and is typically set with a line search.

This problem can be rewritten as

min
w∈Rp

1

2
‖w − (wt − 1

L∇f(wt)
)‖22 + λ

LΩ(w). (2.13)

It should be noted that when the nonsmooth term Ω is not present, the

solution of (2.13) just yields the standard gradient update rule wt+1 ←
wt − 1

L∇f(wt). Furthermore, if Ω is the indicator function of a set ιC , that

is, defined by ιC(x) = 0 for x ∈ C and ιC(x) = +∞ otherwise, then solving

(2.13) yields the projected gradient update with projection on the set C. This

suggests that the solution of the proximal problem provides an interesting

generalization of gradient updates, and motivates the introduction of the

notion of a proximal operator associated with the regularization term λΩ.

The proximal operator, which we will denote as ProxμΩ, was defined by

Moreau (1962) as the function that maps a vector u ∈ R
p to the unique3

solution of

min
w∈Rp

1

2
‖u−w‖2 + μΩ(w). (2.14)

This operator is clearly central to proximal methods since their main step

consists in computing Prox λ

L
Ω

(
wt − 1

L∇f(wt)
)
.

In section 2.3.3, we present analytical forms of proximal operators asso-

ciated with simple norms and algorithms to compute them in some more

elaborate cases.

2.3.2 Algorithms

The basic proximal algorithm uses the solution of problem (2.13) as the

next update wt+1; however, fast variants such as the accelerated algorithm

3. Because the objective is strongly convex.

2.3 Proximal Methods 29

presented in Nesterov (2007) or FISTA (Beck and Teboulle, 2009) maintain

two variables and use them to combine the solution of (2.13) with informa-

tion about previous steps. Often, an upper bound on the Lipschitz constant

of ∇f is not known, and even if it is, it is often better to obtain a local

estimate. A suitable value for L can be obtained by iteratively increasing L

by a constant factor until the condition

f(w�
L) ≤ML

f (w
t,w�

L) := f(wt)+∇f(wt)T (w�
L−wt)+ L

2 ‖w�
L−wt‖22 (2.15)

is met, where w�
L denotes the solution of (2.13).

For functions f whose gradients are Lipschitz, the basic proximal algo-

rithm has a global convergence rate in O(1t) where t is the number of itera-

tions of the algorithm. Accelerated algorithms like FISTA can be shown to

have global convergence rate in O(1
t2). Perhaps more important, both basic

(ISTA) and accelerated (Nesterov, 2007) proximal methods are adaptive in

the sense that if f is strongly convex—and the problem is therefore better

conditioned—the convergence is actually linear (i.e., with rates in O(Ct) for

some constant C < 1; see Nesterov 2007). Finally, it should be noted that

accelerated schemes are not necessarily descent algorithms, in the sense that

the objective does not necessarily decrease at each iteration in spite of the

global convergence properties.

2.3.3 Computing the Proximal Operator

Computing the proximal operator efficiently and exactly is crucial to enjoy-

ing the fast convergence rates of proximal methods. We therefore focus here

on properties of this operator and on its computation for several sparsity-

inducing norms.

Dual proximal operator. In the case where Ω is a norm, by Fenchel duality

the following problem is dual (see proposition 2.2) to problem (2.13):

max
v∈Rp

−1

2

[‖v − u‖22 − ‖u‖2
]

such that Ω∗(v) ≤ μ. (2.16)

Lemma 2.3 (Relation to dual proximal operator). Let ProxμΩ be the

proximal operator associated with the regularization μΩ, where Ω is a norm,

and let Proj{Ω∗(·)≤μ} be the projector on the ball of radius μ of the dual

norm Ω∗. Then Proj{Ω∗(·)≤μ} is the proximal operator for the dual problem

(2.16) and, denoting the identity Id, these two operators satisfy the relation

ProxμΩ = Id − Proj{Ω∗(·)≤μ}. (2.17)

Proof.By proposition 2.2, if w� is optimal for (2.14) and v� is optimal for

30 Convex Optimization with Sparsity-Inducing Norms

(2.16), we have4 −v� = ∇f(w�) = w� − u. Since v� is the projection of u

on the ball of radius μ of the norm Ω∗, the result follows.

This lemma shows that the proximal operator can always be computed as

the residual of a projection on a convex set.

�1-norm regularization. Using optimality conditions for (2.16) and then

(2.17) or subgradient condition (2.4) applied to (2.14), it is easy to check

that Proj{‖·‖∞≤μ} and Proxμ‖·‖1
respectively satisfy

[
Proj{‖·‖∞≤μ}(u)

]
j
= min

(
1, μ

|uj |
)
uj and

[
Proxμ‖·‖1

(u)
]
j
=
(
1− μ

|uj |
)
+
uj ,

for j ∈ {1, . . . , p}, with (x)+ := max(x, 0). Note that Proxμ‖·‖1
is com-

ponentwise the soft-thresholding operator of Donoho and Johnstone (1995)

presented in section 2.1.2.

�1-norm constraint. Sometimes, the �1-norm is used as a hard constraint

and, in that case, the optimization problem is

min
w

f(w) such that ‖w‖1 ≤ C.

This problem can still be viewed as an instance of (2.1), with Ω defined

by Ω(u) = 0 if ‖u‖1 ≤ C and Ω(u) = +∞ otherwise. Proximal methods

thus apply, and the corresponding proximal operator is the projection on

the �1-ball, for which efficient pivot algorithms with linear complexity have

been proposed (Brucker, 1984; Maculan and Galdino de Paula Jr, 1989).

�1/�q-norm (“group Lasso”). If G is a partition of {1, . . . , p}, the dual norm
of the �1/�q-norm is the �∞/�q′-norm, with 1

q +
1
q′ =1. It is easy to show that

the orthogonal projection on a unit �∞/�q′ ball is obtained by projecting

each subvector ug separately on a unit �q′-ball in R
|g|. For the �1/�2-norm

Ω : w �→∑g∈G ‖wg‖2 we have

[ProxμΩ(u)]g =
(
1− λ

‖ug‖2
)
+
ug, g ∈ G.

This is shown easily by considering that the subgradient of the �2-norm is

∂‖w‖2 =
{

w
‖w‖2

}
if w �= 0 or ∂‖w‖2 = {z | ‖z‖2 ≤ 1} if w = 0 and by

applying the result of (2.4).

For the �1/�∞-norm, whose dual norm is the �∞/�1-norm, an efficient

algorithm to compute the proximal operator is based on (2.17). Indeed,

4. The dual variable from Fenchel duality is −v in this case.

2.3 Proximal Methods 31

this equation indicates that the proximal operator can be computed on each

group g as the residual of a projection on an �1-norm ball in R
|g|; the latter

is done efficiently with the previously mentioned linear-time algorithms.

In general, the case where groups overlap is more complicated because the

regularization is no longer separable. Nonetheless, in some cases it is still

possible to compute the proximal operator efficiently.

Hierarchical �1/�q-norms. Hierarchical norms were proposed by Zhao et al.

(2009). Following Jenatton et al. (2010a), we focus on the case of a norm

Ω : w �→ ∑
g∈G ‖wg‖q, with q ∈ {2,∞}, where the set of groups G is tree-

structured, meaning either that two groups are disjoint or that one is included

in the other. Let � be a total order such that g1 � g2 if and only if either

g1 ⊂ g2 or g1 ∩ g2 = ∅.5 Then, if g1 � . . . � gm with m = |G|, and if we

define Πg as (a) the proximal operator wg �→ Proxμ‖·‖q
(wg) on the subspace

corresponding to group g, and (b) as the identity on the orthogonal, it can

be shown (Jenatton et al., 2010a) that

ProxμΩ = Πgm ◦ . . . ◦Πg1 . (2.18)

In other words, the proximal operator associated with the norm can be ob-

tained as the composition of the proximal operators associated to individual

groups, provided that the ordering of the groups is well chosen. Note that

this result does not hold for q /∈ {1, 2,∞}.
Combined �1 + �1/�q-norm (sparse group Lasso). The possibility of com-

bining an �1/�q-norm that takes advantage of sparsity at the group level

with an �1-norm that induces sparsity within the groups is quite natural

(Friedman et al., 2010; Sprechmann et al., 2010). Such regularizations are in

fact a special case of the hierarchical �1/�q-norms presented above, and the

corresponding proximal operator is therefore readily computed by applying

soft-thresholding and then group soft-thresholding.

Overlapping �1/�∞-norms.When the groups overlap but do not have a tree

structure, computing the proximal operator has proved to be more difficult,

but it can still be done efficiently when q =∞. Indeed, as shown by Mairal

et al. (2010), there exists a dual relation between such an operator and a

quadratic min-cost flow problem on a particular graph, which can be tackled

using network flow optimization techniques.

5. For a tree-structured G such an order exists.

32 Convex Optimization with Sparsity-Inducing Norms

2.4 (Block) Coordinate Descent Algorithms

Coordinate descent algorithms solving �1-regularized learning problems go

back to Fu (1998). They optimize (exactly or approximately) the objective

with respect to one variable at a time while all others are kept fixed.

2.4.1 Coordinate Descent for �1-Regularization

We first consider the following special case of an �1-regularized problem:

min
w∈R

1

2
(w − w0)

2 + λ|w|. (2.19)

As shown in (2.3), w� can be obtained by soft-thresholding :

w� = Proxλ |·|(w0) :=
(
1− λ

|w0|
)
+
w0 (2.20)

2.4.1.1 Lasso Case

In the case of the least-square loss, the minimization with respect to a single

coordinate can be written as

min
wj∈R

∇jf(w
t) (wj −wt

j) +
1

2
∇2

jj f(w
t)(wj −wt

j)
2 + λ|wj |,

with ∇jf(w) = XT
j (Xw − y) and ∇2

jjf(w) = XT
j Xj independent of w.

Since the above equation is of the form (2.19), it is solved in closed form:

w�
j = Proxλ|·|

(
wt

j −∇jf(w
t
j)/∇2

jjf
)
. (2.21)

In words, w�
j is obtained by solving the unregularized problem with respect

to coordinate j and soft-thresholding the solution.

This is the update proposed in the shooting algorithm of Fu (1998), which

cycles through all variables in a fixed order.6

An efficient implementation is obtained if the quantity Xw − y or even

better ∇f(wt) = XTXw −XTy is kept updated.7

6. Coordinate descent with a cyclic order is sometimes called the Gauss-Seidel procedure.
7. In the former case, at each iteration, Xw − y can be updated in Θ(n) operations if
wj changes and ∇jt+1f(w) can always be updated in Θ(n) operations. The complexity of
one cycle is therefore O(pn). However, a better complexity is obtained in the latter case,
provided the matrix XTX is precomputed (with complexity O(p2n)). Indeed, ∇f(wt) is
updated in Θ(p) iterations only if wj does not stay at 0. Otherwise, if wj stays at 0, the
step costs O(1); the complexity of one cycle is therefore Θ(ps) where s is the number of
non-zero variables at the end of the cycle.

2.4 (Block) Coordinate Descent Algorithms 33

2.4.1.2 Smooth loss

For more general smooth losses, such as the logistic loss, the optimization

with respect to a single variable cannot be solved in closed form. It is

possible to solve it numerically, using a sequence of modified Newton steps as

proposed by Shevade and Keerthi (2003). We present here a fast algorithm

of Tseng and Yun (2009) based on solving just a quadratic approximation

of f with an inexact line search at each iteration.

Given d = w�
j − wt

j where w�
j is the solution of (2.21), a line search is

performed to choose the largest step of the form αkd with α ∈ (0, 1), k ∈ N,

such that the following modified Armijo condition is satisfied:

F (wt + αdej)− F (wt) ≤ σα
(∇jf(w)d+ |wt

j + d| − |wt
j |
)

where F (w) := f(w)+λΩ(w) and σ < 1. Tseng and Yun (2009) show that

if f is continuously differentiable and if Ht has a uniformly upper and lower

bounded spectrum, the sequence generated by the algorithm is decreasing

and its cluster points are stationary points of F . It should be noted that the

algorithm generalizes to separable regularizations other than the �1-norm.

Variants of coordinate descent algorithms have also been considered by

Genkin et al. (2007), by Krishnapuram et al. (2005), and by Wu and

Lange (2008). Generalizations based on the Gauss-Southwell rule have been

considered by Tseng and Yun (2009).

2.4.2 Block Coordinate Descent for �1/�2-Regularization

When Ω(w) is the �1/�2-norm with groups g ∈ G forming a partition of

{1, . . . , p}, the previous methods are generalized by block coordinate descent

(BCD) algorithms, and in particular the algorithm of Tseng and Yun (2009)

generalizes easily to that case.

Specifically, at each iteration the BCD generalization solves a problem of

the form

min
wg∈R|g|

∇gf(w
t)T (wg−wt

g)+
1

2
(wg−wt

g)
THgg(wg−wt

g)+λ‖wg‖2, (2.22)

where Hgg equals or approximates8 ∇2
ggf(w

t). The above problem is solved

in closed form if Hgg = hggI|g|, in which case the solution w�
g is obtained by

8. It is, however, not required to have good approximation properties of Hgg to obtain
convergence guarantees for the algorithm.

34 Convex Optimization with Sparsity-Inducing Norms

group soft-thresholding of the Newton step:

w�
g = Proxλ ‖·‖2

(
wt

g−h−1
gg ∇gf(w

t
g)
)

with Proxλ ‖·‖2
(w) =

(
1− λ

‖w‖2
)
+
w.

In univariate learning problems regularized by the �1/�2-norm, and for the

square loss, it is common to orthonormalize the set of variables belonging

to a given group (Yuan and Lin, 2006; Wu and Lange, 2008), in which case

it is natural to choose Hgg = ∇2
ggf(w

t) = I|g|. If Hgg is not a multiple of

the identity, the solution of (2.22) can be found by replacing λ‖wg‖2 with

λ′‖wg‖22 in (2.22), which yields an analytic solution; it is then a standard

result in optimization that there exists a value of λ′—which can be found

by binary search—such that the obtained solution also solves (2.22). More

simply, it is sufficient to choose Hgg = hggI|g| with hgg an approximation of

the largest eigenvalue of ∇2
ggf(w

t).9

In the case of general smooth losses, the descent direction is given by

d = w�
g − wt

g with w�
g as above and with a stepsize chosen to satisfy the

modified Armijo rule

F (wt + αd)− F (wt) ≤ σα
(∇gf(w)Td+ ‖wt

g + d‖2 − ‖wt
g‖
)
.

2.5 Reweighted-�2 Algorithms

Approximating a nonsmooth or constrained optimization problem by a series

of smooth unconstrained problems is common in optimization (see, e.g.,

Nesterov, 2005; Boyd and Vandenberghe, 2004; Nocedal and Wright, 2006).

In the context of objective functions regularized by sparsity-inducing norms,

it is natural to consider variational formulations of these norms in terms

of squared �2-norms, since many efficient methods are available to solve �2-

regularized problems (e.g., linear system solvers for least-squares regression).

In this section, we show on our motivating example of sums of �2-norms

of subsets how such formulations arise (see, e.g., Argyriou et al., 2007;

Rakotomamonjy et al., 2008; Jenatton et al., 2010b; Daubechies et al., 2010).

9. This can be done easily for joint feature selection in multitask learning, since in that
case the Hessian ∇2

ggf(w
t) is diagonal (Obozinski et al., 2010).

2.5 Reweighted-�2 Algorithms 35

2.5.1 Variational Formulation for Sums of �2-Norms

A simple application of the Cauchy-Schwarz inequality and the inequality√
ab ≤ 1

2(a+ b) leads to

Ω(w) =
∑
g∈G

‖wg‖2 = 1

2
min

∀g∈G, ηg�0

∑
g∈G

{‖wg‖22
ηg

+ ηg

}
=

1

2
min

∀g∈G, ηg�0

{ p∑
j=1

(∑
g∈G,j∈g

η−1
g

)
w2

j +
∑
g∈G

ηg

}
,

with equality if and only if ∀g ∈ G, ηg = ‖wg‖2 (Argyriou et al., 2007;

Rakotomamonjy et al., 2008; Jenatton et al., 2010b). In the case of the

�1-norm, it simplifies to
∑p

j=1 |wj | = 1
2 minη�0

∑p
j=1

{w2
j

ηj
+ ηj

}
.

The variational formulation we presented in the previous proposition

allows us to consider the following function H(w,η) defined as

H(w,η) = f(w) +
λ

2

p∑
j=1

{ ∑
g∈G,j∈g

η−1
g

}
w2

j +
λ

2

∑
g∈G

ηg.

It is jointly convex in (w,η); the minimization with respect to η can be

done in closed form, and the optimum is equal to F (w) = f(w) + λΩ(w);

as for the minimization with respect to w, it is an �2-regularized problem.

Unfortunately, the alternating minimization algorithm that is immediately

suggested is not convergent in general, because the function H is not

continuous (in particular around η, which has zero coordinates). In order to

make the algorithm convergent, two strategies are usually used:

Smoothing : we can add a term of the form ε
2

∑
g∈G η−1

g , which yields a

joint cost function with compact level sets on the set of positive numbers.

Alternating minimization algorithms are then convergent (as a consequence

of general results on block coordinate descent), and have two different

iterations: (1) minimization with respect to η in closed form, through

ηg = (‖wg‖2 + ε), and (2) minimization with respect to w, which is an

�2-regularized problem which can be, for example, solved in closed form for

the square loss. Note, however, that the second problem does not need to

be optimized exactly at all iterations.

First-order method in η: While the joint cost function H(η,w) is not

continuous, the function I(η) = minw∈Rp H(w,η) is continuous and, under

general assumptions, is continuously differentiable; it is thus amenable to

first-order methods (e.g., proximal methods, gradient descent). When the

groups in G do not overlap, one sufficient condition is that the function f(w)

is of the form f(w) = ψ(Xw), where X ∈ R
n×p is any matrix (typically the

36 Convex Optimization with Sparsity-Inducing Norms

design matrix), and ψ is a strongly convex function on R
n. This strategy is

particularly interesting when evaluating I(η) is computationally cheap.

2.6 Working-Set Methods

Working-set algorithms address optimization problems by solving an increas-

ing sequence of small subproblems of (2.1). The working set, which we will

denote as J , refers to the subset of variables involved in the optimization of

these subproblems.

Working-set algorithms proceed as follows: after computing a solution to

the problem restricted to the variables in J , global optimality is checked to

determine whether the algorithm has to continue. If it does, new variables

enter the working set J according to a strategy that has to be defined. Note

that we consider only forward algorithms, that is, those where the working

set grows monotonically. In other words, there are no backward steps where

variables would be allowed to leave the set J . Provided this assumption

is met, it is easy to see that these procedures stop in a finite number of

iterations.

This class of algorithms takes advantage of sparsity from a computational

point of view (Lee et al., 2007; Szafranski et al., 2007; Bach, 2008a; Roth

and Fischer, 2008; Obozinski et al., 2010; Jenatton et al., 2009; Schmidt and

Murphy, 2010), since the subproblems that need to be solved are typically

much smaller than the original one.

Working-set algorithms require three ingredients:

Inner-loop solver : At each iteration of the working-set algorithm, prob-

lem (2.1) has to be solved on J , that is, subject to the additional equality

constraint that wj = 0 for all j in Jc:

min
w∈Rp

f(w) + λΩ(w), such that wJc = 0. (2.23)

The computation can be performed by any of the methods presented in

this chapter. Working-set algorithms should therefore be viewed as “meta-

algorithms”. Since solutions for successive working sets are typically close

to each other, the approach is efficient if the method chosen can use warm-

restarts.

Computing the optimality conditions : Given a solution w� of prob-

lem (2.23), it is then necessary to check whether w� is also a solution

for the original problem (2.1). This test relies on the duality gaps of prob-

lems (2.23) and (2.1). In particular, if w� is a solution of problem (2.23), it

2.6 Working-Set Methods 37

follows from proposition 2.2 in section 2.1.2 that

f(w�) + λΩ(w�) + f∗(∇f(w�)) = 0.

In fact, the Lagrangian parameter associated with the equality constraint

ensures the feasibility of the dual variable formed from the gradient of f

at w�. In turn, this guarantees that the duality gap of problem (2.23)

vanishes. The candidate w� is now a solution of the full problem (2.1),

that is, without the equality constraint, if and only if

Ω∗(∇f(w�)) ≤ λ. (2.24)

Condition (2.24) points out that the dual norm Ω∗ is a key quantity

to monitor the progress of the working-set algorithm (Jenatton et al.,

2009). In simple settings, for instance, when Ω is the �1-norm, checking

condition (2.24) can be easily computed since Ω∗ is just the �∞-norm. In

this case, condition (2.24) becomes

|[∇f(w�)]j | ≤ λ, for all j in {1, . . . , p}.
Note that by using the optimality of problem (2.23), the components of the

gradient of f indexed by J are already guaranteed to be no greater than λ.

For more general sparsity-inducing norms with overlapping groups of vari-

ables (see section 2.1.1), the dual norm Ω∗ can no longer be computed eas-

ily, prompting the need for approximations and upper bounds of Ω∗ (Bach,

2008a; Jenatton et al., 2009; Schmidt and Murphy, 2010).

Strategy for the growth of the working set : If condition (2.24) is not satisfied

for the current working set J , some inactive variables in Jc have to become

active. This point raises the questions of how many variables and how these

variables should be chosen.

First, depending on the structure of Ω, one or a group of inactive variables

have to be considered to enter the working set. Furthermore, one natural

way to proceed is to look at the variables that violate condition (2.24) most.

In the example of �1-regularized least-squares regression with normalized

predictors, this strategy amounts to selecting the inactive variable that has

the highest correlation with the current residual.

The working-set algorithms we have described so far aim at solving

problem (2.1) for a fixed value of the regularization parameter λ. However,

for specific types of loss and regularization functions, the set of solutions of

problem (2.1) can be obtained efficiently for all possible values of λ, which

is the topic of the next section.

38 Convex Optimization with Sparsity-Inducing Norms

0 0.1 0.2 0.3 0.4 0.5 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Regularization parameter
w

ei
gh

ts

Figure 2.1: The weights w�(λ) are represented as functions of the regularization
parameter λ. When λ increases, more and more coefficients are set to zero. These
functions are all piecewise linear.

2.6.1 LARS - Homotopy

We present in this section an active-set method for solving the Lasso

problem (Tibshirani, 1996) of equation (2.5). Active-set and working-set

methods are very similar; they differ in that active-set methods allow

variables returning to zero to exit the set. The problem of the Lasso is,

again,

min
w∈Rp

1

2
‖y −Xw‖22 + λ‖w‖1, (2.25)

where y is in R
n, and X is a design matrix in R

n×p. Even though generic

working-set methods introduced above could be used to solve this formu-

lation, a specific property of the �1-norm associated with a quadratic loss

makes it possible to address it more efficiently.

Under mild assumptions (which we will detail later), the solution of equa-

tion (2.25) is unique, and we denote it by w�(λ). We apply the term regular-

ization path to the function λ �→ w�(λ) that associates to a regularization

parameter λ the corresponding solution. We will show that this function

is piecewise linear, a behavior illustrated in figure 2.1, where the entries of

w�(λ) for a particular instance of the Lasso are represented as functions of

λ.

An efficient algorithm can thus be constructed by choosing a particular

value of λ for which finding this solution is trivial, and by following the

piecewise linear path, computing the directions of the current linear parts

and the points where the direction changes (also known as kinks). This

2.6 Working-Set Methods 39

piecewise linearity was first discovered and exploited by Markowitz (1952)

in the context of portfolio selection; revisited by Osborne et al. (2000), who

described a homotopy algorithm; and popularized by Efron et al. (2004) with

the LARS algorithm.

Let us show how to construct the path. From the optimality conditions

presented in equation (2.6), denoting the set of active variables by J :=

{j; |XT
j (y − Xw�)| = λ}, and defining the vector ε in {−1; 0; 1}p as

ε := sgn
(
XT (y −Xw�)

)
, we have the closed form{

w�
J(λ) = (XT

J XJ)
−1(XT

J y − λεJ)

w�
Jc(λ) = 0,

where we have assumed the matrix XT
J XJ to be invertible (which is a

sufficient condition to guarantee the uniqueness of w�). This is an important

point: if one knows the set J and the signs εJ in advance, then w�(λ)

admits a simple closed form. Moreover, when J and εJ are fixed, the function

λ �→ (XT
J XJ)

−1(XT
J y−λεJ) is affine in λ. With this observation in hand, we

can now present the main steps of the path-following algorithm. It basically

starts from a trivial solution of the regularization path, then follows the

path by exploiting this formula, updating J and εJ whenever needed so

that optimality conditions (2.6) remain satisfied. This procedure requires

some assumptions—namely, that (a) the matrix XT
J XJ is always invertible,

and (b) that updating J along the path consists of adding or removing from

this set a single variable at the same time. Concretely, we proceed as follows:

1. Set λ to ‖XTy‖∞ for which it is easy to show from equation (2.6) that

w�(λ) = 0 (trivial solution on the regularization path).

2. Set J := {j; |XT
j y| = λ}.

3. Follow the regularization path by decreasing the value of λ, with the

formula w�
J(λ) = (XT

J XJ)
−1(XT

J y−λεJ) keeping w�
Jc = 0, until one of the

following events occurs:

There exists j in Jc such that |XT
j (y −Xw�)| = λ. Then, add j to

the set J .

There exists j in J such that a non-zero coefficient w�
j hits zero. Then,

remove j from J .

We suppose that only one such event can occur at the same time. It is also

easy to show that the value of λ corresponding to the next event can be

obtained in closed form.

4. Go back to 3.

Let us now briefly discuss assumptions (a) and (b). When the matrix XT
J XJ

40 Convex Optimization with Sparsity-Inducing Norms

is not invertible, the regularization path is non-unique, and the algorithm

fails. This can easily be fixed by addressing a slightly modified formulation.

It is possible to consider instead the elastic-net formulation of Zou and

Hastie (2005) that uses Ω(w) = λ‖w‖1 + γ
2‖w‖22. Indeed, it amounts to

replacing the matrix XT
J XJ by XT

J XJ + γI, which is positive definite and

therefore always invertible, even with a small value for γ, and applying the

same algorithm in practice. The second assumption (b) can be unsatisfied

in practice because of machine precision. To the best of our knowledge, the

algorithm will fail in such cases, but we consider this scenario unlikely with

real data.

The complexity of the above procedure depends on the number of kinks

of the regularization path (which is also the number of iterations of the

algorithm). Even though it is possible to build examples where this num-

ber is large, we often observe in practice that the event where one variable

leaves the active set is rare. The complexity also depends on the implemen-

tation. By maintaining the computations of XT
j (y −Xw�) and a Cholesky

decomposition of (XT
J XJ)

−1, it is possible to obtain an implementation in

O(psn+ps2+s3) operations, where s is the sparsity of the solution when the

algorithm is stopped (which we consider approximately equal to the number

of iterations). The product psn corresponds to the computation of the ma-

trices XT
J XJ ; ps

2, to the updates of the correlations XT
j (y −Xw�) along

the path; and s3, to the Cholesky decomposition.

2.7 Quantitative Evaluation

To illustrate and compare the methods presented in this chapter, we con-

sider in this section three benchmarks. These benchmarks are chosen to be

representative of problems regularized with sparsity-inducing norms, involv-

ing different norms and different loss functions. To make comparisons that

are as fair as possible, each algorithm is implemented in C/C++, using effi-

cient BLAS and LAPACK libraries for basic linear algebra operations. All

subsequent simulations are run on a single core of a 3.07Ghz CPU, with

8GB of memory. In addition, we take into account several criteria which

strongly influence the convergence speed of the algorithms. In particular, we

consider (a) different problem scales, (b) different levels of correlations, and

(c) different strengths of regularization. We also show the influence of the

required precision by monitoring the time of computation as a function of

the objective function.

For the convenience of the reader, we list here the algorithms compared

and the acronyms we use to refer to them throughout this section: the LARS

2.7 Quantitative Evaluation 41

algorithm (LARS), coordinate descent (CD), reweighted-�2 schemes (Re-�2),

the simple proximal method (ISTA), and its accelerated version (FISTA); we

will also include in the comparisons generic algorithms such as a subgradient

descent algorithm (SG), and a commercial software (Mosek) for cone (CP),

quadratic (QP), and second-order cone programming (SOCP) problems.

2.7.1 Speed Benchmarks

We first present a large benchmark evaluating the performance of various

optimization methods for solving the Lasso.

We perform small-scale (n = 200, p = 200) and medium-scale (n =

2000, p = 10, 000) experiments. We generate design matrices as follows.

For the scenario with low correlation, all entries of X are independently

drawn from a Gaussian distribution N(0, 1/n), which is a setting often used

to evaluate optimization algorithms in the literature. For the scenario with

large correlation, we draw the rows of the matrix X from a multivariate

Gaussian distribution for which the average absolute value of the correlation

between two different columns is eight times the one of the scenario with

low correlation. Test data vectors y = Xw + n where w are randomly

generated, with two levels of sparsity to be used with the two different

levels of regularization. n is a noise vector whose entries are i.i.d. samples

from a Gaussian distribution N(0, 0.01‖Xw‖22/n). In the low regularization

setting, the sparsity of the vectors w is s = 0.5min(n, p), and in the high

regularization one, s = 0.01min(n, p), corresponding to fairly sparse vectors.

For SG, we take the step size to be equal to a/(k+b), where k is the iteration

number and (a, b) are the best10 parameters selected on a logarithmic grid

(a, b) ∈ {103, . . . , 10} × {102, 103, 104}; we proceeded this way so as not to

disadvantage SG by an arbitrary choice of stepsize.

To sum up, we make a comparison for 8 different conditions (2 scales × 2

levels of correlation × 2 levels of regularization). All results are reported in

figures 2.2 and 2.3, by averaging 5 runs for each experiment. Interestingly,

we observe that the relative performance of the different methods change

significantly with the scenario.

Our conclusions for the different methods are as follows.

LARS: For the small-scale problem, LARS outperforms all other methods

for almost every scenario and precision regime. It is therefore definitely the

right choice for the small-scale setting.

10. “The best step size” is understood here as being the step size leading to the smallest
objective function after 500 iterations.

42 Convex Optimization with Sparsity-Inducing Norms

−4 −3 −2 −1 0 1
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
Fista
Ista
Re−L2
CD
Lars
CP
QP

(a) corr: low, reg: low

−4 −3 −2 −1 0 1
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
Fista
Ista
Re−L2
CD
Lars
CP
QP

(b) corr: low, reg: high

−4 −3 −2 −1 0 1
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
Fista
Ista
Re−L2
CD
Lars
CP
QP

(c) corr: high, reg: low

−4 −3 −2 −1 0 1
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
Fista
Ista
Re−L2
CD
Lars
CP
QP

(d) corr: high, reg: high

Figure 2.2: Benchmarks for solving the Lasso for the small-scale experiment
(n = 200, p = 200), for the two levels of correlation and two levels of regularization,
and 8 optimization methods (see main text for details). The curves represent the
relative value of the objective function as a function of the computational time in
seconds on a log10 / log10 scale.

Unlike first-order methods, its performance does not depend on the corre-

lation of the design matrix X, but on the sparsity s of the solution. In our

larger-scale setting, it has been competitive either when the solution is very

sparse (high regularization) or when there is high correlation in X (in that

case, other methods do not perform as well). More important, LARS gives

an exact solution and computes the regularization path.

Proximal methods (ISTA, FISTA): FISTA outperforms ISTA in all sce-

narios but one. The methods are close for high regularization or low cor-

relation, but FISTA is significantly better for high correlation and/or low

regularization. These methods are almost always outperformed by LARS in

the small-scale setting, except for low precision and low correlation.

Both methods suffer from correlated features, which is consistent with the

fact that their convergence rate is proportional to the Lipschitz constant of

2.7 Quantitative Evaluation 43

−2 −1 0 1 2 3
−8

−6

−4

−2

0

2

log(CPU time) in seconds
lo

g(
re

la
tiv

e
di

st
an

ce
 to

 o
pt

im
um

)

SG
Fista
Ista
Re−L2
CD
Lars
CP

(a) corr: low, reg: low

−2 −1 0 1 2 3
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
Fista
Ista
Re−L2
CD
Lars
CP

(b) corr: low, reg: high

−2 −1 0 1 2 3
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
Fista
Ista
Re−L2
CD
Lars
CP

(c) corr: high, reg: low

−2 −1 0 1 2 3
−8

−6

−4

−2

0

2

log(CPU time) in seconds
lo

g(
re

la
tiv

e
di

st
an

ce
 to

 o
pt

im
um

)

SG
Fista
Ista
Re−L2
CD
Lars
CP

(d) corr: high, reg: high

Figure 2.3: Benchmarks for solving the Lasso for the medium-scale experiment n =
2000, p = 10, 000, for the two levels of correlation and two levels of regularization,
and 8 optimization methods (see main text for details). The curves represent the
relative value of the objective function as a function of the computational time in
seconds on a log10 / log10 scale.

the gradient of f , which grows with the amount of correlation. They are well

adapted to large-scale settings with low or medium correlation.

Coordinate descent (CD): To the best of our knowledge, no theoretical

convergence rate is available for this method. Empirically, we have observed

that the behavior of CD often translates into a “warm-up” stage followed

by a fast convergence phase.

Its performance in the small-scale setting is competitive (though always

behind LARS), but less efficient in the large-scale one. For a reason we

cannot explain, it suffers less than proximal methods do from correlated

features.

Reweighted-�2: This method was outperformed in all our experiments by

44 Convex Optimization with Sparsity-Inducing Norms

other dedicated methods.11 We considered only the smoothed alternating

scheme of section 2.5 and not first-order methods in η such as that of

Rakotomamonjy et al. (2008). A more exhaustive comparison should include

these as well.

Generic methods (SG, QP, CP): As expected, generic methods are not

adapted for solving the Lasso and are always outperformed by dedicated

ones such as LARS.

Among the methods that we have presented, some require an overhead

computation of the Gram matrix XTX: this is the case for coordinate de-

scent and reweighted-�2 methods. We took this overhead time into account

in all figures, which explains the behavior of the corresponding convergence

curves. Like the LARS, these methods could benefit from an offline precom-

putation of XTX, and would therefore be more competitive if the solutions

corresponding to several values of the regularization parameter have to be

computed.

In the above experiments we have considered the case of the square loss.

Obviously, some of the conclusions drawn above would not be valid for other

smooth losses. On the one hand, the LARS no longer applies; on the other

hand, proximal methods are clearly still available, and coordinate descent

schemes, which were dominated by the LARS in our experiments, would

most likely turn out to be very good contenders in that setting.

2.7.2 Structured Sparsity

In this second series of experiments, the optimization techniques of the

previous sections are further evaluated when applied to other types of

loss and sparsity-inducing functions. Instead of the �1-norm previously

studied, we focus on the particular hierarchical �1/�2-norm Ω introduced

in section 2.3. From an optimization standpoint, although Ω shares some

similarities with the �1-norm (e.g., the convexity and the non-smoothness),

it differs in that it cannot be decomposed into independent parts (because

of the overlapping structure of G). CD schemes hinge on this property, and

as a result, they cannot be straightforwardly applied in this case.

11. Note that the reweighted-�2 scheme requires iteratively solving large-scale linear sys-
tems that are badly conditioned. Our implementation uses LAPACK Cholesky decom-
positions, but a better performance might be obtained using a preconditioned conjugate
gradient, especially in the very large-scale setting.

2.7 Quantitative Evaluation 45

−3 −2.5 −2 −1.5 −1 −0.5 0
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
Fista
Ista
Re−L2
SOCP

(a) scale: small, regul: low

−3 −2.5 −2 −1.5 −1 −0.5 0
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
Fista
Ista
Re−L2
SOCP

(b) scale: small, regul: medium

−3 −2.5 −2 −1.5 −1 −0.5 0
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
Fista
Ista
Re−L2
SOCP

(c) scale: small, regul: high

Figure 2.4: Benchmarks for solving a least-squares regression problem regularized
by the hierarchical norm Ω. The experiment is small-scale (n = 256, p = 151) and
shows the performances of five optimization methods (see main text for details) for
three levels of regularization. The curves represent the relative value of the objective
function as a function of the computational time in seconds on a log10 / log10 scale.

2.7.2.1 Denoising of Natural Image Patches

In this first benchmark, we consider a least-squares regression problem

regularized by Ω that arises in the context of the denoising of natural image

patches (Jenatton et al., 2010a). In particular, based on a hierarchical set of

features that accounts for different types of edge orientations and frequencies

in natural images, we seek to reconstruct noisy 16×16 patches. Although the

problem involves a small number of variables (p = 151), it has to be solved

repeatedly for thousands of patches, at moderate precision. It is therefore

crucial to be able to solve this problem efficiently.

The algorithms involved in the comparisons are ISTA, FISTA, Re-�2, SG,

and SOCP. All results are reported in figure 2.4, by averaging five runs.

We can draw several conclusions from the simulations. First, we observe

that across all levels of sparsity, the accelerated proximal scheme performs

better than, or similarly to the other approaches. In addition, as opposed

to FISTA, ISTA seems to suffer in non-sparse scenarios. In the least sparse

setting, the reweighted-�2 scheme matches the performance of FISTA. How-

ever, this scheme does not yield truly sparse solutions, and would therefore

require a subsequent thresholding operation, which can be difficult to mo-

tivate in a principled way. As expected, the generic techniques such as SG

and SOCP do not compete with the dedicated algorithms.

46 Convex Optimization with Sparsity-Inducing Norms

2.7.2.2 Multi-class Classification of Cancer Diagnosis

The second benchmark involves two datasets12 of gene expressions in the

context of cancer diagnosis. More precisely, we focus on two multi-class

classification problems in the “small n, large p” setting. The medium-scale

dataset contains n = 83 observations, p = 4615 variables and 4 classes,

and the large-scale one contains n = 308 samples, p = 30017 variables

and 26 classes. In addition, both datasets exhibit highly correlated features.

Inspired by Kim and Xing (2010), we built a tree-structured set of groups

G by applying Ward’s hierarchical clustering (Johnson, 1967) on the gene

expressions. The norm Ω built that way aims at capturing the hierarchical

structure of gene expression networks (Kim and Xing, 2010).

Instead of the square loss function, we consider the multinomial logistic

loss function, which is better suited for multi-class classification problems. As

a direct consequence, the algorithms whose applicability crucially depends

on the choice of the loss function are removed from the benchmark. This

is, for instance, the case for reweighted-�2 schemes that have closed-form

updates available only with the square loss (see section 2.5). Importantly,

the choice of the multinomial logistic loss function requires optimizing over

a matrix with dimensions p times the number of classes (i.e., a total of

4615 × 4 ≈ 18, 000 and 30, 017 × 26 ≈ 780, 000 variables). Also, for lack of

scalability, generic interior-point solvers could not be considered here. To

summarize, the following comparisons involve ISTA, FISTA, and SG.

All the results are reported in figure 2.5. The benchmark especially points

out that overall the accelerated proximal scheme performs better than the

two other methods. Again, it is important to note that both proximal algo-

rithms yield sparse solutions, which is not the case for SG. More generally,

this experiment illustrates the flexibility of proximal algorithms with respect

to the choice of the loss function.

We conclude this section with general remarks on the experiments that

we presented. First, the use of proximal methods is often advocated because

of their optimal worst-case complexities in O(1
k2). In practice, in our ex-

periments these and several other methods empirically exhibit convergence

rates that are at least linear, if not better, which suggests that the adap-

tivity of the method (e.g., its ability to take advantage of local curvature)

might be more crucial to its practical success. Second, our experiments con-

centrated on regimes that are of interest for sparse methods in machine

learning, where typically p is larger than n and where it is possible to find

12. The two datasets we used are SRBCT and 14 Tumors, which are freely available at
http://www.gems-system.org/.

2.8 Extensions 47

−3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

4

log(CPU time) in seconds
lo

g(
re

la
tiv

e
di

st
an

ce
 to

 o
pt

im
um

)

SG
Fista
Ista

(a) scale: medium, regul: low

−3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

log(CPU time) in seconds

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
Fista
Ista

(b) scale: medium, regul:
medium

−3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

log(CPU time) in seconds

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
Fista
Ista

(c) scale: medium, regul:
high

−3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

log(CPU time) in seconds

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
Fista
Ista

(d) scale: large, regul: low

−3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

log(CPU time) in seconds
lo

g(
re

la
tiv

e
di

st
an

ce
 to

 o
pt

im
um

)

SG
Fista
Ista

(e) scale: large, regul:
medium

−3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

log(CPU time) in seconds

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
Fista
Ista

(f) scale: large, regul: high

Figure 2.5: Medium- and large-scale multi-class classification problems for three
optimization methods (see details about the datasets and the methods in the main
text). Three levels of regularization are considered. The curves represent the relative
value of the objective function as a function of the computation time in second on
a log10 / log10 scale. In the highly regularized setting, the tuning of the stepsize for
the subgradient turned out to be difficult, which explains the behavior of SG in the
first iterations.

good sparse solutions. The setting where n is much larger than p was out of

scope here, but would be worth a separate study, and should involve meth-

ods from stochastic optimization. Also, even though it might make sense

from an optimization viewpoint, we did not consider problems with low lev-

els of sparsity, that is, with more dense solution vectors, since it would be a

more difficult regime for many of the algorithms that we presented (namely,

LARS, CD, or proximal methods).

2.8 Extensions

We obviously could not exhaustively cover the literature on algorithms for

sparse methods in this chapter.

Surveys and comparisons of algorithms for sparse methods have been

proposed by Schmidt et al. (2007) and Yuan et al. (2010). These papers

48 Convex Optimization with Sparsity-Inducing Norms

present quite a few algorithms, but focus essentially on �1-regularization

and unfortunately do not consider proximal methods. Also, it is not clear

that the metrics used to compare the performances of various algorithms

is the most relevant to machine learning; in particular, we present the full

convergence curves that we believe are more informative than the ordering

of algorithms at fixed precision.

Beyond the material presented here, there a few topics that we did not

develop and that are worth mentioning.

In terms of norms, we did not consider regularization by the nuclear norm,

also known as the trace-norm, which seeks low-rank matrix solutions (Fazel

et al., 2001; Srebro et al., 2005; Recht et al., 2007; Bach, 2008b). Most of the

optimization techniques that we presented do, however, apply to this norm

(with the exception of coordinate descent).

In terms of algorithms, it is possible to relax the smoothness assumptions

that we made on the loss. For instance, some proximal methods are appli-

cable with weaker smoothness assumptions on the function f , such as the

Douglas-Rachford algorithm (see details in Combettes and Pesquet, 2010).

The related augmented Lagrangian techniques (Glowinski and Le Tallec,

1989; Combettes and Pesquet, 2010, and numerous references therein), also

known as alternating-direction methods of multipliers, are also relevant in

that setting. These methods are applicable in particular to cases where sev-

eral regularizations are mixed.

In the context of proximal methods, the metric used to define the proximal

operator can be (1) modified by judicious rescaling operations, in order

to better fit the geometry of the data (Duchi et al., 2010), or even (2)

replaced with norms associated with functional spaces, in the context of

kernel methods (Rosasco et al., 2009).

Finally, from a broader outlook, our—a priori deterministic—optimization

problem (2.1) may also be tackled with stochastic optimization approaches,

which has been the focus of much research (Bottou, 1998; Bottou and LeCun,

2003; Shapiro et al., 2009).

2.9 Conclusion

We presented and compared four families of algorithms for sparse methods:

proximal methods, block coordinate descent algorithms, reweighted-�2 algo-

rithms, and the LARS that are representative of the state of the art. We

did not aim at being exhaustive. The properties of these methods can be

summarized as follows:

2.10 References 49

Proximal methods provide efficient and scalable algorithms that are ap-

plicable to a wide family of loss functions, that are simple to implement,

that are compatible with many sparsity-inducing norms, and, that are often

competitive with the other methods considered.

For the square loss, the LARS remains the fastest algorithm for (a) small-

and medium-scale problems, since its complexity depends essentially on the

size of the active sets, and (b) cases with very correlated designs. It computes

the whole path up to a certain sparsity level.

For smooth losses, block coordinate descent provides one of the fastest

algorithms, but it is limited to separable regularizers.

For the square-loss and possibly sophisticated sparsity-inducing regulariz-

ers, �2-reweighted algorithms provide generic algorithms that are still pretty

competitive compared with subgradient and interior-point methods. For gen-

eral losses, these methods currently require solving �2-regularized problems

iteratively, and it would be desirable to relax this constraint.

2.10 References

A. Argyriou, T. Evgeniou, and M. Pontil. Multi-task feature learning. In
B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Informa-
tion Processing Systems 19, pages 41–48. MIT Press, 2007.

F. Bach. Exploring large feature spaces with hierarchical multiple kernel learning.
In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in
Neural Information Processing Systems 21, pages 105–112. MIT Press, 2008a.

F. Bach. Consistency of trace norm minimization. Journal of Machine Learning
Research, 9:1019–1048, 2008b.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

D. P. Bertsekas. Nonlinear programming. Athena Scientific, Belmont, MA, second
edition, 1999.

P. Bickel, Y. Ritov, and A. Tsybakov. Simultaneous analysis of Lasso and Dantzig
selector. Annals of Statistics, 37(4):1705–1732, 2009.

J. M. Borwein and A. S. Lewis. Convex Analysis and Nonlinear Optimization:
Theory and Examples. Springer-Verlag, second edition, 2006.

L. Bottou. Online algorithms and stochastic approximations. In D. Saad, editor,
Online Learning and Neural Networks. Cambridge University Press, Cambridge,
UK, 1998.

L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In J. C. Platt,
D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information
Processing Systems 20, pages 161–168. MIT Press, 2007.

L. Bottou and Y. LeCun. Large scale online learning. In S. Thrun, L. Saul, and
B. Schölkopf, editors, Advances in Neural Information Processing Systems 16,
pages 217–224. MIT Press, 2003.

50 Convex Optimization with Sparsity-Inducing Norms

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

P. Brucker. An O(n) algorithm for quadratic knapsack problems. Operations
Research Letters, 3(3):163–166, 1984.

S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis
pursuit. SIAM Journal on Scientific Computing, 20(1):33–61, 1999.

P. Combettes and J. Pesquet. Fixed-Point Algorithms for Inverse Problems in Sci-
ence and Engineering, chapter Proximal Splitting Methods in Signal Processing.
Springer-Verlag, New York, 2010.

I. Daubechies, R. DeVore, M. Fornasier, and C. S. Güntürk. Iteratively reweighted
least squares minimization for sparse recovery. Communications on Pure and
Applied Mathematics, 63(1):1–38, 2010.

D. L. Donoho and I. M. Johnstone. Adapting to unknown smoothness via wavelet
shrinkage. Journal of the American Statistical Association, 90(432):1200–1224,
1995.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learn-
ing and stochastic optimization. In A. T. Kalai and M. Mohri, editors, Proceedings
of the 23rd Conference on Learning Theory, pages 257–269. Omnipress, 2010.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Annals
of Statistics, 32(2):407–499, 2004.

M. Fazel, H. Hindi, and S. P. Boyd. A rank minimization heuristic with application
to minimum order system approximation. In Proceedings of the American Control
Conference, volume 6, pages 4734–4739, 2001.

J. Friedman, T. Hastie, and R. Tibshirani. A note on the group lasso and a sparse
group lasso. preprint, 2010. arXiv:1001.0736.

W. J. Fu. Penalized regressions: The bridge versus the lasso. Journal of Computa-
tional and Graphical Statistics, 7(3):397–416, 1998.

A. Genkin, D. D. Lewis, and D. Madigan. Large-scale bayesian logistic regression
for text categorization. Technometrics, 49(3):291–304, 2007.

R. Glowinski and P. Le Tallec. Augmented Lagrangian and Operator-Splitting
Methods in Nonlinear Mechanics. Studies in Applied Mathematics. SIAM, 1989.

J. Huang and T. Zhang. The benefit of group sparsity. Annals of Statistics, 38(4):
1978–2004, 2010.

L. Jacob, G. Obozinski, and J.-P. Vert. Group Lasso with overlaps and graph Lasso.
In Proceedings of the 26th International Conference on Machine Learning, pages
433–440. ACM Press, 2009.

R. Jenatton, J.-Y. Audibert, and F. Bach. Structured variable selection with
sparsity-inducing norms. Technical report, 2009. Preprint arXiv:0904.3523v1.

R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for sparse
hierarchical dictionary learning. In Proceedings of the 27th International Confer-
ence on Machine Learning, 2010a.

R. Jenatton, G. Obozinski, and F. Bach. Structured sparse principal component
analysis. In Proceedings of International Conference on Artificial Intelligence and
Statistics, pages 366–373, 2010b.

S. C. Johnson. Hierarchical clustering schemes. Psychometrika, 32(3):241–254,
1967.

S. Kim and E. P. Xing. Tree-guided group lasso for multi-task regression with

2.10 References 51

structured sparsity. In Proceedings of the 27th International Conference on
Machine Learning, pages 543–550, 2010.

K. Koh, S. J. Kim, and S. Boyd. An Interior-Point Method for Large-Scale l 1-
Regularized Logistic Regression. Journal of Machine Learning Research, 8:1555,
2007.

B. Krishnapuram, L. Carin, M. A. T. Figueiredo, and A. J. Hartemink. Sparse
multinomial logistic regression: Fast algorithms and generalization bounds. IEEE
Transactions Pattern Analysis and Machine Intelligence, 27(6):957–968, 2005.

H. Lee, A. Battle, R. Raina, and A. Y. Ng. Efficient sparse coding algorithms.
In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural
Information Processing Systems 20, pages 801–808. MIT Press, 2007.

K. Lounici, M. Pontil, A. B. Tsybakov, and S. van de Geer. Taking advantage of
sparsity in multi-task learning. Technical report, Preprint arXiv:0903.1468, 2009.

N. Maculan and G. Galdino de Paula Jr. A linear-time median-finding algorithm
for projecting a vector on the simplex of Rn. Operations Research Letters, 8(4):
219–222, 1989.

J. Mairal, R. Jenatton, G. Obozinski, and F. Bach. Network flow algorithms for
structured sparsity. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel,
and A. Culotta, editors, Advances in Neural Information Processing Systems 23.
MIT Press, 2010.

H. Markowitz. Portfolio selection. Journal of Finance, 7(1):77–91, 1952.

J. Moreau. Fonctions convexes duales et points proximaux dans un espace hilber-
tien. Comptes Rendus de l’Académie des Sciences, Paris, Série A, Mathématique,
255:2897–2899, 1962.

S. Negahban, P. Ravikumar, M. J. Wainwright, and B. Yu. A unified framework
for high-dimensional analysis of M-estimators with decomposable regularizers. In
Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors,
Advances in Neural Information Processing Systems 22. MIT Press, 2009.

Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course.
Kluwer Academic Publishers, 2004.

Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Pro-
gramming, 103(1):127–152, 2005.

Y. Nesterov. Gradient methods for minimizing composite objective function.
Technical report, Center for Operations Research and Econometrics, Catholic
University of Louvain, 2007. revised 2010.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer-Verlag, second
edition, 2006.

G. Obozinski, B. Taskar, and M. I. Jordan. Joint covariate selection and joint
subspace selection for multiple classification problems. Statistics and Computing,
20(2):231–252, 2010.

M. R. Osborne, B. Presnell, and B. A. Turlach. On the Lasso and its dual. Journal
of Computational and Graphical Statistics, 9(2):319–337, 2000.

A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. SimpleMKL. Journal
of Machine Learning Research, 9:2491–2521, 2008.

B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed minimum-rank solutions of
linear matrix equations via nuclear norm minimization. Technical report, 2007.
Preprint arXiv:0706.4138.

52 Convex Optimization with Sparsity-Inducing Norms

R. T. Rockafellar. Convex analysis. Princeton University Press, 1997.

L. Rosasco, S. Mosci, M. Santoro, A. Verri, and S. Villa. Iterative Projection
Methods for Structured Sparsity Regularization. Technical report, Computer
Science and Artificial Intelligence Laboratory, MIT, 2009. CBCL-282.

V. Roth and B. Fischer. The Group-Lasso for generalized linear models: uniqueness
of solutions and efficient algorithms. In Proceedings of the 25th International
Conference on Machine Learning, pages 848–855, 2008.

M. Schmidt and K. Murphy. Convex structure learning in log-linear models: Beyond
pairwise potentials. In Proceedings of the 13th International Conference on
Artificial Intelligence and Statistics, 2010.

M. Schmidt, G. Fung, and R. Rosales. Fast optimization methods for L1 regulariza-
tion: A comparative study and two new approaches. Machine Learning: ECML
2007, pages 286–297, 2007.

A. Shapiro, D. Dentcheva, A. Ruszczyński, and A. P. Ruszczyński. Lectures on
Stochastic Programming: Modeling and Theory. SIAM, 2009.

J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cam-
bridge University Press, 2004.

S. K. Shevade and S. S. Keerthi. A simple and efficient algorithm for gene selection
using sparse logistic regression. Bioinformatics, 19(17):2246–2253, 2003.

P. Sprechmann, I. Ramirez, G. Sapiro, and Y. Eldar. Collaborative hierarchical
sparse modeling. In Proceedings of the 44th Annual Conference on Information
Sciences and Systems, 2010.

N. Srebro, J. D. M. Rennie, and T. S. Jaakkola. Maximum-margin matrix factor-
ization. In L. K. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural
Information Processing Systems 17, pages 1329–1336. MIT Press, 2005.

M. Szafranski, Y. Grandvalet, and P. Morizet-Mahoudeaux. Hierarchical penaliza-
tion. In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in
Neural Information Processing Systems 20. MIT Press, 2007.

R. Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the
Royal Statistical Society, series B, 58(1):267–288, 1996.

J. A. Tropp. Greed is good: Algorithmic results for sparse approximation. IEEE
Transactions on Information Theory, 50(10):2231–2242, 2004.

P. Tseng and S. Yun. A coordinate gradient descent method for nonsmooth
separable minimization. Mathematical Programming, series B, 117(1):387–423,
2009.

M. J. Wainwright. Sharp thresholds for noisy and high-dimensional recovery of
sparsity using �1-constrained quadratic programming. IEEE Transactions on
Information Theory, 55(5):2183–2202, 2009.

S. Wright, R. Nowak, and M. Figueiredo. Sparse reconstruction by separable
approximation. IEEE Transactions on Signal Processing, 57(7):2479–2493, 2009.

T. Wu and K. Lange. Coordinate descent algorithms for lasso penalized regression.
Annals of Statistics, 2(1):224–244, 2008.

G. Yuan, K. Chang, C. Hsieh, and C. Lin. A comparison of optimization methods
for large-scale l1-regularized linear classification. Technical report, Department
of Computer Science, National University of Taiwan, 2010.

M. Yuan and Y. Lin. Model selection and estimation in regression with grouped
variables. Journal of the Royal Statistical Society, series B, 68:49–67, 2006.

2.10 References 53

P. Zhao and B. Yu. On model selection consistency of Lasso. Journal of Machine
Learning Research, 7:2541–2563, 2006.

P. Zhao, G. Rocha, and B. Yu. The composite absolute penalties family for grouped
and hierarchical variable selection. Annals of Statistics, 37(6A):3468–3497, 2009.

H. Zou and T. Hastie. Regularization and variable selection via the elastic net.
Journal of the Royal Statistical Society Series B, 67(2):301–320, 2005.

