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Many inference problems with discrete variables result in a difficult combina-

torial optimization problem. In recent years, the technique of dual decompo-

sition, also called Lagrangian relaxation, has proved to be a powerful means

of solving these inference problems by decomposing them into simpler com-

ponents that are repeatedly solved independently and combined into a global

solution. In this chapter, we introduce the general technique of dual decom-

position through its application to the problem of finding the most likely

(MAP) assignment in graphical models. We discuss both subgradient and

block coordinate descent approaches to solving the dual problem. The re-

sulting message-passing algorithms are similar to max-product, but can be

shown to solve a linear programming relaxation of the MAP problem. We

show how many of the MAP algorithms are related to each other, and also

quantify when the MAP solution can and cannot be decoded directly from the

dual solution.
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8.1 Introduction

Many problems in engineering and the sciences require solutions to challeng-

ing combinatorial optimization problems. These include traditional problems

such as scheduling, planning, fault diagnosis, or searching for molecular con-

formations. In addition, a wealth of combinatorial problems arise directly

from probabilistic modeling (graphical models). Graphical models (Koller

and Friedman, 2009) have been widely adopted in areas such as compu-

tational biology, machine vision, and natural language processing, and are

increasingly being used as frameworks expressing combinatorial problems.

Consider, for example, a protein side-chain placement problem where

the goal is to find the minimum energy conformation of amino acid side-

chains along a fixed carbon backbone. The orientations of the side-chains

are represented by discretized angles called rotamers. The combinatorial

difficulty arises here from the fact that rotamer choices for nearby amino

acids are energetically coupled. For globular proteins, for example, such

couplings may be present for most pairs of side-chain orientations. This

problem is couched in probabilistic modeling terms by associating molecular

conformations with the setting of discrete random variables corresponding

to the rotamer angles. The interactions between such random variables

come from the energetic couplings between nearby amino acids. Finding

the minimum energy conformation is then equivalently solved by finding the

most probable assignment of states to the variables.

We will consider combinatorial problems that are expressed in terms of

structured probability models (graphical models). A graphical model is

defined over a set of discrete variables x = {xj}j∈V . Local interactions

between the variables are modeled by functions θf (xf ) which depend only

on a subset of variables xf = {xj}j∈f . For example, if xf = (xi, xj),

θf (xf ) = θij(xi, xj) may represent the coupling between rotamer angles xi
and xj corresponding to nearby amino acids. The functions θf (xf ) are often

represented as small tables of numbers with an adjustable value for each

local assignment xf . The joint probability distribution over all the variables

x is then defined by combining all the local interactions,

logP (x) =
∑
i∈V

θi(xi) +
∑
f∈F

θf (xf ) + const,

where we have included (singleton) functions biasing the states of indi-

vidual variables. The local interactions provide a compact parametric de-

scription of the joint distribution, since we only need to specify the local

functions (as small tables) rather than the full probability table involv-

ing one value for each complete assignment x.
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Despite their compact description, graphical models are capable of de-

scribing complex dependencies among the variables. These dependences arise

from the combined effect of all the local interactions. The problem of prob-

abilistic inference is to reason about the underlying state of the variables in

the model. Given the complex dependencies, it is not surprising that proba-

bilistic inference is often computationally intractable. For example, finding

the maximum probability assignment of a graphical model (also known as

the MAP assignment) is NP-hard. Finding the MAP assignment remains

hard even if the local functions depend on only two variables, as in the

protein side-chain example. This has prompted extensive research into ap-

proximation algorithms, some of which often work well in practice.

One of the most successful approximation schemes has been to use relax-

ations of the original MAP problem. Relaxation methods take the original

combinatorial problem and pose it as a constrained optimization problem.

They then relax some of the constraints in an attempt to factor the problem

into more independent subproblems, resulting in a tractable approximation

of the original one. Two closely related relaxation schemes are dual decom-

position (Johnson, 2008; Komodakis et al., 2011) and linear programming

(LP) relaxations (Schlesinger, 1976; Wainwright et al., 2005). Although the

approaches use different derivations of the approximation, they result in

equivalent optimization problems.

Practical uses of MAP relaxations involve models with thousands of

variables and constraints. While the relaxed optimization problems can

generally be solved in polynomial time using a variety of methods and

off-the-shelf solvers, most of these do not scale well to the problem sizes

encountered in practice (e.g., see Yanover et al., 2006, for an evaluation

of commercial LP solvers on inference problems). However, often the LP

relaxations arising from graphical models have significant structure that

can be exploited to design algorithms that scale well with the problem size.

This chapter introduces the dual decomposition approach, also known as

Lagrangian relaxation, and focuses on efficient scalable algorithms for solv-

ing the relaxed problem. With dual decomposition, the original problem is

broken up into smaller subproblems with the help of Lagrange multipliers.

The smaller subproblems can be then be solved exactly by using combinato-

rial algorithms. The decomposition is subsequently optimized with respect

to the Lagrange multipliers so as to encourage the subproblems to agree

about the variables they share. For example, we could decompose the MAP

problem into subproblems corresponding separately to each local function

θf (xf ). The Lagrange multipliers introduced in the decomposition would

then modify the functions θf (xf ) so that the local maximizing assignments

agree across the subproblems. The decomposition may also involve larger
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components that nevertheless can be solved efficiently, such as a set of span-

ning trees that together cover all edges of a pairwise graphical model.

The chapter is organized as follows. We begin in section 8.2 with two

example applications that illustrate the types of problems that can be

solved using our techniques. We next define the MAP problem formally

and introduce the dual decomposition approach in section 8.3. The next two

sections, 8.4 and 8.5, describe algorithmic approaches to solving the dual

decomposition optimization problem. In section 8.6 we discuss the relation

between dual decomposition and LP relaxations of the MAP problem,

showing that they are essentially equivalent. Finally, in section 8.7 we discuss

how the MAP solution can be approximated from the dual decomposition

solutions, and what formal guarantees we can make about it.

8.2 Motivating Applications

We will use two example applications to illustrate the role of local interac-

tions, types of decompositions, and how they can be optimized. The first ex-

ample, outlined earlier, is the protein side-chain placement problem (Yanover

et al., 2008). The goal is to find the minimum energy conformation of amino

acid side-chains in a fixed protein backbone structure. Each side-chain orien-

tation is represented by a discrete variable xi specifying the corresponding

rotamer angles. Depending on the discretization and the side-chain (the

number of dihedral angles), the variables may take on tens or hundreds of

possible values (states). Energy functions for this problem typically separate

into individual and pairwise terms; the pairwise terms take into considera-

tion attractive and repulsive forces between side-chains that are near each

other in the 3D structure.

The problem is equivalently represented as an inference problem in a

pairwise Markov random field (MRF) model. Graphically, the MRF is

an undirected graph with nodes i ∈ V corresponding to variables (side-

chain orientations xi) and edges ij ∈ E indicating interactions. Each

pairwise energy term implies an edge ij ∈ E in the model and defines a

potential function θij(xi, xj) over local assignments (xi, xj). Single node

potential functions θi(xi) can be included separately or absorbed by the

edge potentials. The MAP inference problem is then to find the assignment

x = {xi}i∈V that maximizes∑
i∈V

θi(xi) +
∑
ij∈E

θij(xi, xj).

Without additional restrictions on the choice of potential functions, or which
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Figure 8.1: Example of dependency parsing for a sentence in English. Every
word has one parent (i.e., a valid dependency parse is a directed tree). The red arc
demonstrates a non-projective dependency.

edges to include, the problem is known to be NP-hard. Using the dual

decomposition approach, we will break the problem into much simpler sub-

problems involving maximizations of each single node potential θi(xi) and

each edge potential θij(xi, xj) independently from the other terms. Although

these local maximizing assignments are easy to obtain, they are unlikely

to agree with each other without our modifying the potential functions.

These modifications are provided by the Lagrange multipliers associated

with agreement constraints.

Our second example is dependency parsing, a key problem in natural

language processing (McDonald et al., 2005). Given a sentence, we wish

to predict the dependency tree that relates the words in the sentence. A

dependency tree is a directed tree over the words in the sentence where

an arc is drawn from the head word of each phrase to words that modify

it. For example, in the sentence shown in Fig. 8.1, the head word of the

phrase “John saw a movie” is the verb “saw”, and its modifiers are the

subject “John” and the object “movie”. Moreover, the second phrase “that

he liked” modifies “movie”. In many languages the dependency tree is non-

projective in the sense that each word and its descendants in the tree do not

necessarily form a contiguous subsequence.

Formally, given a sentence with m words, we have m(m − 1) binary arc

selection variables xij ∈ {0, 1}. Since the selections must form a directed

tree, the binary variables are governed by an overall function θT (x) with

the idea that θT (x) = −∞ is used to rule out any non-trees. The selections

are further biased by weights on individual arcs, through θij(xij), which

depend on the given sentence. In a simple arc-factored model, the predicted

dependency structure is obtained by maximizing (McDonald et al., 2005)

θT (x) +
∑
ij

θij(xij),

and can be found with directed maximum-weight spanning-tree algorithms.

More realistic dependency parsing models include additional higher-order

interactions between the arc selections. For example, we may couple the

modifier selections x|i = {xij}j �=i (all outgoing edges) for a given word
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i, expressed by a function θi|(x|i). Finding the maximizing non-projective

parse tree in a model that includes such higher-order couplings, without

additional restrictions, is known to be NP-hard (McDonald and Satta,

2007). We consider here models where θi|(x|i) can be individually maximized

by dynamic programming algorithms (e.g., head-automata models), but

become challenging as part of the overall dependency tree model:(
θT (x)

)
+

(∑
ij

θij(xij) +
∑
i

θi|(x|i)
)

= θ1(x) + θ2(x).

The first component θ1(x) ensures that we obtain a tree, and the second

component θ2(x) incorporates higher-order biases on the modifier selections.

A natural dual decomposition in this case will be to break the problem into

these two manageable components, which are then forced to agree on the

arc selection variables (Koo et al., 2010).

8.3 Dual Decomposition and Lagrangian Relaxation

The previous section described several problems where we wish to maximize

a sum over factors, each defined on some subset of the variables. Here

we describe this problem in its general form, and introduce a relaxation

approach for approximately maximizing it.

Consider a set of n discrete variables x1, . . . , xn, and a set F of subsets

on these variables (i.e., f ∈ F is a subset of V = {1, . . . , n}), where each

subset corresponds to the domain of one of the factors. Also, assume we

are given functions θf (xf ) on these factors, as well as functions θi(xi) on

each of the individual variables.1 The goal of the MAP problem is to find an

assignment x = (x1, . . . , xn) for all the variables which maximizes the sum

of the factors:

MAP(θ) = max
x

∑
i∈V

θi(xi) +
∑
f∈F

θf (xf ). (8.1)

The maximizing value is denoted by MAP(θ), and the maximizing assign-

ment is called the MAP assignment. It can be seen that the examples in

section 8.2 indeed correspond to this formulation.2

1. The singleton factors are not needed for generality, but we keep them for notational
convenience and because one often has such factors.
2. Recall the protein side-chain placement problem, where we have an energy function
defined on a pairwise MRF. Here, the set of factors F would simply be the edge potentials
θij(xi, xj) characterizing the couplings between orientations of nearby side-chains. In
contrast, in non-projective dependency parsing we have just two factors, θ1(x) and θ2(x),
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As mentioned earlier, the problem in Eq. 8.1 is generally intractable, and

we thus need to resort to approximations. The key difficulty in maximizing

Eq. 8.1 is that we need to find an x that maximizes the sum over factors

rather than each factor individually. The key assumption we shall make in

our approximations is that maximizing each of the factors θf (xf ) can be

done efficiently, so that the only complication is their joint maximization.

Our approximation will proceed as follows: we will construct a dual

function L(δ) with variables δ such that for all values of δ it holds that

L(δ) ≥ MAP(θ). In other words, L(δ) will be an upper bound on the value

of the MAP assignment. We will then seek a δ that minimizes L(δ) so as to

make this upper bound as tight as possible.

To describe the dual optimization problem, we first specify what the dual

variables are. For every choice of f ∈ F , i ∈ f , and xi, we will have a dual

variable denoted by δfi(xi).
3 This variable may be interpreted as themessage

that factor f sends to variable i about its state xi. The dual function L(δ)

and the corresponding optimization problem are then given by

min
δ

L(δ), (8.2)

L(δ) =
∑
i∈V

max
xi

(
θi(xi) +

∑
f :i∈f

δfi(xi)
)
+
∑
f∈F

max
xf

(
θf (xf )−

∑
i∈f

δfi(xi)
)
.

The key property of the function L(δ) is that it involves maximization

only over local assignments xf , a task which we assume to be tractable. The

dual thus decouples the original problem, resulting in a problem that can

be optimized using local operations. Figure 8.2 illustrates this for a simple

pairwise model.

We will introduce algorithms that minimize the approximate objective

L(δ) using local updates. Each iteration of the algorithms repeatedly finds

a maximizing assignment for the subproblems individually, using these to

update the dual variables that glue the subproblems together. We describe

two classes of algorithms, one based on a subgradient method (see section

8.4) and another based on block coordinate descent (see section 8.5). These

dual algorithms are simple and widely applicable to combinatorial problems

in machine learning such as finding MAP assignments of graphical models.

both defined on all of the variables, and the single node potentials θi(xi) are identically
zero (not used). The variables here are binary, one for each directed edge, denoting whether
a particular dependency exists.
3. We use the notation δfi(xi) to denote a variable indexed by i, f , and xi. An alternative
notation could have been δ(xi, f, i), but δfi(xi) is more compact.
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Figure 8.2: Illustration of the the dual decomposition objective. Left: The orig-
inal pairwise model consisting of four factors. Right: The maximization problems
corresponding to the objective L(δ). Each blue ellipse contains the factor to be
maximized over. In all figures the singleton terms θi(xi) are set to zero for simplic-
ity.

8.3.1 Derivation of the Dual

In what follows we show how the dual optimization in Eq. 8.2 is derived

from the original MAP problem in Eq. 8.1. We first slightly reformulate

the problem by duplicating the xi variables, once for each factor, and then

enforcing that these are equal. Let xfi denote the copy of xi used by factor f .

Also, denote by xf
f = {xfi }i∈f the set of variables used by factor f , and, by

xF = {xf
f}f∈F , the set of all variable copies. This is illustrated graphically

in Fig. 8.3. Then, our reformulated—but equivalent—optimization problem

is

max
∑

i∈V θi(xi) +
∑

f∈F θf (x
f
f )

s.t. xfi = xi, ∀f, i ∈ f.
(8.3)

If we did not have the constraints, this maximization would simply de-

compose into independent maximizations for each factor, each of which we

assume can be done efficiently. To remove these complicating constraints,

we use the technique of Lagrangian relaxation (Geoffrion, 1974; Schlesinger,

1976; Fisher, 1981; Lemaréchal, 2001; Guignard, 2003). First, introduce La-
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Figure 8.3: Illustration of the the derivation of the dual decomposition objective
by creating copies of variables. The graph in Fig. 8.2 is shown here with the
corresponding copies of the variables for each of the factors.

grange multipliers δ = {δfi(xi) : f ∈ F, i ∈ f, xi}, and define the Lagrangian:

L(δ,x,xF ) =
∑
i∈V

θi(xi) +
∑
f∈F

θf (x
f
f )

+
∑
f∈F

∑
i∈f

∑
x̂i

δfi(x̂i)
(
1[xi = x̂i]− 1[xfi = x̂i]

)
. (8.4)

The following problem is still equivalent to Eq. 8.3 for any value of δ,

maxx,xF L(δ,x,xF )

s.t. xfi = xi, ∀f, i ∈ f.
(8.5)

This follows because if the constraints in the above hold, then the last term

in Eq. 8.4 is zero for any value of δ. In other words, the Lagrange multipliers

are unnecessary if we already enforce the constraints.

Solving the maximization in Eq. 8.5 is as hard as the original MAP

problem. To obtain a tractable optimization problem, we omit the constraint

in Eq. 8.5 and define the function L(δ):

L(δ) = max
x,xF

L(δ,x,xF )

=
∑
i∈V

max
xi

(
θi(xi) +

∑
f :i∈f

δfi(xi)
)
+
∑
f∈F

max
xf

f

(
θf (x

f
f )−

∑
i∈f

δfi(x
f
i )
)
.

Since L(δ) maximizes over a larger space (x may not equal xF ), we have

that MAP(θ) ≤ L(δ). The dual problem is to find the tightest such upper

bound by optimizing the Lagrange multipliers: solving minδ L(δ).

Note that the maximizations are now unambiguously independent. We

obtain Eq. 8.2 by replacing xf
f with xf .
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8.3.2 Reparameterization Interpretation of the Dual

The notion of reparameterization has played a key role in understanding

approximate inference in general and MAP approximations in particular

(Sontag and Jaakkola, 2009; Wainwright et al., 2003). It can also be used to

interpret the optimization problem in Eq. 8.2, as we briefly review here.

Given a set of dual variables δ, define new factors on xi and xf given by

θ̄δi (xi) = θi(xi) +
∑
f :i∈f

δfi(xi)

θ̄δf (xf ) = θf (xf )−
∑
i∈f

δfi(xi) . (8.6)

It is easy to see that these new factors define essentially the same function

as the original factors θ. Namely, for all assignments x,∑
i∈V

θi(xi) +
∑
f∈F

θf (xf ) =
∑
i∈V

θ̄δi (xi) +
∑
f∈F

θ̄δf (xf ) . (8.7)

We call θ̄ a reparameterization of the original parameters θ. Next we observe

that the function L(δ) can be written as

L(δ) =
∑
i∈V

max
xi

θ̄δi (xi) +
∑
f∈F

max
xf

θ̄δf (xf ). (8.8)

To summarize the above, dual decomposition may be viewed as searching

over a set of reparameterizations of the original factors θ, where each

reparameterization provides an upper bound on the MAP and we are seeking

to minimize this bound.

8.3.3 Formal Guarantees

In the previous section we showed that the dual always provides an upper

bound on the optimum of our original optimization problem (Eq. 8.1),

max
x

∑
i∈V

θi(xi) +
∑
f∈F

θf (xf ) ≤ min
δ

L(δ). (8.9)

We do not necessarily have strong duality, that is, equality in the above

equation. However, for some functions θ(x) strong duality does hold, as

stated in the following theorem4

Theorem 8.1. Suppose that ∃δ∗,x∗ where x∗i ∈ argmaxxi
θ̄δ

∗
i (xi) and

4. Versions of this theorem appear in multiple papers (e.g., see Geoffrion, 1974; Wainwright
et al., 2005; Weiss et al., 2007).
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x∗
f ∈ argmaxxf

θ̄δ
∗

f (xf ). Then x∗ is a solution to the maximization problem

in Eq. 8.1 and hence L(δ∗) = MAP(θ).

Proof. For the given δ∗ and x∗ we have that

L(δ∗) =
∑
i

θ̄δ
∗

i (x∗i ) +
∑
f∈F

θ̄δ
∗

f (x∗
f ) =

∑
i

θi(x
∗
i ) +

∑
f∈F

θf (x
∗
f ), (8.10)

where the equalities follow from the maximization property of x∗ and the

reparameterization property of θ̄. On the other hand, from the definition of

MAP(θ) we have that∑
i

θi(x
∗
i ) +

∑
f∈F

θf (x
∗
f ) ≤ MAP(θ). (8.11)

Taking Eq. 8.10 and Eq. 8.11 together with L(δ∗) ≥ MAP(θ), we have

equality in Eq. 8.11, so that x∗ attains the MAP value and is therefore the

MAP assignment, and L(δ∗) = MAP(θ).

The conditions of theorem 8.1 correspond to the subproblems agreeing on

a maximizing assignment. Since agreement implies optimality of the dual, it

can occur only after our algorithms find the tightest upper bound. Although

the agreement is not guaranteed, if we do reach such a state, then theorem 8.1

ensures that we have the exact solution to Eq. 8.1. The dual solution δ is

said to provide a certificate of optimality in this case. In other words, if we

find an assignment whose value matches the dual value, then the assignment

has to be the MAP (strong duality).

For both the non-projective dependency parsing and protein side-chain

placement problems, exact solutions (with certificates of optimality) are

frequently found by using dual decomposition, in spite of the corresponding

optimization problems being NP-complete (Koo et al., 2010; Sontag et al.,

2008; Yanover et al., 2006).

We show in section 8.6 that equation (8.2) is the dual of an LP relaxation

of the original problem. When the conditions of theorem 8.1 are satisfied, it

means the LP relaxation is tight for this instance.

8.4 Subgradient Algorithms

For the remainder of this chapter, we show how to efficiently minimize

the upper bound on the MAP assignment provided by the Lagrangian

relaxation. Although L(δ) is convex and continuous, it is non-differentiable

at all points δ where θ̄δi (xi) or θ̄δf (xf ) have multiple optima (for some i

or f). There are a large number of non-differentiable convex optimization

techniques that could be applied in this setting (Fisher, 1981). In this section
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we describe the subgradient method, which has been widely applied to

solving Lagrangian relaxation problems and is often surprisingly effective,

in spite of being such a simple method. The subgradient method is similar

to gradient descent, but is applicable to non-differentiable objectives.

A complete treatment of subgradient methods is beyond the scope of

this chapter. Our focus will be to introduce the general idea so that we

can compare and contrast it with the block coordinate descent algorithms

described in the next section. We refer the reader to Komodakis et al.

(2011) for a detailed treatment of subgradient methods as they relate to

inference problems (see also Held et al. (1974) for an early application of

the subgradient method for Lagrangian relaxation, and to Koo et al. (2010)

for a recent application to the non-projective dependency parsing problem

described earlier). Our dual decomposition differs slightly from these earlier

works in that we explicitly included single node factors and enforced that

all other factors agree with them. As a result, our optimization problem is

unconstrained, regardless of the number of factors. In contrast, Komodakis

et al. (2011) have constraints enforcing that some of the dual variables sum

to zero, resulting in a projected subgradient method.

A subgradient of a convex function L(δ) at δ is a vector gδ such that for

all δ′, L(δ′) ≥ L(δ)+ gδ · (δ′−δ). The subgradient method is very simple to

implement, alternating between individually maximizing the subproblems

(which provides the subgradient) and updating the dual parameters δ using

the subgradient. More specifically, the subgradient descent strategy is as

follows. Assume that the dual variables at iteration t are given by δt. Then

their value at iteration t+ 1 is given by

δt+1
fi (xi) = δtfi(xi)− αt g

t
fi(xi) , (8.12)

where gt is a subgradient of L(δ) at δt (i.e., g ∈ ∂L(δt)) and αt is a stepsize

that may depend on t. We show one way to calculate this subgradient in

section 8.4.1.

A well-known theoretical result is that the subgradient method is guar-

anteed to solve the dual to optimality whenever the stepsizes are chosen

such that limt→∞ αt = 0 and
∑∞

t=0 αt =∞ (Anstreicher and Wolsey, 2009).

One example of such a stepsize is αt =
1
t . However, there are a large num-

ber of heuristic choices that can make the subgradient method faster. See

Komodakis et al. (2011) for further possibilities of how to choose the step

size, and for an empirical evaluation of these choices on inference problems

arising from computer vision.
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8.4.1 Calculating the Subgradient of L(δ)

In this section we show how to calculate the subgradient of L(δ), complet-

ing the description of the subgradient algorithm. Given the current dual

variables δt, we first choose a maximizing assignment for each subproblem.

Let xsi be a maximizing assignment of θ̄δ
t

i (xi), and let xf
f be a maximizing

assignment of θ̄δ
t

f (xf ). The subgradient of L(δ) at δt is then given by the

following pseudocode:

gtfi(xi) = 0, ∀f, i ∈ f, xi

For f ∈ F and i ∈ f :

If xfi �= xsi :

gtfi(x
s
i ) = +1 (8.13)

gtfi(x
f
i ) = −1 . (8.14)

Thus, each time that xfi �= xsi , the subgradient update decreases the

value of θ̄δ
t

i (xsi ) and increases the value of θ̄δ
t

i (xfi ). Similarly, for all xf\i,
the subgradient update decreases the value of θ̄δ

t

f (xfi ,xf\i) and increases

the value of θ̄δ
t

f (xsi ,xf\i). Intuitively, as a result of the update, in the next

iteration the factors are more likely to agree with one another on the value

of xi in their maximizing assignments.

Typically one runs the subgradient algorithm until either L(δ) stops

decreasing significantly or we have reached some maximum number of

iterations. If at any iteration t we find that gt = 0, then xfi = xsi for all

f ∈ F, i ∈ f . Therefore, by theorem 8.1, xs must be an MAP assignment,

and so we have solved the dual to optimality. However, the converse does not

always hold: gt may be non-zero even when δt is dual optimal. We discuss

these issues further in section 8.7.

In the incremental subgradient method, at each iteration one computes

the subgradient using only some of the subproblems, F ′ ⊂ F , rather than

using all factors in F (Bertsekas, 1995). This can significantly decrease the

overall running time, and is also more similar to the block coordinate descent

methods that we describe next, which make updates with respect to only

one factor at a time.

8.4.2 Efficiently Maximizing over the Subproblems

To choose a maximizing assignment for each subproblem, needed for mak-

ing the subgradient updates, we have to solve the following combinatorial
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optimization problem:

max
xf

⎡⎣θf (xf )−
∑
i∈f

δfi(xi)

⎤⎦ . (8.15)

When the number of possible assignments xf is small, this maximization

can be done simply by enumeration. For example, in pairwise MRFs each

factor f ∈ F consists of just two variables, |f | = 2. Suppose each variable

takes k states. Then this maximization takes k2 time.

Often the number of assignments is large but the functions θf (xf ) are

sparse, allowing the maximization to be performed using dynamic program-

ming or combinatorial algorithms. For example, in the non-projective de-

pendency parsing problem, θ1(x) = −∞ if the set of edges specified by x

include a cycle, and 0 otherwise. Maximization in Eq. 8.15 can be solved

efficiently in this case as follows: We form a directed graph where the weight

of the edge corresponding to xi is δ1i(1)− δ1i(0). Then, we solve Eq. 8.15 by

finding a directed minimum-weight spanning tree on this graph.

The following are some of the sparse factors that are frequently found in

inference problems, all of which can be efficiently maximized over:

Tree structures (Wainwright et al., 2005; Komodakis et al., 2011)

Matchings (Lacoste-Julien et al., 2006; Duchi et al., 2007; Yarkony et al.,

2010)

Supermodular functions (Komodakis et al., 2011)

Cardinality and order constraints (Gupta et al., 2007; Tarlow et al., 2010)

Functions with small support (Rother et al., 2009)

Consider, for example, a factor which enforces a cardinality constraint over

binary variables: θf (xf ) = 0 if
∑

i∈f xi = L, and θf (xf ) = −∞ otherwise.

Let ei = δfi(1) − δfi(0). To solve Eq. 8.15, we first sort ei in ascending

order for i ∈ f . Then, the maximizing assignment is obtained by setting the

corresponding xi = 1 for the first L values, and xi = 0 for the remainder.

Thus, computing the maximum assignment takes only O(|f | log |f |) time.

8.5 Block Coordinate Descent Algorithms

A different approach to solving the optimization problem in Eq. 8.2 is via

coordinate descent. Coordinate-descent algorithms have a long history of

being used to optimize Lagrangian relaxations (e.g., see Erlenkotter, 1978;

Guignard and Rosenwein, 1989). Such algorithms work by fixing the values
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of all dual variables except for a set of variables, and then minimizing the

objective as much as possible with respect to that set. The two key design

choices to make are which variables to update and how to update them. In all

the updates we consider below, the coordinates are updated to their optimal

value (i.e., the one that minimizes L(δ)), given the fixed coordinates.

There is a significant amount of flexibility with regard to choosing the

coordinate blocks, that is, the variables to update. A first attempt at

choosing such a block may be to focus only on coordinates for which the

subgradient is non-zero. For example, if xsi = argmaxxi
θ̄δ

t

i (xi), we may

choose to update only δfi(x
s
i ), and not δfi(xi), for xi �= xsi . However, this may

result in too small a change in L(δ), and the coordinates we have not updated

may require update at a later stage. The updates we consider below will

update δfi(xi) for all values of xi regardless of the maximizing assignment.

This is very different from the subgradient method, which updates only

the dual variables corresponding to the maximizing assignments for the

subproblems, δfi(x
s
i ) and δfi(x

f
i ).

We shall describe various block coordinate descent algorithms, each al-

gorithm using an increasingly larger block size. The advantage of coor-

dinate descent algorithms is that they are local, parameter free, simple to

implement, and often provide faster convergence than subgradient methods.

However, as we discuss later, there are cases where coordinate descent algo-

rithms may not reach the dual optimum. In section 8.8 we discuss the issue

of choosing between coordinate descent and subgradient based schemes.

For the practitioner interested in an algorithm to apply, in Fig. 8.4 we

give pseudocode for one of the block coordinate descent algorithms.

8.5.1 The Max-Sum Diffusion algorithm

Suppose that we fix all of the dual variables δ except δfi(xi) for a specific f

and i. We now wish to find the values of δfi(xi) that minimize the objective

L(δ), given the other fixed values. In general there is not a unique solution

to this restricted optimization problem, and different update strategies will

result in different overall running times.

The max-sum diffusion (MSD) algorithm (Kovalevsky and Koval; Werner,

2007, 2008) performs the following block coordinate descent update (for all

xi simultaneously):

δfi(xi) = −1
2δ

−f
i (xi) +

1
2 max

xf\i

⎡⎣θf (xf )−
∑
î∈f\i

δf î(xî)

⎤⎦ , (8.17)

where we define δ−f
i (xi) = θi(xi) +

∑
f̂ �=f δf̂ i(xi). The algorithm iteratively
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Inputs:

A set of factors θi(xi), θf (xf )

Output:

An assignment x1, . . . , xn that approximates the MAP

Algorithm:

Initialize δfi(xi) = 0, ∀f ∈ F, i ∈ f, xi

Iterate until small enough change in L(δ) (see Eq. 8.2):
For each f ∈ F , perform the updates

δfi(xi) = −δ−f
i (xi) +

1

|f | max
xf\i

⎡⎣θf (xf ) +
∑
î∈f

δ−f

î
(xî)

⎤⎦ (8.16)

simultaneously for all i ∈ f and xi. We define δ−f
i (xi) = θi(xi) +

∑
f̂ �=f δf̂ i(xi)

Return xi ∈ argmaxx̂i θ̄
δ
i (x̂i) (see Eq. 8.6).

Figure 8.4: Description of the MPLP block coordinate descent algorithm for
minimizing the dual L(δ) (see section 8.5.2). Similar algorithms can be devised for
different choices of coordinate blocks. See sections 8.5.1 and 8.5.3. The assignment
returned in the final step follows the decoding scheme discussed in section 8.7.

chooses some f and sequentially performs these updates for each i ∈ f . In

appendix 8.9.1 we show how to derive this algorithm as block coordinate de-

scent on L(δ). The proof also illustrates the following equalization property:

after the update, we have θ̄δi (xi) = maxxf\i θ̄
δ
f (xf ), ∀xi. In other words, the

reparameterized factors for f and i agree on the utility of state xi.

8.5.2 The MPLP algorithm

In this section, we show that it is possible to do coordinate descent in

closed form over a significantly larger block of coordinates than that of

section 8.5.1. The max-product linear programming (MPLP) algorithm was

introduced as a coordinate-descent algorithm for LP relaxations of MAP

problems (Globerson and Jaakkola, 2008). Here we show that it can also be

interpreted as a block coordinate descent algorithm for Eq. 8.2.

Assume we fix all the variables δ except δfi(xi) for a specific f and all i

(note that this differs from section 8.5.1, where only one i was not fixed).

We now wish to find the values of δfi(xi) that minimize the objective L(δ),

given the other fixed values. We claim that the following update achieves
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this:

δfi(xi) = −
(
1− 1

|f |
)
δ−f
i (xi) +

1

|f | max
xf\i

⎡⎣θf (xf ) +
∑
î∈f\i

δ−f

î
(xî)

⎤⎦ .(8.18)
The update can be equivalently written as

δfi(xi) = −δ−f
i (xi) +

1

|f | max
xf\i

⎡⎣θf (xf ) +
∑
î∈f

δ−f

î
(xî)

⎤⎦ . (8.19)

In appendix 8.9.2 we show that this update indeed corresponds to the

desired block coordinate descent on L(δ). Note that the update needs to be

performed for all i ∈ f and xi simultaneously, unlike MSD, which updates

for a particular i each time.

One iteration of MPLP (i.e., performing the updates once for every f ∈ F ,

i ∈ f , and xi) has exactly the same running time as an iteration of MSD.5

However, each MPLP update is much more effective, with bigger gains

expected as |f | grows. For example, consider a model with single node

factors θi(xi) and only one θf (xf ), that is |F | = 1. For this model, MPLP

exactly solves the dual in the first iteration, whereas MSD would take several

iterations to solve the dual to optimality.

8.5.3 Larger Coordinate Blocks

Ideally we would like to optimize in closed form over as large a coordinate

block as possible. It turns out that when the factors are pairwise, we can

use considerably larger blocks than those that have been discussed above.

As an illustration of this approach, we now show a star update for pairwise

models (Globerson and Jaakkola, 2008). Consider a model where factors

correspond to pairs of variables, so that the elements of F are of the

form {i, j}. Now, consider a block coordinate descent approach where the

free coordinates are δ{i,j}j(xj), δ{i,j}i(xi) for a given i and all its neighbors

j ∈ N(i). Although it is non-trivial to derive, we show in appendix 8.9.3

that a closed form update for these coordinates exists. The free coordinates

5. Assuming that we keep θ̄δi (xi) in memory and compute δ−f
i (xi) = θ̄δi (xi)− δfi(xi).
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that minimize the objective L(δ) are given by6

δ{i,j}i(xi) = − 1

1 +Ni
γi(xi) + γji(xi) (8.20)

δ{i,j}j(xj) = −1
2δ

−i
j (xj) +

1
2 max

xi

[
θij(xi, xj) +

2

1 +Ni
γi(xi)− γji(xi)

]
where we define δ−i

j (xj) = θj(xj) +
∑

k∈N(j)\i δ{k,j}j(xj), and

γji(xi) = max
xj

[
θij(xi, xj) + δ−i

j (xj)
]

γi(xi) = θi(xi) +
∑

j∈N(i)

γji(xi)

where Ni = |N(i)| is the number of neighbors of node i in the pairwise

model. For a given node i, the update needs to be performed for all factors

{i, j}, xi, and xj simultaneously, where j ∈ N(i).

Often a closed-form update is not possible, but one can still efficiently

compute the updates. For example, Sontag and Jaakkola (2009) give a

linear time algorithm for coordinate descent in pairwise models using blocks

corresponding to the edges of a tree-structured graph.

8.5.4 Efficiently Computing the Updates

Recall that the subgradient method needs to solve only one maximization per

subproblem to perform the subgradient update (see Eq. 8.15). We showed in

section 8.4.2 that these can be solved efficiently for a large number of sparse

factors, even though the factors may involve a large number of variables.

Consider the MPLP update given in Eq. 8.16. To perform the updates,

one must compute max-marginals for each subproblem, that is, the value of

the optimal assignment after fixing each variable (individually) to one of its

states. Specifically, for every f , i, and xi, we must compute

max
xf\i

h(xf\i, xi), h(xf ) = θf (xf ) +
∑
î∈f

δ−f

î
(xî) .

Often this can be done in the same running time that it takes to find

the maximizing assignment, that is, maxxf
h(xf ).

7 For example, if the

subproblem is a tree structure, then with just two passes—propagating max-

product messages from the leaves to the root, and then from the root back

to the leaves—we can compute the max-marginals. Tarlow et al. (2010)

6. The star update that appeared in Globerson and Jaakkola (2008) under the name
NMPLP, had an error. This is the correct version.
7. To perform the updates we need only the optimal value, not the maximizing assignment.
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Figure 8.5: Comparison of three coordinate descent algorithms on a 10× 10 two
dimensional Ising grid. The dual objective L(δ) is shown as a function of iteration
number. We multiplied the number of iterations for the star update by two, since
each edge variable is updated twice.

show how max-marginals can be efficiently computed for factors enforcing

cardinality and order constraints, and Duchi et al. (2007) show how to do

this for matchings. In all of these cases, one iteration of MPLP has the same

running time as one iteration of the subgradient method.

However, for some problems, computing the max-marginals can take

longer. For example, it is not clear how to compute max-marginals effi-

ciently for the factor θ1(x) which enforced acyclicity in the non-projective

dependency problem. The weight for the edge corresponding to xi is δ
−1
i (0)−

δ−1
i (1). The computational problem is to find, for each edge, the weight of

the minimum directed spanning tree (MST) if we force it to include this

edge (xi = 1) and if we force it not to include this edge (xi = 0).8 We

could compute the max-marginals by solving 2|V | separate directed MST

problems, but this would increase the overall running time of each iteration.

Thus, it is possible that the subgradient approach is more suitable here.
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8.5.5 Empirical Comparison of the Algorithms

All the algorithms described in this section minimize L(δ), but do so

via different coordinate blocks. How do these algorithms compare to one

another? One criterion is the number of coordinates per block. The more

coordinates we optimize in closed form, the faster we would expect our

algorithm to make progress. Thus, we would expect the MPLP updates

given in section 8.5.2 to minimize L(δ) in fewer iterations than the MSD

updates from section 8.5.1, since the former optimizes over more coordinates

simultaneously. Comparing the star update from section 8.5.3 to MPLP with

edge updates is a bit more delicate since, in the former, the coordinate blocks

overlap. Thus, we may be doing redundant computations in the star update.

On the other hand, it does provide a closed-form update over larger blocks

and thus may result in faster convergence.

To assess the difference between the algorithms, we test them on a pairwise

model with binary variables. The graph structure is a two dimensional 10×10
grid and the interactions are Ising (see Globerson and Jaakkola, 2008, for a

similar experimental setup). We compare three algorithms:

MSD – At each iteration, for each edge, it updates the message from the

edge to one of its endpoints (i.e., δ{i,j}i(xi) for all xi), and then updates the

message from the edge to its other endpoint.

MPLP – At each iteration, for each edge, it updates the messages from the

edge to both of its endpoints (i.e., δ{i,j}i(xi) and δ{i,j}j(xj), for all xi, xj).
Star update – At each iteration, for each node i, it updates the messages

from all edges incident on i to both of their endpoints (i.e., δ{i,j}i(xi) and

δ{i,j}j(xj) for all j ∈ N(i), xi, xj).

MSD++ – See section 8.5.6.

The running times per iteration of MSD and MPLP are identical. We let

each iteration of the star update correspond to two iterations of the edge

updates to make the running times comparable.

Results for a model with random parameters are shown in Fig. 8.5, and

are representative of what we found across a range of model parameters.

The results verify the arguments made above: MPLP is considerably faster

than MSD, and the star update is somewhat faster than MPLP.

8. The corresponding max-marginal is the MST’s weight plus the constant −∑
i∈f δ

−1
i (0).
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8.5.6 What Makes MPLP Faster Than MSD?

It is clear that MPLP uses a larger block size than MSD. However, the two

algorithms also use different equalization strategies, which we will show is

just as important. We illustrate this difference by giving a new algorithm,

MSD++, which uses the same block size as MPLP, but an equalization

method that is more similar to MSD’s.

For a given factor f , assume all δ variables are fixed except δfi(xi) for all

i ∈ f and xi (as in MPLP). We would like to minimize L(δ) with respect to

the free variables. The part of the objective L(δ) that depends on the free

variables is

L̄(δ) =
∑
i∈f

max
xi

θ̄δi (xi) + max
xf

θ̄δf (xf ) ,

where θ̄ are the reparameterizations defined in Eq. 8.6.

The MPLP update can be shown to give a δt+1 such that L̄(δt+1) =

maxxf
hδ

t

(xf ), where hδ
t

(xf ) =
∑

i∈f θ̄
δt

i (xi)+ θ̄δ
t

f (xf ). However, there are

many possible choices for δt+1 that would achieve the same decrease in the

dual objective. In particular, for any choice of non-negative weights αf , αi

for i ∈ f such that αf +
∑

i∈f αi = 1, we can choose δt+1 so that

θ̄δ
t+1

i (xi) = αi ·max
xf\i

hδ
t

(xf ) ∀i ∈ f,

θ̄δ
t+1

f (xf ) = hδ
t

(xf )−
∑
i∈f

αi ·max
x̂f\i

hδ
t

(xi, x̂f\i).

Thus, we have that maxxi
θ̄δ

t+1

i (xi) = αi·maxxf
hδ

t

(xf ) and maxxf
θ̄δ

t+1

f (xf )

= αf ·maxxf
hδ

t

(xf ). All of these statements can be proved using arguments

analogous to those given in appendix 8.9.2.

The MPLP algorithm corresponds to the choice αf = 0, αi = 1
|f | for

i ∈ f . The reparameterization results in as much of hδ
t

(xf ) being pushed

to the single node terms θ̄δ
t+1

i (xi) as possible. Thus, subsequent updates for

other factors that share variables with f will be affected by this update as

much as possible. Intuitively, this increases the amount of communication

between the subproblems. MPLP’s dual optimal fixed points will have

maxxi
θ̄δi (xi) =

L(δ)
|V | for all i, and maxxf

θ̄δf (xf ) = 0 for all f ∈ F .

In contrast, each MSD update to δfi(xi) divides the objective equally

between the factor term and the node term (see appendix 8.9.1). As a

result, MSD’s dual optimal fixed points have maxxi
θ̄δi (xi) = maxxf

θ̄δf (xf ) =
L(δ)

|V |+|F | for all i ∈ V and f ∈ F . Consider the alternative block coordinate
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descent update given by

δfi(xi) =
−|f |
|f |+ 1

δ−f
i (xi) +

1

|f |+ 1
max
xf\i

⎡⎣θf (xf ) +
∑
î∈f\i

δ−f

î
(xî)

⎤⎦ (8.21)

for all i ∈ f and xi simultaneously. This update, which we call MSD++,

corresponds to the choice αi = αf = 1
|f |+1 , and has similar fixed points.

We show in Fig. 8.5 that MSD++ is only slightly faster than MSD, despite

using a block size that is the same as that of MPLP. This suggests that it

is MPLP’s choice of equalization method (i.e., the αi’s) that provides the

substantial improvements over MSD, not simply the choice of block size. As

αf → 1, the number of iterations required to solve the dual to optimality

increases even further. The extreme case, αf = 1, although still a valid block

coordinate descent step, gets stuck after the first iteration.

8.5.7 Convergence of Dual Coordinate Descent

Although coordinate descent algorithms decrease the dual objective at every

iteration, they are not generally guaranteed to converge to the dual opti-

mum. The reason is that although the dual objective L(δ) is convex, it is

not strictly convex. This implies that the minimizing coordinate value may

not be unique, and thus convergence guarantees for coordinate descent algo-

rithms do not hold (Bertsekas, 1995). Interestingly, for pairwise MRFs with

binary variables, the fixed points of the coordinate descent algorithms do

correspond to global optima (Kolmogorov and Wainwright, 2005; Globerson

and Jaakkola, 2008).

One strategy to avoid the above problem is to replace the max function

in the objective of Eq. 8.2 with a soft-max function (e.g., see Johnson,

2008; Hazan and Shashua, 2010) which is smooth and strictly convex. As a

result, coordinate descent converges globally.9 An alternative approach are

the auction algorithms proposed by Bertsekas (1992). However, currently

there does not seem to be a coordinate descent approach to Eq. 8.2 that is

guaranteed to converge globally for general problems.

8.6 Relations to Linear Programming Relaxations

Linear programming relaxations are a popular approach to approximating

combinatorial optimization problems. One of these relaxations is in fact well

9. To solve the original dual, the soft-max needs to be gradually changed to the true max.
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known to be equivalent to the dual decomposition approach discussed in

this chapter (Schlesinger, 1976; Guignard and Kim, 1987; Komodakis et al.,

2011; Wainwright et al., 2005; Werner, 2007). In this section we describe the

corresponding LP relaxation.

We obtain a relaxation of the discrete optimization problem given in

Eq. 8.1 by replacing it with the following linear program:

max
μ∈ML

{∑
f

∑
xf

θf (xf )μf (xf ) +
∑
i

∑
xi

θi(xi)μi(xi)

}
(8.22)

where the local marginal polytope ML enforces that {μi(xi), ∀xi} and

{μf (xf ), ∀xf} correspond to valid (local) probability distributions and that,

for each factor f , μf (xf ), is consistent with μi(xi) for all i ∈ f, xi:

ML =

{
μ ≥ 0 :

∑
xf\i μf (xf ) = μi(xi) ∀f, i ∈ f, xi∑
xi
μi(xi) = 1 ∀i

}
. (8.23)

Standard duality transformations can be used to show that the convex

dual of the LP relaxation (Eq. 8.22) is the Lagrangian relaxation (Eq. 8.2).

The integral vertices of the local marginal polytope (i.e., μ such that

μi(xi) ∈ {0, 1}) can be shown to correspond 1-to-1 with assignments x

to the variables of the graphical model. The local marginal polytope also

has fractional vertices that do not correspond to any global assignment

(Wainwright and Jordan, 2008). Since the relaxation optimizes over this

larger space, the value of the LP solution always upper-bounds the value

of the MAP assignment. We call the relaxation tight for an instance if the

optimum of the LP has the same value as the MAP assignment.

The connection to LP relaxations is important for a number of reasons.

First, it shows how the algorithms discussed in this chapter apply equally

to dual decomposition and linear programming relaxations for the MAP

problem. Second, it allows us to understand when two different dual decom-

positions are equivalent to each other in the sense that, for all instances,

the Lagrangian relaxation provides the same upper bound (at optimality).

Realizing that two formulations are equivalent allows us to attribute differ-

ences in empirical results to the algorithms used to optimize the duals, not

the tightness of the LP relaxation.

The third reason why the connection to LP relaxations is important is

that it allows us to tighten the relaxation by adding valid constraints that

are guaranteed not to cut off any integer solutions. The dual decomposition

that we introduced in section 8.3 used only single node intersection sets,

enforcing that the subproblems are consistent with one another on the

individual variables. To obtain tighter LP relaxations, we typically have
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to use larger intersection sets along with the new constraints.10 Although

further discussion of this is beyond the scope of this chapter, details can be

found in Sontag (2010) and Werner (2008).

8.7 Decoding: Finding the MAP Assignment

Thus far, we have discussed how the subgradient method and block coor-

dinate descent can be used to solve the Lagrangian relaxation. Although

this provides an upper bound on the value of the MAP assignment, for most

inference problems we actually want to find the assignment itself. In Fig. 8.4

we suggested one simple way to find an assignment from the dual beliefs, by

locally decoding the single node reparameterizations:

xi ← argmax
x̂i

θ̄δi (x̂i). (8.24)

The node terms θ̄δi (xi) may not have a unique maximum. However, when

they do have a unique maximum, we say that δ is locally decodable to x. This

section addresses the important question of when this and related approaches

will succeed in finding the MAP assignment. Proofs are given in appendix

8.9.4.

Before the dual is solved (close) to optimality, it is typically not possible

to give guarantees as to how good an assignment will be found by this

local decoding scheme. However, once the algorithms have solved the dual

to optimality, if the solution is locally decodable to x, then x is both the

MAP assignment and the only LP solution, as stated in the next theorem.

Theorem 8.2. If a dual optimal δ∗ is locally decodable to x∗, then the LP

relaxation has a unique solution, and it is x∗.

Thus, this result gives a strong necessary condition for when locally decoding

the dual solution can find the MAP assignments only when the LP relaxation

is tight, the MAP assignment is unique, and there are no optimal fractional

solutions.11

A natural question is whether this assumption that the LP relaxation has

a unique solution that is integral, is sufficient for a dual solution to be locally

decodable. As we illustrate later, in general the answer is no, as not all dual

10. Globerson and Jaakkola (2008) give the MPLP updates for larger intersection sets.
11. An alternative way to find the MAP assignment in this setting would be to directly
solve the LP relaxation using a generic LP solver. However, recall that we use dual
decomposition for reasons of computational efficiency.
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solutions are locally decodable. We are, however, guaranteed that one exists.

Theorem 8.3. If the LP relaxation has a unique solution and it is integral,

there exists a dual optimal δ∗ that is locally decodable.

Ideally, our algorithms would be guaranteed to find such a locally decod-

able dual solution. We show in section 8.7.1 that the subgradient method is

indeed guaranteed to find a locally decodable solution under this assump-

tion. For coordinate descent methods there do exist cases where a locally

decodable solution may not be found. However, in practice this is often not

a problem, and there are classes of graphical models where locally decodable

solutions are guaranteed to be found (see section 8.7.2).

Rather than locally decoding an assignment, we could try searching for

a global assignment x∗ which maximizes each of the local subproblems.

We showed in theorem 8.1 that such an agreeing assignment would be an

MAP assignment, and its existence would imply that the LP relaxation is

tight. Thus, the LP relaxation being tight is a necessary requirement for this

strategy to succeed. For pairwise models with binary variables, an agreeing

assignment can be found in linear time when one exists (Johnson, 2008).

However, this does not extend to larger factors or non-binary variables.

Theorem 8.4. Finding an agreeing assignment is NP-complete even when

the LP relaxation is tight and the MAP assignment is unique.

The construction in the above theorem uses a model where the optimum

of the LP relaxation is not unique; although there may be a unique MAP

assignment, there are also fractional vertices that have the same optimal

value. When the LP has a unique and integral optimum, the decoding

problem is no longer hard (e.g., it can be solved by optimizing an LP). Thus,

asking that the LP relaxation have a unique solution that is integral seems

to be a very reasonable assumption for a decoding method to succeed. When

the LP relaxation does not have a unique solution, a possible remedy is to

perturb the objective function by adding a small (in magnitude) random

vector. If the LP relaxation is not tight, we can attempt to tighten the

relaxation, for example by using the approaches discussed in Sontag et al.

(2008).

8.7.1 Subgradient Method

The problem of recovering a primal solution (i.e., a solution to the LP

relaxation given in Eq. 8.22) when solving a Lagrangian relaxation using

subgradient methods has been well studied (e.g., see Anstreicher andWolsey,

2009; Nedić and Ozdaglar, 2009; Shor, 1985). We next describe one such
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approach (the simplest) and discuss its implications for finding the MAP

assignment from the dual solution.

Given the current dual variables δt, define the following indicator func-

tions for a maximizing assignment of the subproblems: μt
f (xf ) = 1[xf =

argmaxx̂f
θ̄δ

t

f (x̂f )], and μt
i(xi) = 1[xi = argmaxx̂i

θ̄δ
t

i (x̂i)]. When the maxi-

mum is not unique, choose any one of the maximizing assignments.

Next, consider the average of these indicator functions across all subgra-

dient iterations:

μf (xf ) =
1

T

T∑
t=1

μt
f (xf )

μi(xi) =
1

T

T∑
t=1

μt
i(xi).

For many common choices of stepsizes, the estimate μ can be shown to

converge to a solution of the LP relaxation given in Eq. 8.22, as T →∞.

When the LP relaxation has a unique solution and it is integral, then μ is

guaranteed to converge to the unique MAP assignment. In particular, this

implies that there must exist a subgradient iteration when μt corresponds

to the MAP assignment. At this iteration the subgradient is zero, and we

obtain a certificate of optimality by theorem 8.1. When the LP relaxation is

not tight, recovering a primal solution may be helpful for finding additional

constraints to use in tightening the relaxation.

8.7.2 Coordinate Descent

As mentioned in section 8.5, the coordinate descent algorithms, while always

providing a monotonic improvement in the dual objective, are not in general

guaranteed to solve the Lagrangian relaxation to optimality. However, for

some graphical models, such as pairwise models with binary variables, fixed

points of the coordinate descent algorithms can be used to construct a

solution to the LP relaxation (Kolmogorov and Wainwright, 2005; Globerson

and Jaakkola, 2008). Thus, for these graphical models, all fixed points of the

algorithms are dual optimal.

We additionally show that when the LP relaxation has a unique solution

that is integral, then the fixed point must be locally decodable to the MAP

assignment. On the other hand, for more general graphical models, there do

exist degenerate cases when a fixed point of the coordinate descent algorithm

is not locally decodable, even if it corresponds to a dual solution.

Theorem 8.5. Suppose the LP relaxation has a unique solution and it is
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integral.12 Then the following hold:

1. For binary pairwise MRFs, fixed points of the coordinate descent algo-

rithms are locally decodable to x∗.
2. For pairwise tree-structured MRFs, fixed points of the coordinate descent

algorithms are locally decodable to x∗.
3. There exist non-binary pairwise MRFs with cycles and dual optimal fixed

points of the coordinate descent algorithms that are not locally decodable.

The second result can be generalized to graphs with a single cycle. Despite

the theoretical difficulty hinted at in the third result, empirically we have

found that when the LP relaxation has a unique solution that is integral,

local decoding nearly always finds the MAP assignment, when used with the

coordinate descent algorithms (Sontag et al., 2008).

8.8 Discussion

The dual decomposition formulation that we introduced in this chapter is

applicable whenever one can break an optimization problem into smaller

subproblems that can be solved exactly by using combinatorial algorithms.

The dual objective is particularly simple, consisting of a sum of maximiza-

tions over the individual subproblems, and provides an upper bound on the

value of the MAP assignment. Minimizing the Lagrangian relaxation makes

this bound tighter by pushing the subproblems to agree with one another

on their maximizing assignment. If we succeed in finding an assignment that

maximizes each of the individual subproblems, then this assignment is the

MAP assignment and the dual provides a certificate of optimality. Even

when not exact, the upper bound provided by the dual can be extremely

valuable when used with a branch-and-bound procedure to find the MAP

assignment (Geoffrion, 1974).

We described both subgradient methods and block coordinate algorithms

for minimizing the Lagrangian relaxation. Both are notable for their sim-

plicity and their effectiveness at solving real-world inference problems. A

natural question is how to choose between the two for a specific problem.

This question has been the subject of continual debate since the early work

on Lagrangian relaxations (see Guignard, 2003, for a review).

Each approach has its advantages and disadvantages. The subgradient

method is guaranteed to converge, but does not monotonically decrease

12. This implies that the MAP assignment x∗ is unique.
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the dual and requires a delicate choice of stepsize. The coordinate descent

algorithms are typically much faster at minimizing the dual, especially in the

initial iterations, and are also monotonic. However, to perform each update,

one must compute max-marginals, and this may be impractical for some

applications. We presented several coordinate update schemes. These vary

both in the coordinates that they choose to minimize in each update, and

in the way this minimization is performed. MPLP appears to be the best

general choice.

It may be advantageous to use the two approaches together. For example,

one could first use coordinate descent and then, when the algorithm is close

to convergence, use the subgradient method to ensure global optimality.

Another possibility is to alternate between the updates, as in the spacer

step approach in optimization (see Bertsekas, 1995).

There are often many different ways to decompose a problem when

applying dual decomposition. For example, in this chapter we suggested

using a decomposition for pairwise models that uses one subproblem per

edge. An alternative decomposition is to use a set of spanning trees that

together cover all of the edge potentials (Wainwright et al., 2005). Still

another approach is, before constructing the decomposition, to split some

of the variables and introduce new potentials to enforce equality among all

copies of a variable (Guignard, 2003). Using this technique, Yarkony et al.

(2010) give a decomposition that uses a single tree spanning all of the original

edge potentials. Although in all of these cases the decompositions correspond

to the same LP relaxation, often a different decomposition can result in

tighter or looser bounds being provided by the Lagrangian relaxation.

Dual decomposition methods have a wide range of potential applications in

machine learning and, more broadly, engineering and the sciences. We have

already observed some empirical successes for natural language processing,

computational biology, and machine vision. We expect that as graphical

models become more complex, techniques like the ones discussed in this

chapter will become essential for performing fast and accurate inference.
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Appendix: Technical Details

8.9.1 Derivation of the Max-Sum Diffusion Updates

For a given factor f and variable i, assume all δ variables are fixed except

δfi(xi). We would like to minimize L(δ) in Eq. 8.2 w.r.t. the free variables.

Here we prove that the choice of δfi(xi) in Eq. 8.17 corresponds to this

minimization (other updates that achieve the same objective are possible

since L(δ) is not strictly convex).

The part of the objective L(δ) that depends on the free parameters is

max
xi

(
θi(xi) +

∑
f :i∈f

δfi(xi)
)
+max

xf

(
θf (xf )−

∑
î∈f

δf î(xî)
)

= max
xi

(
δfi(xi) + δ−f

i (xi)
)
+max

xi

(
−δfi(xi) + max

xf\i

[
θf (xf )−

∑
î∈f\i

δf î(xî)
])

≥ max
xi

(
δ−f
i (xi) + max

xf\i

[
θf (xf )−

∑
î∈f\i

δf î(xî)
])

= max
xi

g(xi).

This lower bound can be achieved by choosing a δfi(xi) such that

δfi(xi) + δ−f
i (xi) = 1

2g(xi),

−δfi(xi) + max
xf\i

[
θf (xf )−

∑
î∈f\i

δf î(xî)
]

= 1
2g(xi).

Indeed, the δfi(xi) given by the update in Eq. 8.17 satisfies the above.

8.9.2 Derivation of the MPLP Updates

For a given factor f assume all δ variables are fixed except δfi(xi) for all

i ∈ f . We would like to minimize L(δ) in Eq. 8.2 w.r.t. the free variables.

Here we prove that Eq. 8.18 does this optimally.

The part of the objective L(δ) that depends on the free parameters is

L̄(δ) =
∑
i∈f

max
xi

(
θi(xi)+

∑
f̂ :i∈f̂

δf̂ i(xi)
)
+max

xf

(
θf (xf )−

∑
i∈f

δfi(xi)
)
. (8.25)

DenoteAi(δ) = maxxi

(
θi(xi)+

∑
f̂ :i∈f̂ δf̂ i(xi)

)
andAf (δ) = maxxf

(
θf (xf )−∑

i∈f δfi(xi)
)
. Then it follows that

L̄(δ) =
∑
i∈f

Ai(δ) +Af (δ) ≥ max
xf

(
θf (xf ) +

∑
i∈f

δ−f
i (xi)

)
= B.
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This gives a lower bound B on the minimum of L̄(δ). We next show that

this lower bound is achieved by the MPLP update in Eq. 8.18. For each of

the terms Ai(δ) we have (after the update)

Ai(δ) = max
xi

1

|f |δ
−f
i (xi) +

1

|f | max
xf\i

⎡⎣θf (xf ) +
∑
î∈f\i

δ−f

î
(xî)

⎤⎦
=

1

|f | max
xf

(
θf (xf ) +

∑
i∈f

δ−f
i (xi)

)
=

B

|f | . (8.26)

The value of Af (δ) after the MPLP update is

max
xf

(
θf (xf ) +

∑
i∈f

{ |f | − 1

|f | δ−f
i (xi)− 1

|f | max
x̂f\i

[
θf (xi, x̂f ) +

∑
î∈f\i

δ−f

î
(x̂î)
]})

=
1

|f | max
xf

(∑
i∈f

{
θf (xf ) +

∑
î∈f\i

δ−f

î
(xî)−max

x̂f\i

[
θf (xi, x̂f ) +

∑
î∈f\i

δ−f

î
(x̂î)
]})

≤ 1

|f |
∑
i∈f

max
xf

(
θf (xf ) +

∑
î∈f\i

δ−f

î
(xî)−max

x̂f\i

[
θf (xi, x̂f ) +

∑
î∈f\i

δ−f

î
(x̂î)
])

=
1

|f |
∑
i∈f

max
xi

(
max
xf\i

[
θf (xf ) +

∑
î∈f\i

δ−f

î
(xî)
]
−max

xf\i

[
θf (xf ) +

∑
î∈f\i

δ−f

î
(xî)
])

= 0,

where the first equality used
∑

i∈f (|f | − 1)δ−f
i (xi) =

∑
i∈f
∑

î∈f\i δ
−f

î
(xî).

From the above and Eq. 8.26 it follows that L̄(δ) ≤ B. However, we know

that B is a lower bound on L̄(δ), so we must have L̄(δ) = B, implying the

optimality of the MPLP update.

8.9.3 Derivation of the Star Update

The MPLP update gives the closed form solution for block coordinate

descent on coordinates δ{i,j}j(xj) and δ{i,j}i(xi) for a particular {i, j} ∈ F

(i.e., an edge update). We now wish to find the update where the free

coordinates are δ{i,j}j(xj), δ{i,j}i(xi) for a fixed i and all j ∈ N(i). One way

to find the optimal coordinates is by iterating the MPLP update for all the

edges in the star until convergence. Notice that δ−i
j (xj), γji(xi), and γi(xi)

do not change after each edge update. We solve for δ{i,j}j(xj) and δ{i,j}i(xi)
in terms of these quantities, using fixed point equations for MPLP.

The MPLP edge update for f = {i, j} is given by

δ{i,j}i(xi) = −1
2δ

−j
i (xi) +

1
2γji(xi). (8.27)
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Multiplying by 2, and then subtracting δ{i,j}i(xi) from both sides, we obtain

δ{i,j}i(xi) = −δi(xi) + γji(xi), (8.28)

where we define δi(xi) = θi(xi) +
∑

j∈N(i) δ{i,j}i(xi). Summing this over all

neighbors of i, and adding θi(xi) to both sides, we obtain

δi(xi) = −Niδi(xi) + γi(xi)

δi(xi) =
1

1 +Ni
γi(xi). (8.29)

Applying Eq. 8.28 and Eq. 8.29, we obtain the following for δ−j
i (xi):

δ−j
i (xi) = δi(xi)− δ{i,j}i(xi) = 2δi(xi)− γji(xi) =

2γi(xi)

1 +Ni
− γji(xi) .

Substituting this back into the MPLP update (Eq. 8.27) yields the update

for δ{i,j}i(xi) given in Eq. 8.20. The update for δ{i,j}j(xj) is obtained by

taking the MPLP update and substituting the above expression for δ−j
i (xi).

The dual variables given by the star update in Eq. 8.20 can be seen to

be a fixed point of MPLP for all edges in the star. Since any fixed point of

MPLP on a tree is dual optimal (see section 8.7.2), these updates provide

the optimum for these coordinates.

8.9.4 Proofs of the Decoding Results

Duality in linear programming specifies complementary slackness conditions

that every primal and dual solution must satisfy. In particular, it can be

shown that for any optimal μ∗ for the local LP relaxation given in Eq. 8.22

and any optimal δ∗ for the Lagrangian relaxation minδ L(δ):

μ∗
i (xi) > 0 ⇒ θ̄δ

∗
i (xi) = max

x̂i

θ̄δ
∗

i (x̂i), (8.30)

μ∗
f (xf ) > 0 ⇒ θ̄δ

∗
f (xf ) = max

x̂f

θ̄δ
∗

f (x̂f ). (8.31)

Proof of theorem 8.2. Consider any xi �= x∗i . Since θ̄δ
∗

i (xi) < θ̄δ
∗

i (x∗i ), com-

plementary slackness (8.30) implies that μ∗
i (xi) = 0 for all optimal μ∗. Thus,

the only solution to the LP relaxation corresponds to x∗.

Proof of theorem 8.3. This follows from strict complementary slackness

(Vanderbei, 2007), which guarantees that a primal-dual pair (μ∗, δ∗) exists
that satisfies the implication in (8.30) both ways. Since the LP relaxation

has only one solution, and it corresponds to the MAP assignment, strict

complementary slackness guarantees that such a δ∗ is locally decodable.

Proof of theorem 8.4. We reduce from 3SAT. First, we encode 3SAT as an
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optimization problem of the form given in Eq. 8.1. The variables xi ∈ {0, 1}
are the same as in the 3SAT formula. We have one factor θf (xf ) for each

clause f in the formula, defined on the corresponding three variables. θf (xf )

is 0 if the clause is satisfied by xf , and −∞ otherwise. θi(xi) = 0 for all i, xi.

Suppose we could efficiently find an agreeing assignment when one exists.

By theorem 8.1, this would be an MAP assignment (and the LP relaxation is

tight), which in this case corresponds to a satisfying assignment of the 3SAT

formula. Thus, if we could efficiently find an MAP assignment whenever the

LP relaxation is tight, then we could efficiently solve 3SAT.

Finding the MAP assignment is hard even if it is unique, because the

problem of finding a satisfying assignment when we are guaranteed that a

formula has at most one satisfying assignment, called Unique-SAT, is also

NP-hard, under randomized reductions (Valiant and Vazirani, 1985).

For 3SAT, the LP relaxation always has a fractional solution μ ∈ ML

with objective value 0. Thus, by theorem 8.2 the dual solutions will never

be locally decodable. Let μi(0) = μi(1) = .5 for all i. For each clause f , if

it is satisfied by both x1
f = (0, 0, 0) and x2

f = (1, 1, 1), then let μf (x
1
f ) =

μf (x
2
f ) = .5 and μf (xf ) = 0 for xf �= x1

f ,x
2
f . Otherwise, f must be satisfied

by x1
f = (0, 1, 1) and x2

f = (1, 0, 0), so we set μf (x
1
f ) = μf (x

2
f ) = .5.

Proof of theorem 8.5, part 1. The claim follows from (Globerson and Jaakkola,

2008, proposition 4). This result shows how to construct a fractional primal

solution whenever at least one of the nodes i has θ̄δi (0) = θ̄δi (1), that is, when

δ is not locally decodable. However, this would contradict our assumption

that the LP relaxation has a unique solution and it is integral. Thus, δ must

be locally decodable.

All fixed points of the coordinate descent algorithms can be shown to

satisfy max-consistency. Let Ai consist of all states x̂i that maximize θ̄δi (xi).

By max-consistency, we mean that for all f ∈ F, i ∈ f , and xi ∈ Ai,

maxxf\i θ̄
δ
f (xf ) = maxx̂f

θ̄δf (x̂f ). This is trivial to see for MSD, since at

a fixed point, θ̄δi (xi) = maxxf\i θ̄
δ
f (xf ) ∀f, i ∈ f and xi. Thus, for xi ∈ Ai,

θ̄δi (xi) = maxx̂f
θ̄δf (x̂f ). Putting these together shows max-consistency.

Proof of theorem 8.5, part 2. First, construct a reduced pairwise MRF with

potentials θ′ where for each variable i we consider only those states xi that

maximize θ̄δi (xi) (hereafter ignoring the other states). We let θ′ij(x̂i, x̂j) = 0 if

x̂i, x̂j maximize θ̄δij(xi, xj), and −∞ otherwise. By complementary slackness,

all solutions of the LP relaxation for θ′ are also optimal for θ. By max-

consistency, for every state xi, ∃xj such that θ′(xi, xj) = 0.

Suppose that there exist a vertex i and a state x′i where x
′
i �= x∗i (that is, δ

is not locally decodable to x∗). Then, by max-consistency we can construct
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Figure 8.6: Illustration of the parameters of the pairwise MRF that we use in
the proof of theorem 8.5, part 3. Each node represents a state xi ∈ {1, 2, 3, 4}. An
edge between xi and xj signifies that θij(xi, xj) = 0, whereas no edge between xi

and xj signifies that θij(xi, xj) = −1.

an assignment (going one edge at a time in the tree rooted at i) x′ �= x∗ such
that θ′(x′) = 0. This shows that x′ is an MAP assignment for θ. However,

this contradicts the uniqueness of the MAP assignment.

Proof of theorem 8.5, part 3. Consider a pairwise MRF on four variables

with edges E = {(1, 2), (2, 3), (3, 4), (1, 4), (1, 3)} and where each variable

has four states. Let the parameters θ be as specified in Fig. 8.6, and let the

dual variables δ be identically zero. Since the MAP assignment (xi = 4 for

all i) has value 0 and L(δ) = 0, δ is dual optimal and the LP relaxation is

tight. δ is also a fixed point of the MPLP update given in Eq. 8.18.

What remains is to show that the LP relaxation has a unique solution (i.e.,

xi = 4 for all i). First, note that for any primal optimal μ∗, μ∗
ij(xi, xj) must

be 0 whenever θij(xi, xj) = −1. Subject to these constraints, we next show

that μ∗
i (xi) must be 0 for all i and xi ∈ {1, 2, 3}. For x ∈ {1, 2, 3}, the local

consistency constraints (see Eq. 8.23) along edges (1, 2), (2, 3) and (3, 4)

imply that μ∗
1(x) = μ∗

12(x, x) = μ∗
2(x) = μ∗

2,3(x, x) = μ∗
3(x) = μ∗

3,4(x) =

μ∗
4(x). Similarly, the local consistency constraints along edge (1, 3) imply

that μ∗
1(1) = μ∗

1,3(1, 2) = μ∗
3(2) and μ∗

1(2) = μ∗
1,3(2, 3) = μ∗

3(3). Together,

these imply that μ∗
i (xi) = a for all i and xi ∈ {1, 2, 3}. Now consider the

local consistency constraints for edge (1, 4). One of the constraints is that

μ∗
1(3) = μ∗

1,4(3, 3) + μ∗
1,4(3, 2) = μ∗

4(3) + μ∗
4(2). Thus, we must have that

a = 2a, which implies that a = 0.

Note that there do exist locally decodable solutions for the example given
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in Fig. 8.6. In particular, consider δ defined as δ{i,j}i(4) = δ{i,j}j(4) = 0 and

δ{i,j}i(x) = δ{i,j}j(x) = ε for x ∈ {1, 2, 3}. When −.5 ≤ ε < 0, δ is dual

optimal, locally decodable, and a fixed point of MPLP.
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