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Focus (Initially) on Smooth Convex Functions

Consider min
x∈Rn

f (x), with f smooth and convex.

Usually assume µI � ∇2f (x) � LI , ∀x , with 0 ≤ µ ≤ L
(thus L is a Lipschitz constant of ∇f ).

If µ > 0, then f is µ-strongly convex (as seen in Part 1) and

f (y) ≥ f (x) +∇f (x)T (y − x) +
µ

2
‖y − x‖2

2.

Define conditioning (or condition number) as κ := L/µ.

We are often interested in convex quadratics:

f (x) =
1

2
xTAx , µI � A � LI or

f (x) =
1

2
‖Bx − b‖2

2, µI � BTB � LI
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What’s the Setup?

We consider iterative algorithms: generate {xk}, k = 0, 1, 2, . . . from

xk+1 = Φ(xk ) or xk+1 = Φ(xk , xk−1) or xk+1 = Φ(xk , xk−1, . . . , x1, x0).

For now, assume we can evaluate f (xt) and ∇f (xt) at each iteration.
Later, we look at broader classes of problems:

nonsmooth f ;

f not available (or too expensive to evaluate exactly);

only an estimate of the gradient is available;

a constraint x ∈ Ω, usually for a simple Ω (e.g. ball, box, simplex);

nonsmooth regularization; i.e., instead of simply f (x), we want to
minimize f (x) + τψ(x).

We focus on algorithms that can be adapted to those scenarios.
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Steepest Descent

Steepest descent (a.k.a. gradient descent):

xk+1 = xk − αk∇f (xk ), for some αk > 0.

Different ways to select an appropriate αk .

1 Interpolating scheme with safeguarding to identify an approximate
minimizing αk .

2 Backtrack. Try ᾱ, 1
2 ᾱ, 1

4 ᾱ, 1
8 ᾱ, ... until sufficient decrease in f .

3 Don’t test for function decrease; use rules based on L and µ.

4 Set αk based on experience with similar problems. Or adaptively.

Analysis for 1 and 2 usually yields global convergence at unspecified rate.
The “greedy” strategy of getting good decrease in the current search
direction may lead to better practical results.

Analysis for 3: Focuses on convergence rate, and leads to accelerated
multi-step methods.
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Line Search

Seek αk that satisfies Wolfe conditions: “sufficient decrease” in f :

f (xk − αk∇f (xk )) ≤ f (xk )− c1αk‖∇f (xk )‖2, (0 < c1 � 1)

while “not being too small” (significant increase in the directional
derivative):

∇f (xk+1)T∇f (xk ) ≥ −c2‖∇f (xk )‖2, (c1 < c2 < 1).

(works for nonconvex f .) Can show that accumulation points x̄ of {xk}
are stationary: ∇f (x̄) = 0 (thus minimizers, if f is convex)

Can do one-dimensional line search for αk , taking minima of quadratic or
cubic interpolations of the function and gradient at the last two values
tried. Use bracketing to stabilize. Usually finds suitable α within 3
attempts. (Nocedal and Wright, 2006, Chapter 3)
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Backtracking

Try αk = ᾱ, ᾱ2 ,
ᾱ
4 ,

ᾱ
8 , ... until the sufficient decrease condition is satisfied.

No need to check the second Wolfe condition: the αk thus identified is
“within striking distance” of an α that’s too large — so it is not too short.

Backtracking is widely used in applications, but doesn’t work on
nonsmooth problems, or when f is not available / too expensive.
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Constant (Short) Steplength

By elementary use of Taylor’s theorem, and since ∇2f (x) � LI ,

f (xk+1) ≤ f (xk )− αk

(
1− αk

2
L
)
‖∇f (xk )‖2

2

For αk ≡ 1/L, f (xk+1) ≤ f (xk )− 1

2L
‖∇f (xk )‖2

2,

thus ‖∇f (xk )‖2 ≤ 2L[f (xk )− f (xk+1)]

Summing for k = 0, 1, . . . ,N, and telescoping the sum,

N∑
k=0

‖∇f (xk )‖2 ≤ 2L[f (x0)− f (xN+1)].

It follows that ∇f (xk )→ 0 if f is bounded below.
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Rate Analysis

Suppose that the minimizer x∗ is unique.

Another elementary use of Taylor’s theorem shows that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − αk

(
2

L
− αk

)
‖∇f (xk )‖2,

so that {‖xk − x∗‖} is decreasing.

Define for convenience: ∆k := f (xk )− f (x∗). By convexity, have

∆k ≤ ∇f (xk )T (xk − x∗) ≤ ‖∇f (xk )‖ ‖xk − x∗‖ ≤ ‖∇f (xk )‖ ‖x0 − x∗‖.

From previous page (subtracting f (x∗) from both sides of the inequality),
and using the inequality above, we have

∆k+1 ≤ ∆k − (1/2L)‖∇f (xk )‖2 ≤ ∆k −
1

2L‖x0 − x∗‖2
∆2

k .
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Weakly convex: 1/k sublinear rate

Take reciprocal of both sides and manipulate (using (1− ε)−1 ≥ 1 + ε):

1

∆k+1
≥ 1

∆k
+

1

2L‖x0 − x∗‖2
≥ 1

∆0
+

k + 1

2L‖x0 − x∗‖2
≥ k + 1

2L‖x0 − x∗‖2

which yields

f (xk+1)− f (x∗) ≤ 2L‖x0 − x‖2

k + 1
.

The classic 1/k convergence rate!
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Strongly convex: Linear rate

From strong convexity condition, we have for any z :

f (z) ≥ f (xk ) +∇f (xk )T (z − xk ) +
µ

2
‖z − xk‖2.

By minimizing both sides w.r.t. z we obtain

f (x∗) ≥ f (xk )− 1

2µ
‖∇f (xk )‖2,

so that
‖∇f (xk )‖2 ≥ 2µ(f (xk )− f (x∗)).

Recall too that for step αk ≡ 1/L we have

f (xk+1) ≤ f (xk )− 1

2L
‖∇f (xk )‖2

2.

By subtracting f (x∗) from both sides of this expression we have

(f (xk+1)− f (x∗)) ≤
(

1− µ

L

)
(f (xk )− f (x∗)).

A linear (geometric) rate!
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Linear convergence without strong convexity

The linear convergence analysis depended on two bounds:

f (xk+1) ≤ f (xk )− a1‖∇f (xk )‖2, (1)

‖∇f (xk )‖2 ≤ a2(f (xk )− f (x∗)), (2)

for some positive a1, a2. In fact, many algorithms that use first derivatives
(or estimates) satisfy a bound like (1).

We derived (2) from strong convexity, but it also holds for interesting
cases that are not strongly convex:

Quadratic growth condition: f (x)− f ∗ ≥ a2 dist(x , solution set)2, for
some a2 > 0. Allows nonunique solution.

(2) is a special case of a Kurdyka-Lojasewicz property, which holds in
many interesting situations — even for nonconvex f , near a local min.

f (x) =
∑m

i=1 h(aT
i x), where h : R→ R is strongly convex, even when

m < n, in which case ∇2f (x) is singular.
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Exact minimizing αk : Faster rate?

Question: does taking αk as the exact minimizer of f along −∇f (xk ) yield
better rate of linear convergence?

Consider f (x) = 1
2x

TAx (thus x∗ = 0 and f (x∗) = 0.)

We have ∇f (xk ) = Axk . Exactly minimizing w.r.t. αk ,

αk = arg min
α

1

2
(xk − αAxk )TA(xk − αAxk ) =

xT
k A2xk

xT
k A3xk

∈
[

1

L
,

1

µ

]
Thus

f (xk+1) ≤ f (xk )− 1

2

(xT
k A2xk )2

(xT
k Axk )(xT

k A3xk )
,

so, defining zk := Axk , we have

f (xk+1)− f (x∗)

f (xk )− f (x∗)
≤ 1− ‖zk‖4

(zT
k A−1zk )(zT

k Azk )
.
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Exact minimizing αk : Faster rate?

Using Kantorovich inequality:

(zTAz)(zTA−1z) ≤ (L + µ)2

4Lµ
‖z‖4.

Thus
f (xk+1)− f (x∗)

f (xk )− f (x∗)
≤ 1− 4Lµ

(L + µ)2
=

(
1− 2

κ+ 1

)2

,

where κ := L/µ.
Only a small factor of improvement in the linear rate over constant
steplength.
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The slow linear rate is typical!

Not just a pessimistic bound!
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Multistep Methods: The Heavy-Ball

Enhance the search direction using a contribution from the previous step.
(known as heavy ball, momentum, or two-step)

Consider first a constant step length α, and a second parameter β for the
“momentum” term:

xk+1 = xk − α∇f (xk ) + β(xk − xk−1)

Analyze by defining a composite iterate vector:

wk :=

[
xk − x∗

xk−1 − x∗

]
.

Thus

wk+1 = Bwk + o(‖wk‖), B :=

[
−α∇2f (x∗) + (1 + β)I −βI

I 0

]
.
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Multistep Methods: The Heavy-Ball

Matrix B has same eigenvalues as[
−αΛ + (1 + β)I −βI

I 0

]
, Λ = diag(λ1, λ2, . . . , λn),

where λi are the eigenvalues of ∇2f (x∗).

Choose α, β to explicitly minimize the max eigenvalue of B, obtain

α =
4

L

1

(1 + 1/
√
κ)2

, β =

(
1− 2√

κ+ 1

)2

.

Leads to linear convergence for ‖xk − x∗‖ with rate approximately(
1− 2√

κ+ 1

)
.
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Summary: Linear Convergence, Strictly Convex f

Steepest descent: Linear rate approx
(

1− 2

κ

)
;

Heavy-ball: Linear rate approx
(

1− 2√
κ

)
.

Big difference! To reduce ‖xk − x∗‖ by a factor ε, need k large enough that(
1− 2

κ

)k

≤ ε ⇐ k ≥ κ

2
| log ε| (steepest descent)(

1− 2√
κ

)k

≤ ε ⇐ k ≥
√
κ

2
| log ε| (heavy-ball)

A factor of
√
κ difference; e.g. if κ = 1000 (not at all uncommon in

inverse problems), need ∼ 30 times fewer steps.
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Conjugate Gradient

Basic conjugate gradient (CG) step is

xk+1 = xk + αkpk , pk = −∇f (xk ) + γkpk−1.

Can be identified with heavy-ball, with βk =
αkγk

αk−1
.

However, CG can be implemented in a way that doesn’t require knowledge
(or estimation) of L and µ.

Choose αk to (approximately) miminize f along pk ;

Choose γk by a variety of formulae (Fletcher-Reeves, Polak-Ribiere,
etc), all of which are equivalent if f is convex quadratic. e.g.

γk =
‖∇f (xk )‖2

‖∇f (xk−1)‖2
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Conjugate Gradient

Nonlinear CG: Variants include Fletcher-Reeves, Polak-Ribiere, Hestenes.

Restarting periodically with pk = −∇f (xk ) is useful (e.g. every n
iterations, or when pk is not a descent direction).

For quadratic f , convergence analysis is based on eigenvalues of A and
Chebyshev polynomials, min-max arguments. Get

Finite termination in as many iterations as there are distinct
eigenvalues;

Asymptotic linear convergence with rate approx 1− 2√
κ

.

(like heavy-ball.)

(Nocedal and Wright, 2006, Chapter 5)
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Accelerated First-Order Methods

Accelerate the rate to 1/k2 for weakly convex, while retaining the linear
rate (related to

√
κ) for strongly convex case.

Nesterov (1983) describes a method that requires κ.

Initialize: Choose x0, α0 ∈ (0, 1); set y0 ← x0.

Iterate: xk+1 ← yk − 1
L∇f (yk ); (*short-step*)

find αk+1 ∈ (0, 1): α2
k+1 = (1− αk+1)α2

k + αk+1

κ ;

set βk =
αk (1− αk )

α2
k + αk+1

;

set yk+1 ← xk+1 + βk (xk+1 − xk ).

Still works for weakly convex (κ =∞).
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k

xk+1

xk

y
k+1

xk+2

y
k+2

y

Separates the “gradient descent” and “momentum” step components.

M. Figueiredo and S. Wright () First-Order Methods HIM, January 2016 21 / 72



Convergence Results: Nesterov

If α0 ≥ 1/
√
κ, have

f (xk )− f (x∗) ≤ c1 min

((
1− 1√

κ

)k

,
4L

(
√
L + c2k)2

)
,

where constants c1 and c2 depend on x0, α0, L.

Linear convergence “heavy-ball” rate for strongly convex f ;

1/k2 sublinear rate otherwise.

In the special case of α0 = 1/
√
κ, this scheme yields

αk ≡
1√
κ
, βk ≡ 1− 2√

κ+ 1
.
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FISTA

Beck and Teboulle (2009) propose a similar algorithm, with a fairly short
and elementary analysis (though still not intuitive).

Initialize: Choose x0; set y1 = x0, t1 = 1;

Iterate: xk ← yk − 1
L∇f (yk );

tk+1 ← 1
2

(
1 +

√
1 + 4t2

k

)
;

yk+1 ← xk +
tk − 1

tk+1
(xk − xk−1).

For (weakly) convex f , converges with f (xk )− f (x∗) ∼ 1/k2.

When L is not known, increase an estimate of L until it’s big enough.

Beck and Teboulle (2009) do the convergence analysis in 2-3 pages;
elementary, but “technical.”
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A Non-Monotone Gradient Method: Barzilai-Borwein

Barzilai and Borwein (1988) (BB) proposed an unusual choice of αk .
Allows f to increase (sometimes a lot) on some steps: non-monotone.

xk+1 = xk − αk∇f (xk ), αk := arg min
α
‖sk − αzk‖2,

where
sk := xk − xk−1, zk := ∇f (xk )−∇f (xk−1).

Explicitly, we have

αk =
sT

k zk

zT
k zk

.

Note that for f (x) = 1
2x

TAx , we have

αk =
sT

k Ask

sT
k A2sk

∈
[

1

L
,

1

µ

]
.

BB can be viewed as a quasi-Newton method, with the Hessian
approximated by α−1

k I .
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Comparison: BB vs Greedy Steepest Descent
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There Are Many BB Variants

use αk = sT
k sk/s

T
k zk in place of αk = sT

k zk/z
T
k zk ;

alternate between these two formulae;

hold αk constant for a number (2, 3, 5) of successive steps;

take αk to be the steepest descent step from the previous iteration.

Nonmonotonicity appears essential to performance. Some variants get
global convergence by requiring a sufficient decrease in f over the worst of
the last M (say 10) iterates.

The original 1988 analysis in BB’s paper is nonstandard and illuminating
(just for a 2-variable quadratic).

In fact, most analyses of BB and related methods are nonstandard, and
consider only special cases. The precursor of such analyses is Akaike
(1959). More recently, see Ascher, Dai, Fletcher, Hager and others.
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Extending to the Constrained Case: x ∈ Ω

How to change these methods to handle the constraint x ∈ Ω ?

(assuming that Ω is a closed convex set)

Some algorithms and theory stay much the same,

...if we can involve the constraint x ∈ Ω explicity in the subproblems.

Example: Nesterov’s constant step scheme requires just one calculation to
be changed from the unconstrained version.

Initialize: Choose x0, α0 ∈ (0, 1); set y0 ← x0.

Iterate: xk+1 ← arg miny∈Ω
1
2‖y − [yk − 1

L∇f (yk )]‖2
2;

find αk+1 ∈ (0, 1): α2
k+1 = (1− αk+1)α2

k + αk+1

κ ;

set βk = αk (1−αk )
α2

k +αk+1
;

set yk+1 ← xk+1 + βk (xk+1 − xk ).

Convergence theory is unchanged.
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Regularized Optimization

How to change these methods to handle regularized optimization?

min
x

f (x) + τψ(x),

where f is convex and smooth, while ψ is convex but usually nonsmooth.

Often, all that is needed is to change the update step to

xk = arg min
x
‖x − Φ(xk )‖2

2 + λψ(x).

where Φ(xk ) is gradient descent step, or something more complicated
(such as heavy ball, or some other accelerated method).

This is the shrinkage/tresholding step; how to solve it with a nonsmooth
ψ? That’s the topic of the following slides.
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Handling Nonsmoothness (e.g. `1 Norm)

Convexity ⇒ continuity (on the domain of the function).

Convexity 6⇒ differentiability (e.g., ψ(x) = ‖x‖1).

Subgradients generalize gradients for general convex functions:

v is a subgradient of f at x if f (x ′) ≥ f (x) + vT (x ′ − x)

Subdifferential: ∂f (x) = {all subgradients of f at x}

If f is differentiable, ∂f (x) = {∇f (x)}

linear lower bound nondifferentiable case
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More on Subgradients and Subdifferentials

The subdifferential is a set-valued function:

f : Rd → R ⇒ ∂f : Rd → subsets of Rd

f (x) =


−2x − 1, x ≤ −1
−x , −1 < x ≤ 0
x2/2, x > 0

(3)

∂f (x) =


{−2}, x < −1

[−2, −1], x = −1
{−1}, −1 < x < 0

[−1, 0], x = 0
{x}, x > 0

Fermat’s Rule: x ∈ arg minx f (x) ⇔ 0 ∈ ∂f (x)
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A Key Tool: Moreau’s Proximity Operators

Moreau (1962) proximity operator

x̂ ∈ arg min
x

1

2
‖x − y‖2

2 + ψ(x) =: proxψ(y)

...well defined for convex ψ, since ‖ · −y‖2
2 is coercive and strictly convex.

Example: (seen above) proxτ |·|(y) = soft(y , τ) = sign(y) max{|y | − τ, 0}

Block separability: x = (x1, ..., xN) (a partition of the components of x)

ψ(x) =
∑

i

ψi (xi ) ⇒ (proxψ(y))i = proxψi
(yi )

Relationship with subdifferential: z = proxψ(y) ⇔ z − y ∈ ∂ψ(z)

Resolvent: z = proxψ(y) ⇔ 0 ∈ ∂ψ(z) + (z − y) ⇔ y ∈ (∂ψ + I )z

proxψ(y) = (∂ψ + I )−1y
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Important Proximity Operators

Soft-thresholding is the proximity operator of the `1 norm.

Consider the indicator ιS of a convex set S;

proxιS (u) = arg min
x

1

2
‖x − u‖2

2 + ιS(x) = arg min
x∈S

1

2
‖x − y‖2

2 = PS(u)

...the Euclidean projection on S.

Squared Euclidean norm (separable, smooth):

proxτ‖·‖2
2
(y) = arg min

x
‖x − y‖2

2 + τ‖x‖2
2 =

y

1 + τ

Euclidean norm (not separable, nonsmooth):

proxτ‖·‖2
(y) =

{ y
‖y‖2

(‖y‖2 − τ), if ‖y‖2 > τ

0 if ‖y‖2 ≤ τ
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More Proximity Operators

(Combettes and Pesquet, 2011)
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Another Key Tool: Fenchel-Legendre Conjugates

The Fenchel-Legendre conjugate of a proper convex function f — denoted
by f ∗ : Rn → R̄ — is defined by

f ∗(u) = sup
x

xTu − f (x)

Main properties and relationship with proximity operators:

Biconjugation: if f is convex and proper, f ∗∗ = f .

Moreau’s decomposition: proxf (u) + proxf ∗(u) = u

...meaning that, if you know proxf , you know proxf ∗ , and vice-versa.

Conjugate of indicator: if f (x) = ιC (x), where C is a convex set,

f ∗(u) = sup
x

xTu − ιC (x) = sup
x∈C

xTu ≡ σC (u) (support function of C ).
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From Conjugates to Proximity Operators

Notice that |u| = supx∈[−1,1] x
Tu = σ[−1,1](u), thus | · |∗ = ι[−1,1].

Using Moreau’s decomposition, we easily derive the soft-threshold:

proxτ |·| = 1− proxι[−τ,τ ]
= 1− P[−τ,τ ] = soft(·, τ)

Conjugate of a norm: if f (x) = τ‖x‖p then f ∗ = ι{x :‖x‖q≤τ},

where 1
q + 1

p = 1 (a Hölder pair, or Hölder conjugates).

That is, ‖ · ‖p and ‖ · ‖q are dual norms:

‖z‖q = sup{xT z : ‖x‖p ≤ 1} = sup
x∈Bp(1)

xT z = σBp(1)(z)

M. Figueiredo and S. Wright () First-Order Methods HIM, January 2016 35 / 72



From Conjugates to Proximity Operators

Proximity of norm:

proxτ‖·‖p
= I − PBq(τ)

where Bq(τ) = {x : ‖x‖q ≤ τ} and 1
q + 1

p = 1.

Example: computing prox‖·‖∞ (notice `∞ is not separable):

Since 1
∞ + 1

1 = 1,
proxτ‖·‖∞ = I − PB1(τ)

... the proximity operator of `∞ norm is the residual of the projection
on an `1 ball.

Projection on `1 ball has no closed form, but there are efficient (linear
cost) algorithms (Brucker, 1984), (Maculan and de Paula, 1989).
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Geometry and Effect of prox`∞

Whereas `1 promotes sparsity, `∞ promotes equality (in absolute value).
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From Conjugates to Proximity Operators

The dual of the `2 norm is the `2 norm.
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Group Norms and their Prox Operators

Group-norm regularizer: ψ(x) =
M∑

m=1

λm‖xGm‖p.

In the non-overlapping case (G1, ...,Gm is a partition of {1, ..., n}), simply
use separability: (

proxψ(u)
)

Gm
= proxλm‖·‖p

(
uGm

)
.

In the tree-structured case, can get a complete ordering of the groups:
G1 � G2... � GM , where (G � G ′) ⇔ (G ⊂ G ′) or (G ∩ G ′ = ∅).

Define Πm : Rn → RN :

(Πm(u))Gm = proxλm‖·‖p
(uGm ),

(Πm(u))Ḡm
= uḠm

, where Ḡm = {1, ..., n} \ Gm

Then
proxψ = ΠM ◦ · · · ◦ Π2 ◦ Π1

...only valid for p ∈ {1, 2,∞} (Jenatton et al., 2011).
M. Figueiredo and S. Wright () First-Order Methods HIM, January 2016 39 / 72



Matrix Nuclear Norm and its Prox Operator

Recall the trace/nuclear norm: ‖X‖∗ =

min{m,n}∑
i=1

σi .

The dual of a Schatten p-norm is a Schatten q-norm, with
1
q + 1

p = 1. Thus, the dual of the nuclear norm is the spectral norm:

‖X‖∞ = max
{
σ1, ..., σmin{m,n}

}
.

If Y = UΛV T is the SVD of Y , we have

proxτ‖·‖∗(Y ) = UΛV T − P{X :max{σ1,...,σmin{m,n}}≤τ}(UΛV T )

= U soft
(
Λ, τ

)
V T .
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Atomic Norms: A Unified View
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Another Use of Fenchel-Legendre Conjugates

The original problem: min
x

f (x) + ψ(x)

Often this has the form: min
x

g(Ax) + ψ(x)

Using the definition of conjugate g(Ax) = supu uTAx − g∗(u)

min
x

g(Ax) + ψ(x) = inf
x

sup
u

uTAx − g∗(u) + ψ(x)

= sup
u

(−g∗(u)) + inf
x

uTAx + ψ(x)

= sup
u

(−g∗(u))− sup
x
−xTATu − ψ(x)︸ ︷︷ ︸
ψ∗(−AT u)

= − inf
u
g∗(u) + ψ∗(−ATu)

The dual infu g
∗(u) + ψ∗(−ATu) is sometimes easier to handle.

M. Figueiredo and S. Wright () First-Order Methods HIM, January 2016 42 / 72



Basic Proximal-Gradient Algorithm

Use basic structure:

xk = arg min
x
‖x − Φ(xk )‖2

2 + ψ(x).

with Φ(xk ) a simple gradient descent step, thus

xk+1 = proxαkψ

(
xk − αk∇f (xk )

)
This approach goes by many names, such as

“proximal gradient algorithm” (PGA),

“iterative shrinkage/thresholding” (IST),

“forward-backward splitting” (FBS)

It it has been reinvented several times in different communities:
optimization, partial differential equations, convex analysis, signal
processing, machine learning.
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Convergence of the Proximal-Gradient Algorithm

Basic algorithm: xk+1 = proxαkψ

(
xk − αk∇f (xk )

)
generalized (possibly inexact) version:

xk+1 = (1− λk )xk + λk

(
proxαkψ

(
xk − αk∇f (xk ) + bk

)
+ ak

)
where ak and bk are “errors” in computing the prox and the gradient;
λk is an over-relaxation parameter.

Convergence is guaranteed (Combettes and Wajs, 2006) if

X 0 < inf αk ≤ supαk <
2
L

X λk ∈ (0, 1], with inf λk > 0

X
∑∞

k ‖ak‖ <∞ and
∑∞

k ‖bk‖ <∞
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Proximal-Gradient Algorithm: Quadratic Case

Consider the quadratic case (of great interest): f (x) = 1
2‖B x − b‖2

2.

Here, ∇f (x) = BT (B x − b) and the IST/PGA/FBS algorithm is

xk+1 = proxαkψ

(
xk − αkB

T (B x − b)
)

can be implemented with only matrix-vector multiplications with B
and BT .

This is a very important feature in large-scale applications, such as
image processing, where fast algorithms exist for computing these
products (e.g. fast Fourier transforms or wavelet transforms), but
these matrices cannot be formed and stored explicitly.

In this case, some more refined convergence results are available.

Even more refined results are available if ψ(x) = τ‖x‖1
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More on IST/FBS/PGA for the `2-`1 Case

Problem: x̂ ∈ G = arg min
x∈Rn

1
2‖B x − b‖2

2 + τ‖x‖1 (recall BTB � LI )

IST/FBS/PGA becomes xk+1 = soft
(
xk − αBT (B x − b), ατ

)
with α < 2/L.

The zero set: Z ⊆ {1, ..., n} : x̂ ∈ G ⇒ x̂Z = 0

Zeros are found in a finite number of iterations (Hale et al., 2008):
after a finite number of iterations, we have (xk )Z = 0.

After that, if BT
ZBZ � µI , with µ > 0 (thus κ(BT

ZBZ) = L/µ):

‖xk+1 − x̂‖2 ≤
1− κ
1 + κ

‖xk − x̂‖2 (linear convergence)

for the optimal choice α = 2/(L + µ). (Weaker condition suffices for
lienar convergence of {f (xk )}; see above.)
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FISTA with prox operations

Recall that FISTA — fast iterative shrinkage-thresholding algorithm
— ((Beck and Teboulle, 2009), based on (Nesterov, 1983)) is a
heavy-ball-type acceleration of IST:

Initialize: Choose α ≤ 1/L, x0; set y1 = x0, t1 = 1;

Iterate: xk ← proxταψ
(
yk − α∇f (yk )

)
;

tk+1 ← 1
2

(
1 +

√
1 + 4t2

k

)
;

yk+1 ← xk +
tk − 1

tk+1
(xk − xk−1).

Acceleration:

FISTA: f (xk )− f (x̂) ∼ O

(
1

k2

)
IST: f (xk )− f (x̂) ∼ O

(
1

k

)
.

When L is not known, increase an estimate of L until it’s big enough.
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Heavy Ball Acceleration: TwIST

TwIST (two-step iterative shrinkage-thresholding (Bioucas-Dias and
Figueiredo, 2007)) is a heavy-ball-type acceleration of IST, for

min
x

1
2‖B x − b‖2

2 + τψ(x)

Iterations (with α < 2/L)

xk+1 = (γ − β) xk + (1− γ)xk−1 + β proxατψ
(
xk − αBT (B x − b)

)
Analysis in the strongly convex case: µI � BTB � LI , with µ > 0.
Conditioning (as above) κ = L/µ <∞.

Optimal parameters: γ = ρ2 + 1, β = 2α
µ+L , where ρ = 1−

√
κ

1+
√
κ

, yield

linear convergence

‖xk+1 − x̂‖2 ≤
1−
√
κ

1 +
√
κ
‖xk − x̂‖2

(
versus 1−κ

1+κ for IST
)
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Illustration of the TwIST Acceleration
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Acceleration via Larger Steps: SpaRSA

The standard step-size αk ≤ 2/L in IST is too timid

The SpARSA (sparse reconstruction by separable approximation)
framework proposes bolder choices of αk (Wright et al., 2009):

X Barzilai-Borwein (see above), to mimic Newton steps — or at least get
the scaling right.

X keep increasing αk until monotonicity is violated: backtrack.

Convergence to critical points (minima in the convex case) is
guaranteed for a safeguarded version: ensure sufficient decrease w.r.t.
the worst value in previous M iterations.
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Another Approach: GPSR

minx
1
2‖B x − b‖2

2 + τ‖x‖1 can be written as a standard QP:

min
u,v

1

2
‖B(u − v)− b‖2

2 + τuT 1 + τuT 1 s.t. u ≥ 0, v ≥ 0,

where ui = max{0, xi} and vi = max{0,−xi}.

With z =

[
u
v

]
, problem can be written in canonical form

min
z

1

2
zTQ z + cT z s.t. z ≥ 0

Solving this problem with projected gradient using Barzilai-Borwein
steps: GPSR (gradient projection for sparse reconstruction)
(Figueiredo et al., 2007).
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Speed Comparisons

Lorenz (2011) proposed a way of generating problem instances with
known solution x̂ : useful for speed comparison.

Define: Rk = ‖xk−x̂‖2

‖x̂‖2
and rk = L(xk )−L(x̂)

L(x̂) (where L(x) = f (x) + τψ(x)).
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More Speed Comparisons
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Even More Speed Comparisons
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Acceleration by Continuation

IST/FBS/PGA can be very slow if τ is very small and/or f is poorly
conditioned.

A very simple acceleration strategy: continuation/homotopy

Initialization: Set τ0 � τ , starting point x̄ , factor σ ∈ (0, 1), and k = 0.

Iterations: Find approx solution x(τk ) of minx f (x) + τkψ(x), starting from x̄ ;

if τk = τf STOP;

Set τk+1 ← max(τf , στk ) and x̄ ← x(τk );

Often the solution path x(τ), for a range of values of τ is desired,
anyway (e.g., within an outer method to choose an optimal τ)

Shown to be very effective in practice (Hale et al., 2008; Wright
et al., 2009). Recently analyzed by Xiao and Zhang (2012).

M. Figueiredo and S. Wright () First-Order Methods HIM, January 2016 55 / 72



Acceleration by Continuation: An Example

Classical sparse reconstruction problem (Wright et al., 2009)

x̂ ∈ arg min
x

1
2‖B x − b‖2

2 + τ‖x‖1

with B ∈ R1024×4096 (thus x ∈ R4096 and b ∈ R1024).
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A Final Touch: Debiasing

Consider problems of the form x̂ ∈ arg min
x∈Rn

1
2‖B x − b‖2

2 + τ‖x‖1

Often, the original goal was to minimize the quadratic term, after the
support of x had been found. But the `1 term can cause the nonzero
values of xi to be “suppressed.”

Debiasing:

X find the zero set (complement of the support of x̂):
Z(x̂) = {1, ..., n} \ supp(x̂).

X solve minx ‖B x − b‖2
2 s.t. xZ(x̂) = 0. (Fix the zeros and solve an

unconstrained problem over the support.)

Often, this problem has to be solved using an algorithm that only
involves products by B and BT , since this matrix cannot be
partitioned.
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Effect of Debiasing
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Example: Matrix Recovery (Toh and Yun, 2010)
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Conditional Gradient

Also known as “Frank-Wolfe” after the authors who devised it in the
1950s. Later analysis by Dunn (around 1990). Suddenly a topic of
enormous renewed interest; see for example (Jaggi, 2013).

min
x∈Ω

f (x),

where f is a convex function and Ω is a closed, bounded, convex set.

Start at x0 ∈ Ω. At iteration k :

vk := arg min
v∈Ω

vT∇f (xk );

xk+1 := xk + αk (vk − xk ), αk =
2

k + 2
.

Potentially useful when it is easy to minimize a linear function over
the original constraint set Ω;

Admits an elementary convergence theory: 1/k sublinear rate.

Same convergence theory holds if we use a line search for αk .
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Conditional Gradient for Atomic-Norm Constraints

Conditional Gradient is particularly useful for optimization over
atomic-norm constraints.

min f (x) s.t. ‖x‖A ≤ τ.

Reminder: Given the set of atoms A (possibly infinite) we have

‖x‖A := inf

{∑
a∈A

ca : x =
∑
a∈A

caa, ca ≥ 0

}
.

The search direction vk is τ āk , where

āk := arg min
a∈A
〈a,∇f (xk )〉.

That is, we seek the atom that lines up best with the negative gradient
direction −∇f (xk ).
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Generating Atoms

We can think of each step as the “addition of a new atom to the basis.”
Note that xk is expressed in terms of {ā0, ā1, . . . , āk}.

If few iterations are needed to find a solution of acceptable accuracy, then
we have an approximate solution that’s represented in terms of few atoms,
that is, sparse or compactly represented.

For many atomic sets A of interest, the new atom can be found cheaply.

Example: For the constraint ‖x‖1 ≤ τ , the atoms are
{±ei : i = 1, 2, . . . , n}. if ik is the index at which |[∇f (xk )]i | attains its
maximum, we have

āk = −sign([∇f (xk )]ik ) eik

Example: For the constraint ‖x‖∞ ≤ τ , the atoms are the 2n vectors with
entries ±1. We have

[āk ]i = −sign[∇f (xk )]i , i = 1, 2, . . . , n.
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More Examples

Example: Nuclear Norm. For the constraint ‖X‖∗ ≤ τ , for which the
atoms are the rank-one matrices, we have Āk = ukv

T
k , where uk and vk

are the first columns of the matrices Uk and Vk obtained from the SVD
∇f (Xk ) = Uk ΣkV

T
k .

Example: sum-of-`2. For the constraint

m∑
i=1

‖x[i ]‖2 ≤ τ,

the atoms are the vectors a that contain all zeros except for a vector u[i ]

with unit 2-norm in the [i ] block position. (Infinitely many.) The atom āk

contains nonzero components in the block ik for which ‖[∇f (xk )][i ]‖ is
maximized, and the nonzero part is

u[i ] = −[∇f (xk )][ik ]/‖[∇f (xk )][ik ]‖.
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Other Enhancements

Reoptimizing. Instead of fixing the contribution αk from each atom at
the time it joins the basis, we can periodically and approximately
reoptimize over the current basis.

This is a finite dimension optimization problem over the
(nonnegative) coefficients of the basis atoms.

It need only be solved approximately.

If any coefficient is reduced to zero, it can be dropped from the basis.

Dropping Atoms. Sparsity of the solution can be improved by dropping
atoms from the basis, if doing so does not degrade the value of f too
much (see (Rao et al., 2013)).

In the important least-squares case, the effect of dropping can be
evaluated efficiently.
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Interior-Point Methods

Interior-point methods were tried early for compressed sensing, regularized
least squares, support vector machines.

SVM with hinge loss formulated as a QP, solved with a primal-dual
interior-point method. Included in the OOQP distribution (Gertz and
Wright, 2003); see also (Ferris and Munson, 2002).

Compressed sensing and LASSO variable selection formulated as
bound-constrained QPs and solved with primal-dual; or second-order
cone programs solved with barrier (Candès and Romberg, 2005)

However they were mostly superseded by first-order methods.

Stochastic gradient in machine learning (low accuracy, simple data
access);

Gradient projection (GPSR) and prox-gradient (SpaRSA, FPC) in
compressed sensing (require only matrix-vector multiplications).

Is it time to reconsider interior-point methods?
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Compressed Sensing: Splitting and Conditioning

Consider the `2-`1 problem

min
x

1

2
‖Bx − b‖2

2 + τ‖x‖1,

where B ∈ Rm×n. Recall the bound constrained convex QP formulation:

min
u≥0,v≥0

1

2
‖B(u − v)− b‖2

2 + τ1T (u + v).

B has special properties associated with compressed sensing matrices (e.g.
RIP) that make the problem well conditioned.

(Though the objective is only weakly convex, RIP ensures that when
restricted to the optimal support, the active Hessian submatrix is well
conditioned.)
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Compressed Sensing via Primal-Dual Interior-Point

Fountoulakis et al. (2012) describe an approach that solves the
bounded-QP formulation.

Uses a vanilla primal-dual interior-point framework.

Solves the linear system at each interior-point iteration with a
conjugate gradient (CG) method.

Preconditions CG with a simple matrix that exploits the RIP
properties of B.

Matrix for each linear system in the interior point solver has the form

M :=

[
BTB −BTB
−BTB BTB

]
+

[
U−1S 0

0 V−1T

]
,

where U = diag(u), V = diag(v), and S = diag(s) and T = diag(t) are
constructed from the Lagrange multipliers for the bound u ≥ 0, v ≥ 0.
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The preconditioner replaces BTB by (m/n)I . Makes sense according to
the RIP properties of B.

P :=
m

n

[
I −I
−I I

]
+

[
U−1S 0

0 V−1T

]
,

Convergence of preconditioned CG depends on the eigenvalue distribution
of P−1M. Gondzio and Fountoulakis (2013) shows that the gap between
largest and smallest eigenvalues actually decreases as the interior-point
iterates approach a solution. (The gap blows up to ∞ for the
non-preconditioned system.)

Overall, the strategy is competitive with first-order methods, on random
test problems.
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Preconditioning: Effect on Eigenvalue Spread / Solve Time

Red = preconditioned, Blue = non-preconditioned.
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