
4 Incremental Gradient, Subgradient, and

Proximal Methods for Convex

Optimization: A Survey

Dimitri P. Bertsekas dimitri@mit.edu

Dept. of Electr. Engineering and Comp. Science, M.I.T.

Cambridge, MA, 02139

We survey incremental methods for minimizing a sum
∑m

i=1 fi(x) consist-

ing of a large number of convex component functions fi. Our methods con-

sist of iterations applied to single components, and have proved very effec-

tive in practice. We introduce a unified algorithmic framework for a variety

of such methods, some involving gradient and subgradient iterations, which

are known, and some involving combinations of subgradient and proximal

methods, which are new and offer greater flexibility in exploiting the spe-

cial structure of fi. We provide an analysis of the convergence and rate of

convergence properties of these methods, including the advantages offered

by randomization in the selection of components. We also survey applica-

tions in inference/machine learning, signal processing, and large-scale and

distributed optimization.

86 Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

4.1 Introduction

We consider optimization problems with a cost function consisting of a large

number of component functions, such as

minimize

m∑
i=1

fi(x)

subject to x ∈ X,

(4.1)

where fi : �n �→ �, i = 1, . . . ,m are real-valued functions, and X is a closed

convex set.1 We focus on the case where the number of componentsm is very

large, and there is an incentive to use incremental methods that operate on a

single component fi at each iteration, rather than on the entire cost function.

If each incremental iteration tends to make reasonable progress in some

“average” sense, then, depending on the value of m, an incremental method

may significantly outperform (by orders of magnitude) its nonincremental

counterpart, as extensive experience has shown.

In this chapter, we survey the algorithmic properties of incremental meth-

ods in a unified framework, based on the author’s recent work on incremen-

tal proximal methods (Bertsekas, 2010). In this section, we first provide an

overview of representative applications, and then we discuss three types of

incremental methods: gradient, subgradient, and proximal. We unify these

methods into a combined method, which we use as a vehicle for analysis in

Sections 4.2, 4.3, and 4.4. Finally, we discuss in greater detail some illus-

trative applications in Section 4.5. Some of the proofs of propositions have

been omitted and can be found in the report (Bertsekas, 2010).

4.1.1 Some Examples of Additive Cost Problems

Additive cost problems of the form (4.1) arise in a variety of contexts. Let

us provide a few examples where the incremental approach may have an

advantage over alternatives.

Example 4.1 (Least Squares and Inference). An important context

where cost functions of the form
∑m

i=1 fi(x) arise is inference/machine

learning, where each term fi(x) corresponds to error between some data and

1. Throughout the chapter, we will operate within the n-dimensional space �n with the
standard Euclidean norm, denoted ‖ · ‖. All vectors are considered column vectors and
a prime denotes transposition, so x′x = ‖x‖2. We will be using standard terminology of
convex optimization throughout, as given, for example, in textbooks such as Rockafellar
(1970), or the author’s recent book (Bertsekas, 2009).

4.1 Introduction 87

the output of a parametric model, with x being the vector of parameters. An

example is linear least-squares problems, where fi has quadratic structure,

except for a regularization function, which may be differentiable/quadratic,

as in the classical regression problem

m∑
i=1

(a′ix− bi)
2 + γ‖x− x‖2, s.t. x ∈ �n,

where x is given, or nondifferentiable, as in the �1-regularization problem

m∑
i=1

(a′ix− bi)
2 + γ

n∑
j=1

|xj |, s.t. (x1, . . . , xn) ∈ �n,

which will be discussed further in Section 4.5.

A more general class of additive cost problems is nonlinear least squares.

Here

fi(x) =
(
hi(x)

)2
,

where hi(x) represents the difference between the ith measurement (out of

m) from a physical system and the output of a parametric model whose

parameter vector is x. Problems of nonlinear curve fitting and regression, as

well as problems of training neural networks, fall in this category, and they

are typically nonconvex.

Another possibility is to use a nonquadratic function to penalize the error

between some data and the output of the parametric model. For example,

in place of the squared error (a′ix− bi)
2, we may use

fi(x) = �(a′ix− bi),

where � is a convex function. This is a common approach in robust estimation

and some support vector machine formulations.

Still another example is maximum likelihood estimation, where fi is a log-

likelihood function of the form

fi(x) = − logPY (yi;x),

where y1, . . . , ym represents values of independent samples of a random

vector whose distribution PY (·;x) depends on an unknown parameter vector

x ∈ �n that one wishes to estimate. Related contexts include “incomplete”

data cases, where the expectation-maximization (EM) approach is used.

Example 4.2 (Dual Optimization in Separable Problems). Consider

88 Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

the problem

maximize

m∑
i=1

ci(yi)

subject to

m∑
i=1

gi(yi) ≥ 0, yi ∈ Yi, i = 1, . . . ,m,

where ci : � �→ � and gi : � �→ �n are functions of the single scalar

coordinate yi, and Yi are given sets of scalars. Then, by assigning a dual

vector/multiplier x ∈ �n to the n-dimensional constraint function, we obtain

the dual problem

minimize

n∑
i=1

fi(x), subject to x ≥ 0,

where

fi(x) = sup
yi∈Yi

{
ci(yi) + x′gi(yi)

}
,

which has the additive form (4.1). Note that Yi is not assumed to be

convex, so integer programming and other discrete optimization problems

are included. However, the dual cost function components fi are always

convex, and their values and subgradients can often be computed either

analytically or with a one-dimensional maximization.

Example 4.3 (Minimization of an Expected Value: Stochastic Pro-

gramming). Consider the minimization of an expected value

minimize E
{
F (x,w)

}
subject to x ∈ X,

(4.2)

where w is a random variable taking a finite but very large number of values

wi, i = 1, . . . ,m, with corresponding probabilities πi. Then the cost function

consists of the sum of the m functions πiF (x,wi).

An example is stochastic programming , a classical model of two-stage

optimization under uncertainty. A vector x ∈ X is selected, a random event

occurs that has m possible outcomes w1, . . . , wm, and then another vector y

is selected from some set Y with knowledge of the outcome that occurred.

Then, for optimization purposes, we need to specify a different vector yi ∈ Y

for each outcome wi. The problem is to minimize the expected cost

F (x) +

m∑
i=1

πiGi(yi),

4.1 Introduction 89

where Gi(yi) is the cost associated with the occurrence of wi, and πi is the

corresponding probability. This is a problem with an additive cost function.

Furthermore, if there are separable (e.g., linear) constraints coupling the

vectors x and yi, the problem has a separable form.

Additive cost function problems also arise from problem (4.2) in a different

way: when the expected value E
{
F (x,w)

}
is approximated by an m-sample

average

f(x) =
1

m

m∑
i=1

F (x,wi),

where wi are independent samples of the random variable w. The minimum

of the sample average f(x) is then taken as an approximation of the

minimum of E
{
F (x,w)

}
.

Example 4.4 (Problems with Many Constraints). Problems of the

form

minimize f(x)

subject to gj(x) ≤ 0, j = 1, . . . ,m, x ∈ X,
(4.3)

where the number r of constraints is very large, often arise in practice, either

directly or via reformulation from other problems. They can be handled in

a variety of ways. One possibility is to adopt a penalty function approach,

and replace problem (4.3) with

minimize f(x) + c

r∑
j=1

P
(
gj(x)

)
subject to x ∈ X,

(4.4)

where P (·) is a scalar penalty function satisfying P (t) = 0 if t ≤ 0, and

P (t) > 0 if t > 0, and c is a positive penalty parameter. For example,

one may use the quadratic penalty P (t) =
(
max{0, t})2. An interesting

alternative is to use P (t) = max{0, t}, in which case it can be shown that the

optimal solutions of problems (4.3) and (4.4) coincide when c is sufficiently

large (see, for example, Bertsekas et al. (2003, Section 7.3) for the case in

which f is convex). The cost function of the penalized problem (4.4) is of

the additive form (4.1).

The idea of replacing constraints with penalties can be extended to the

case where the constraint x ∈ X in problem (4.3) has the form x ∈ ∩m
j=1Xj .

Then, under relatively mild conditions, problem (4.3) is equivalent to the

90 Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

unconstrained minimization of

f(x) + c

r∑
j=1

P
(
gj(x)

)
+ γ

m∑
j=1

dist(x;Xj),

where dist(x;Xj) = infy∈Xj
‖y − x‖ and γ is a sufficiently large penalty

parameter. We discuss this possibility in Section 4.5.

Example 4.5 (Distributed Incremental Optimization in Sensor

Networks). Consider a network of m sensors where data are collected and

used to solve some inference problem involving a parameter vector x. If

fi(x) represents an error penalty for the data collected by the ith sensor,

the inference problem is of the form (4.1). While it is possible to collect all

the data at a fusion center where the problem will be solved in centralized

manner, it may be preferable to adopt a distributed approach in order to

save data communication overhead and/or take advantage of parallelism in

computation. In such an approach the current iterate xk is passed from one

sensor to another, with each sensor i performing an incremental iteration

involving just its local component function fi, and the entire cost function

need not be known at any one location. We refer to Blatt et al. (2007), and

Rabbat and Nowak (2004, 2005) for further discussion.

Example 4.6 (Weber Problem in Location Theory). We want to find

a point x in the plane whose sum of weighted distances from a given set of

points y1, . . . , ym is minimized. Mathematically, the problem is

m∑
i=1

wi‖x− yi‖, s.t. x ∈ �n,

where w1, . . . , wm are given positive scalars. This problem descends from the

famous Fermat-Torricelli-Viviani problem (see (Boltyanski et al., 1999) for

an account of the history; Fermat’s formulation was for the case of a triangle,

where m = 3). It is a basic problem in location theory, and has received a

lot of attention. The algorithmic approaches of this chapter would be of

potential interest when the number of points m is large. We refer to Beck

and Teboulle (2010) for a discussion that is relevant to our context.

4.1.2 Incremental Gradient Methods: Differentiable Problems

In the case where the components fi are differentiable (not necessarily

convex), we may use incremental gradient methods, which have the form

xk+1 = PX

(
xk − αk∇fik(xk)

)
, (4.5)

4.1 Introduction 91

where αk is a positive stepsize, PX(·) denotes projection on X, and ik is

the index of the cost component that is iterated on. Such methods have

a long history, particularly for the unconstrained case (X = �n), starting

with the Widrow-Hoff least-mean-squares (LMS) method (Widrow and Hoff,

1960) for positive semidefinite quadratic component functions (see e.g.,

(Luo, 1993), (Bertsekas and Tsitsiklis, 1996, Section 3.2.5), (Bertsekas, 1999,

Section 1.5.2)). They have also been used extensively for the training of

neural networks, a case of nonquadratic/nonconvex cost components, under

the generic name “backpropagation methods.” There are several variants of

these methods, which differ in the stepsize selection scheme, and iin the order

in which components are taken up for iteration (it could be deterministic

or randomized). They are supported by convergence analyses under various

conditions; see Luo (1993), Grippo (1994), Grippo (2000), Luo and Tseng

(1994), Mangasarian and Solodov (1994), Bertsekas (1997), Solodov (1998),

and Tseng (1998).

When comparing the incremental gradient method with its classical non-

incremental gradient counterpart (where m = 1 and all components are

lumped into a single function f(x) =
∑m

i=1 fi(x)), it is important to realize

that there are two complementary performance issues to consider.

1. Progress when far from convergence. Here the incremental method can

be much faster. For an extreme case let X = �n (no constraints), and

take m very large and all components fi identical to each other. Then an

incremental iteration requires m times less computation than a classical

gradient iteration, but gives exactly the same result. While this is an extreme

example, it reflects the essential mechanism by which incremental methods

can be far superior: when the components fi are not too dissimilar, far from

the minimum a single component gradient will point to, “more or less,” the

right direction (see also the discussion of Bertsekas (1997) and Bertsekas

(1999, Example 1.5.5 and Exercise 1.5.5).)

2. Progress when close to convergence. Here the incremental method is gen-

erally inferior. As we will discuss shortly, it converges at a sublinear rate

because it requires a diminishing stepsize αk, compared with the typically

linear rate achieved with the classical gradient method when a small, con-

stant stepsize is used (αk ≡ α). One may use a constant stepsize with the

incremental method - and indeed this may be the preferred mode of imple-

mentation - but then the method typically oscillates in the neighborhood

of a solution, with the size of the oscillation roughly proportional to α, as

examples and theoretical analysis show.

To understand the convergence mechanism of incremental gradient meth-

ods, let us consider the case X = �n, and assume that the component

92 Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

functions fi are selected for iteration according to a cyclic order (i.e., for

every �, i�m = 1, i�m+1 = 2, . . . , i�m+m−1 = m), and let us assume that αk is

constant within a cycle (i.e., α�m = α�m+1 = · · · = α�m+m−1). Then, viewing

the iteration (4.5) in terms of cycles, we have, for every k that marks the

beginning of a cycle (ik = 1),

xk+m = xk − αk

m∑
i=1

∇fi(xk+i−1) = xk − αk

(∇f(xk) + ek),

where f is the cost function/sum of components, f(x) =
∑m

i=1 fi(x), and ek
is given by

ek =

m∑
i=1

(∇fi(xk)−∇fi(xk+i−1)
)
,

and may be viewed as an error in the calculation of the gradient ∇f(xk).

For Lipschitz continuous gradient functions ∇fi, the error ek is proportional

to αk, and this shows two fundamental properties of incremental gradient

methods, which hold generally for the other incremental methods of this

chapter as well.

1. A constant stepsize (αk ≡ α) typically cannot guarantee convergence,

since then the size of the gradient error ‖ek‖ is typically bounded away

from 0. Instead, a peculiar form of convergence takes place for constant

but sufficiently small α, whereby the iterates within cycles converge to

corresponding points of a limit cycle. This is true even in the most favorable

case of a linear least squares problem (see Luo (1993), or the textbook

analysis of Bertsekas (1999, Section 1.5.1)).

2. A diminishing stepsize (such as αk = O(1/k)) leads to a diminishing

error ek, so (under the appropriate Lipschitz condition) it can result in

convergence to a stationary point of f .

A corollary of these properties is that the price for achieving convergence

is the slow (sublinear) asymptotic rate of convergence associated with a

diminishing stepsize, which compares unfavorably with the often linear rate

of convergence associated with a constant stepsize and the nonincremental

gradient method. However, in practical terms this argument does not tell the

entire story, since in the early iterations, the incremental gradient method

often achieves a much faster convergence rate than its nonincremental

counterpart. In practice, the incremental method is usually operated with

a stepsize that either is constant or is gradually reduced up to a positive

value small enough that the resulting asymptotic oscillation is of no essential

concern. An alternative is to use a constant stepsize throughout, but to

4.1 Introduction 93

reduce over time the degree of incrementalism, so that ultimately the

method becomes nonincremental and achieves a linear convergence rate (see

Bertsekas (1997) and Solodov (1998)).

Aside from extensions to nondifferentiable cost problems, for X = �n

there is an important variant of the incremental gradient method that

involves extrapolation along the direction of the difference of the preceding

two iterates:

xk+1 = xk − αk∇fik(xk) + β(xk − xk−1), (4.6)

where β is a scalar in [0, 1) and x−1 = x0 (see e.g., Mangasarian and Solodov

(1994), Tseng (1998), Bertsekas (1996, Section 3.2)). This is sometimes

called the incremental gradient method with momentum. The nonincremen-

tal version of this method is the heavy ball method of Poljak (1964), which

can be shown to have a faster convergence rate than the corresponding gra-

dient method (see Polyak (1987, Section 3.2.1)). A nonincremental method

of this type, but with variable and suitably chosen value of β, has been

proposed by Nesterov (1983), and has received a lot of attention recently

because it has optimal iteration complexity properties under certain condi-

tions (see Nesterov (2004, 2005), Lu et al. (2008), Tseng (2008), and Beck

and Teboulle (2009, 2010)). However, no incremental analogs of this method

with favorable complexity properties are currently known.

Another variant of the incremental gradient method for the case X = �n

has been proposed by Blatt et al. (2007), which (after the first m iterates

are computed) has the form

xk+1 = xk − α

m−1∑
�=0

∇fik−�
(xk−�). (4.7)

(For k < m, the summation should go up to � = min{k,m− 1}, and α should

be replaced by a corresponding larger value, such as αk = mα/(k + 1).)

This method also computes the gradient incrementally, one component per

iteration, but in place of the single component gradient ∇fik(xk) in (4.5),

it uses an approximation to the total cost gradient ∇f(xk), which is an

aggregate of the component gradients computed in the past m iterations. A

cyclic order of component function selection (ik = k modulo m plus 1) is

assumed in (Blatt et al., 2007), and a convergence analysis is given, including

a linear convergence rate result for a sufficiently small constant stepsize α

and quadratic component functions fi. It is not clear how iterations (4.5)

and (4.7) compare in terms of rate of convergence, although the latter seems

likely to make faster progress when close to convergence. Note that iteration

(4.7) bears similarity to the incremental gradient iteration with momentum

94 Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

(4.6) where β ≈ 1. In particular, when αk ≡ α, the sequence generated by

(4.6) satisfies

xk+1 = xk − α

k∑
�=0

β�∇fik−�
(xk−�),

which resembles (4.7). There are no known analogs of iterations (4.6) and

(4.7) for nondifferentiable cost problems.

Among alternative incremental methods for differentiable cost problems,

we also mention versions of the Gauss-Newton method for nonlinear least-

squares problems, based on the extended Kalman filter ((Davidon, 1976),

(Bertsekas, 1996), and (Moriyama et al., 2003)). They are mathematically

equivalent to the ordinary Gauss-Newton method for linear least squares,

which they solve exactly after a single pass through the component functions

fi, but they often perform much faster in the nonlinear case, particularly

when m is large.

Let us finally note that incremental gradient methods are related to

stochastic gradient methods, which aim to minimize an expected value

E
{
F (x,w)

}
(cf. Example 1.3) by using the iteration

xk+1 = xk − αk∇F (xk, wk),

where wk is a sample of the random variable w. These methods also have

a long history (see Polyak and Tsypkin (1973), Ljung (1977), Kushner and

Clark (1978), Tsitsiklis et al. (1986), Polyak (1987), Bertsekas and Tsit-

siklis (1989, 1996, 2000), Gaivoronski (1994), Pflug (1996), Kushner and

Yin (1997), Bottou (2005), Meyn (2007), Borkar (2008), Nemirovski et al.

(2009), Lee and Wright (2010)), and are strongly connected with stochastic

approximation algorithms. The main difference between stochastic and de-

terministic formulations is that the former involve sequentially sampling cost

components from an infinite population under some statistical assumptions,

while in the latter the set of cost components is predetermined and finite.

However, it is possible to view the incremental gradient method (4.5), with a

randomized selection of the component function fi (i.e., with ik chosen to be

any one of the indexes 1, . . . ,m, with equal probability 1/m), as a stochas-

tic gradient method (see Bertsekas and Tsitsiklis (1996, Example 4.4) and

(Bertsekas and Tsitsiklis, 2000, Section 5)).

The stochastic formulation of incremental methods just discussed high-

lights an important application context where the component functions fi
are not given a priori, but become known sequentially through some obser-

vation process. Then it often makes sense to use an incremental method to

process the component functions as they become available, and to obtain

4.1 Introduction 95

approximate solutions as early as possible. In fact, this may be essential in

time-sensitive and possibly time-varying environments, where solutions are

needed “online.” In such cases, one may hope that an adequate estimate of

the optimal solution will be obtained before all the functions fi are processed

for the first time.

4.1.3 Incremental Subgradient Methods - Nondifferentiable Problems

Incremental subgradient methods apply to the case where the component

functions fi are convex and nondifferentiable at some points. They are simi-

lar to their gradient counterparts (4.5) except that an arbitrary subgradient

∇̃fik(xk) of the cost component fik is used in place of the gradient:2

xk+1 = PX

(
xk − αk∇̃fik(xk)

)
. (4.8)

Such methods were first proposed in the general form (4.8) in the Soviet

Union by Kibardin (1980), following the earlier paper by Litvakov (1966)

(which considered convex/nondifferentiable extensions of linear least-squares

problems) and related subsequent proposals.3 These works remained unno-

ticed until about 2005 in the Western literature, where incremental methods

were often reinvented in different contexts and with different lines of analy-

sis. See Ben-Tal et al. (2001), Nedić and Bertsekas (2000, 2001, 2010), Nedić

et al. (2001), Kiwiel (2004), Rabbat and Nowak (2004, 2005), Gaudioso et al.

(2006), Shalev-Shwartz et al. (2007), Neto and De Pierro (2009), Johansson

et al. (2009), Predd et al. (2009), Ram et al. (2009a,b), and Duchi et al.

(2010).

Incremental subgradient methods have convergence characteristics that

are similar in many ways to their gradient counterparts, the most important

similarity being the necessity for a diminishing stepsize αk for convergence.

The lines of analysis, however, tend to be different, since incremental gra-

dient methods rely for convergence on arguments based on decrease of the

cost function value, while incremental subgradient methods rely on argu-

2. In this chapter, we use ∇̃f(x) to denote a subgradient of a convex real-valued function
f at a vector x. The choice of ∇̃f(x) from within the subdifferential ∂f(x) at x will be
clear from the context.
3. Generally, in those times, algorithmic ideas relating to simple gradient methods with
and without deterministic and stochastic errors were popular in the Soviet scientific com-
munity, partly due to an emphasis on stochastic iterative algorithms, such as pseudogra-
dient and stochastic approximation; the works of Ermoliev, Polyak, and Tsypkin, to name
a few of the principal contributors, are representative (Ermoliev, 1969; Polyak and Tsyp-
kin, 1973; Ermoliev, 1976; Polyak, 1978, 1987). By contrast, the emphasis in the Western
literature at the time was on more complex Newton-like and conjugate direction methods.

96 Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

ments based on decrease of the iterates’ distance from the optimal solution

set. The line of analysis of this chapter is of the latter type, and is similar to

earlier works of the author and his collaborators (see Nedić and Bertsekas

(2000), Nedić and Bertsekas (2001), Nedić et al. (2001), and the textbook

presentations in Bertsekas (1999) and Bertsekas et al. (2003)).

Note two important ramifications of the lack of differentiability of the

component functions fi:

1. Convexity of fi becomes essential, since the notion of subgradient is

connected with convexity (subgradient-like algorithms for nondifferentiable

/ nonconvex problems have been suggested in the literature, but tend to be

complicated and have not found much application thus far).

2. There is more reason to favor the incremental over the nonincremen-

tal methods, since (contrary to the differentiable case) nonincremental sub-

gradient methods also require a diminishing stepsize for convergence, and

typically achieve a sublinear rate of convergence. Thus the one theoretical

advantage of the nonincremental gradient method discussed earlier is not

shared by its subgradient counterpart.

Finally, just as in the differentiable case, there is a substantial literature

for stochastic versions of subgradient methods. In fact, as we will discuss

in this chapter, there is a potentially significant advantage in turning the

method into a stochastic one by randomizing the order of selection of the

components fi for iteration.

4.1.4 Incremental Proximal Methods

We now consider an extension of the incremental approach to proximal

algorithms. The simplest one for problem (4.1) is of the form

xk+1 = argmin
x∈X

{
fik(x) +

1

2αk
‖x− xk‖2

}
, (4.9)

which relates to the proximal minimization algorithm ((Martinet, 1970),

(Rockafellar, 1976)) in the same way that the incremental subgradient

method (4.8) relates to the classical nonincremental subgradient method.4

Here {αk} is a positive scalar sequence, and we will assume that each

fi : �n �→ � is a convex function and X is a nonempty closed convex set.

4. In this chapter, we restrict our attention to proximal methods with the quadratic
regularization term ‖x−xk‖2. Our approach is applicable in principle when a nonquadratic
term is used instead, in order to match the structure of the given problem. The discussion
of such alternative algorithms is beyond our scope.

4.1 Introduction 97

The motivation for this type of method, which was considered only recently

in Bertsekas (2010), is that with a favorable structure of the components,

the proximal iteration (4.8) may be obtained in closed form or be relatively

simple, in which case it may be preferable to a gradient or subgradient

iteration. In this connection, we note that, generally, proximal iterations

are considered more stable than gradient iterations; for example, in the

nonincremental case, they converge essentially for any choice of αk, while

this is not so for gradient methods.

While some cost function components may be well suited for a proximal

iteration, others may not be because the minimization (4.9) is inconvenient,

so it makes sense to consider combinations of gradient/subgradient and prox-

imal iterations. In fact, in the past this has motivated nonincremental com-

binations of gradient and proximal methods for minimizing the sum of two

functions (or more generally, finding a zero of the sum of two nonlinear oper-

ators). These methods have a long history, dating to the splitting algorithms

of Lions and Mercier (1979) and Passty (1979), and have become popular

more recently (see Beck and Teboulle (2009, 2010), and the references they

cite for specialized algorithms, such as shrinkage/thresholding, cf. Section

5.1).

With similar motivation in mind, we adopt in this paper a unified algorith-

mic framework that includes incremental gradient, subgradient, and proxi-

mal methods and their combinations, and highlights their common structure

and behavior. We focus on problems of the form

minimize F (x)
def
=

m∑
i=1

Fi(x)

subject to x ∈ X,

(4.10)

where for all i,

Fi(x) = fi(x) + hi(x), (4.11)

fi : �n �→ �n and hi : �n �→ � are real-valued convex functions, and X is a

nonempty closed convex set.

In Section 4.2, we consider several incremental algorithms that iterate on

the components fi with a proximal iteration, and on the components hi with

a subgradient iteration. By choosing all the fi or all the hi to be identically

zero, we obtain the subgradient and proximal iterations (4.8) and (4.9),

respectively, as special cases. However, our methods offer greater flexibility,

and may exploit the special structure of problems where the functions fi are

suitable for a proximal iteration, while the components hi are not suitable,

and thus may be preferably treated with a subgradient iteration.

98 Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

In Section 4.3, we discuss the convergence and rate of convergence prop-

erties of methods that use a cyclic rule for component selection, and in

Section 4.4, we discuss a randomized component selection rule. In summary,

the convergence behavior of our incremental methods is similar to the one

outlined earlier for the incremental subgradient method (4.8). This includes

convergence within a certain error bound for a constant stepsize, exact con-

vergence to an optimal solution for an appropriately diminishing stepsize,

and improved convergence rate/iteration complexity when randomization is

used to select the cost component for iteration. In Section 4.5, we illustrate

our methods for some example applications.

4.2 Incremental Subgradient-Proximal Methods

In this section, we consider problems (4.10) and (4.11), and introduce several

incremental algorithms that involve a combination of a proximal and a

subgradient iteration. One of our algorithms has the form

zk = argmin
x∈X

{
fik(x) +

1

2αk
‖x− xk‖2

}
, (4.12)

xk+1 = PX

(
zk − αk∇̃hik(zk)

)
, (4.13)

where ∇̃hik(zk) is an arbitrary subgradient of hik at zk. The iteration is

well defined because the minimum in (4.12) is uniquely attained since fi
is continuous and ‖x − xk‖2 is real-valued, strictly convex, and coercive,

while the subdifferential ∂hi(zk) is nonempty since hi is real-valued. Also,

by choosing all the fi or all the hi to be identically zero, we obtain the

subgradient and proximal iterations (4.8) and (4.9), respectively, as special

cases.

The iterations (4.12) and (4.13) maintain both sequences {zk} and {xk}
within the constraint set X, but it may be convenient to relax this constraint

for either the proximal or the subgradient iteration, thereby requiring a

potentially simpler computation. This leads to the algorithm

zk = arg min
x∈�n

{
fik(x) +

1

2αk
‖x− xk‖2

}
, (4.14)

xk+1 = PX

(
zk − αk∇̃hik(zk)

)
, (4.15)

where the restriction x ∈ X has been omitted from the proximal iteration,

4.2 Incremental Subgradient-Proximal Methods 99

and to the algorithm

zk = xk − αk∇̃hik(xk), (4.16)

xk+1 = argmin
x∈X

{
fik(x) +

1

2αk
‖x− zk‖2

}
, (4.17)

where the projection onto X has been omitted from the subgradient itera-

tion. It is also possible to use different stepsize sequences in the proximal

and subgradient iterations, but for notational simplicity we will not discuss

this type of algorithm.

All of the incremental proximal algorithms given above are new to our

knowledge, having first been proposed by Bertsekas (2010). The closest

connection to the existing proximal methods is the “proximal gradient”

method, which has been analyzed and discussed recently in the context of

several machine-learning applications by Beck and Teboulle (2009, 2010).

(It can also be interpreted in terms of splitting algorithms (Lions and

Mercier, 1979), (Passty, 1979).) This method is nonincremental, applies to

differentiable hi and, contrary to subgradient and incremental methods, it

does not require a diminishing stepsize for convergence to the optimum.

In fact, the line of convergence analysis of Beck and Teboulle (2009, 2010)

relies on the differentiability of hi and the nonincremental character of the

proximal gradient method, and thus is different from ours.

Part (a) of the following proposition is a key fact about incremental

proximal iterations. It shows that they are closely related to incremental

subgradient iterations, the only difference being that the subgradient is

evaluated at the end point of the iteration rather than at the starting point.

Part (b) of the proposition provides an inequality that is well known in the

theory of proximal methods, and will be useful for our convergence analysis.

In the following method, we denote by ri(S) the relative interior of a convex

set S, and by dom(f) the effective domain {x | f(x) < ∞} of a function

f : �n �→ (−∞,∞].

Proposition 4.1. Let X be a nonempty closed convex set, and let f : �n �→
(−∞,∞] be a closed proper convex function such that ri(X)∩ri(dom(f)) �= ∅.
For any xk ∈ �n and αk > 0, consider the proximal iteration

xk+1 = argmin
x∈X

{
f(x) +

1

2αk
‖x− xk‖2

}
. (4.18)

(a) The iteration can be written as

xk+1 = PX

(
xk − αk∇̃f(xk+1)

)
, i = 1, . . . ,m, (4.19)

where ∇̃f(xk+1) is some subgradient of f at xk+1.

100 Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

(b) For all y ∈ X, we have

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2αk(f(xk+1)− f(y))− ‖xk − xk+1‖2
≤ ‖xk − y‖2 − 2αk(f(xk+1)− f(y)). (4.20)

Proof. (a) We use the formula for the subdifferential of the sum of the

three functions f , (1/2αk)‖x − xk‖2, and the indicator function of X (cf.

(Bertsekas, 2009, Proposition 5.4.6)), together with the condition that 0

should belong to this subdifferential at the optimum xk+1. We obtain that

(4.18) holds if and only if

1

αk
(xk − xk+1) ∈ ∂f(xk+1) +NX(xk+1), (4.21)

where NX(xk+1) is the normal cone of X at xk+1 (which is the set of vectors

y such that y′(x − xk+1) ≤ 0 for all x ∈ X, and also the subdifferential of

the indicator function of X at xk+1; see (Bertsekas, 2009, p. 185)). This is

true if and only if

xk − xk+1 − αk∇̃f(xk+1) ∈ NX(xk+1)

for some ∇̃f(xk+1) ∈ ∂f(xk+1), which in turn is true if and only if (4.19)

holds (cf. Bertsekas (2009, Proposition 5.4.6)).

(b) We have

‖xk − y‖2 = ‖xk − xk+1 + xk+1 − y‖2
= ‖xk − xk+1‖2 − 2(xk − xk+1)

′(y − xk+1) + ‖xk+1 − y‖2. (4.22)

Also since from (4.21), 1
αk

(xk − xk+1) is a subgradient at xk+1 of the sum

of f and the indicator function of X, we have (also using the assumption

y ∈ X) that

f(xk+1) +
1

αk
(xk − xk+1)

′(y − xk+1) ≤ f(y).

Combining this relation with (4.22), the result follows.

Based on the preceding proposition, we see that all the preceding iterations

can be written in an incremental subgradient format:

(a) Iteration (4.12)-(4.13) can be written as

zk = PX

(
xk − αk∇̃fik(zk)

)
, xk+1 = PX

(
zk − αk∇̃hik(zk)

)
. (4.23)

(b) Iteration (4.14)-(4.15) can be written as

zk = xk − αk∇̃fik(zk), xk+1 = PX

(
zk − αk∇̃hik(zk)

)
. (4.24)

4.2 Incremental Subgradient-Proximal Methods 101

(c) Iteration (4.16)-(4.17) can be written as

zk = xk − αk∇̃hik(xk), xk+1 = PX

(
zk − αk∇̃fik(xk+1)

)
. (4.25)

In all the preceding updates, the subgradient ∇̃hik can be any vector in the

subdifferential of hik , while the subgradient ∇̃fik must be a specific vector

in the subdifferential of fik , specified according to Proposition 4.1(a). Also,

iteration (4.24) can be written as

xk+1 = PX

(
xk − αk∇̃Fik(zk)

)
,

and resembles the incremental subgradient method for minimizing over X

the cost F (x) =
∑m

i=1 Fi(x) (cf. (4.10)), the only difference being that the

subgradient of Fik is taken at zk rather than xk.

An important issue which affects the methods’ effectiveness is the order

in which the components {fi, hi} are chosen for iteration. We consider two

possibilities:

1. A cyclic order , whereby {fi, hi} are taken up in the fixed deterministic

order 1, . . . ,m, so that ik is equal to (k modulo m) plus 1. A contiguous

block of iterations involving {f1, h1}, . . . , {fm, hm} in this order and exactly

once is called a cycle. We assume that the stepsize αk is constant within a

cycle (for all k with ik = 1 we have αk = αk+1 . . . = αk+m−1).

2. A randomized order , whereby at each iteration a component pair {fi, hi}
is chosen randomly by sampling over all component pairs with a uniform

distribution, independently of the past history of the algorithm.

It is essential to include all components in a cycle in the cyclic case, and

to sample according to the uniform distribution in the randomized case, for

otherwise some components will be sampled more often than others, leading

to a bias in the convergence process.

For the remainder of the chapter, we denote the optimal value of problem

(4.10) by F ∗ :

F ∗ = inf
x∈X

F (x),

and the set of optimal solutions (which could be empty) by X∗:

X∗ =
{
x∗ | x∗ ∈ X, F (x∗) = F ∗}.

Also, for a nonempty closed set X, we denote by dist(·;X) the distance

function, defined as follows:

dist(x;X) = min
z∈X

‖x− z‖, x ∈ �n.

102 Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

4.3 Convergence for Methods with Cyclic Order

In this section, we discuss convergence under the cyclic order. We consider a

randomized order in the next section. We focus on the sequence {xk} rather
than {zk}, which need not lie within X in the case of iterations (4.24) and

(4.25) when X �= �n. In summary, the idea is to show that the effect of

taking subgradients of fi or hi at points near xk (e.g., at zk rather than at

xk) is inconsequential, and diminishes as the stepsize αk becomes smaller, as

long as some subgradients relevant to the algorithms are uniformly bounded

in norm by some constant. This is similar to the convergence mechanism of

incremental gradient methods described in Section 4.2. We use the following

assumptions throughout the present section.

Assumption 4.1 (For iterations (4.23) and (4.24)). There is a constant

c ∈ � such that for all k

max
{‖∇̃fik(zk)‖, ‖∇̃hik(zk)‖

} ≤ c. (4.26)

Furthermore, for all k that mark the beginning of a cycle (i.e., all k > 0 with

ik = 1), we have for all j = 1, . . . ,m:

max
{
fj(xk)−fj(zk+j−1), hj(xk)−hj(zk+j−1)

} ≤ c ‖xk−zk+j−1‖. (4.27)

Assumption 4.2 (For iteration (4.25)). There is a constant c ∈ � such

that for all k

max
{‖∇̃fik(xk+1)‖, ‖∇̃hik(xk)‖

} ≤ c. (4.28)

Furthermore, for all k that mark the beginning of a cycle (i.e., all k > 0 with

ik = 1), we have for all j = 1, . . . ,m:

max
{
fj(xk)− fj(xk+j−1), hj(xk)− hj(xk+j−1)

} ≤ c ‖xk − xk+j−1‖,
(4.29)

fj(xk+j−1)− fj(xk+j) ≤ c ‖xk+j−1 − xk+j‖. (4.30)

The condition (4.27) is satisfied if for each i and k, there is a subgradient

of fi at xk and a subgradient of hi at xk, whose norms are bounded by c.

Conditions that imply the preceding assumptions are:

(a) For algorithm (4.23): fi and hi are Lipschitz continuous over the set X.

(b) For algorithms (4.24) and (4.25): fi and hi are Lipschitz continuous over

the entire space �n.

(c) For algorithms (4.23), (4.24), and (4.25): fi and hi are polyhedra (this

4.3 Convergence for Methods with Cyclic Order 103

is a special case of (a) and (b)).

(d) The sequences {xk} and {zk} are bounded, since then, fi and hi, being

real-valued and convex, are Lipschitz continuous over any bounded set that

contains {xk} and {zk} (see, e.g., Bertsekas (2009, Proposition 5.4.2))].

The following proposition provides a key estimate that reveals the conver-

gence mechanism of our methods.

Proposition 4.2. Let {xk} be the sequence generated by any one of the

algorithms (4.23)-(4.25), with a cyclic order of component selection. Then

for all y ∈ X and all k that mark the beginning of a cycle (i.e., all k with

ik = 1), we have

‖xk+m − y‖2 ≤ ‖xk − y‖2 − 2αk

(
F (xk)− F (y)

)
+ α2

kβm
2c2, (4.31)

where β = 1
m + 4 in the case of (4.23) and (4.24), and β = 5

m + 4 in the

case of (4.25).

Proof. We first prove the result for algorithms (4.23) and (4.24), and then

indicate the modifications necessary for algorithm (4.25). Using Proposition

4.1(b), we have for all y ∈ X and k,

‖zk − y‖2 ≤ ‖xk − y‖2 − 2αk

(
fik(zk)− fik(y)

)
. (4.32)

Also, using the nonexpansion property of the projection (i.e.,
∥∥PX(u) −

PX(v)
∥∥ ≤ ‖u − v‖ for all u, v ∈ �n), the definition of subgradient, and

(4.26), we obtain for all y ∈ X and k:

‖xk+1 − y‖2 = ∥∥PX

(
zk − αk∇̃hik(zk)

)− y
∥∥2

≤ ‖zk − αk∇̃hik(zk)− y‖2
≤ ‖zk − y‖2 − 2αk∇̃hik(zk)

′(zk − y) + α2
k

∥∥∇̃hik(zk)
∥∥2

≤ ‖zk − y‖2 − 2αk

(
hik(zk)− hik(y)

)
+ α2

kc
2.

(4.33)

Combining (4.32) and (4.33), and using the definition Fj = fj +hj , we have

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2αk

(
fik(zk) + hik(zk)− fik(y)− hik(y)

)
+ α2

kc
2

= ‖xk − y‖2 − 2αk

(
Fik(zk)− Fik(y)

)
+ α2

kc
2.

(4.34)

Now let k mark the beginning of a cycle (i.e., ik = 1). Then, at iteration

k+ j − 1, j = 1, . . . ,m, the selected components are {fj , hj}, in view of the

assumed cyclic order. We may thus replicate the preceding inequality with

104 Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

k replaced by k + 1, . . . , k +m− 1, and add to obtain

‖xk+m − y‖2 ≤ ‖xk − y‖2 − 2αk

m∑
j=1

(
Fj(zk+j−1)− Fj(y)

)
+mα2

kc
2

or, equivalently,

‖xk+m − y‖2 ≤ ‖xk − y‖2 − 2αk

(
F (xk)− F (y)

)
+mα2

kc
2

+ 2αk

m∑
j=1

(
Fj(xk) − Fj(zk+j−1)

)
. (4.35)

The remainder of the proof deals with appropriately bounding the last term

above.

From (4.27), we have for j = 1, . . . ,m that

Fj(xk)− Fj(zk+j−1) ≤ 2c ‖xk − zk+j−1‖. (4.36)

We also have

‖xk−zk+j−1‖ ≤ ‖xk−xk+1‖+· · ·+‖xk+j−2−xk+j−1‖+‖xk+j−1−zk+j−1‖,
(4.37)

and by the definition of algorithms (4.23) and (4.24), the nonexpansion

property of the projection, and (4.26), each of the terms in the right-hand

side above is bounded by 2αkc, except for the last, which is bounded by αkc.

Thus (4.37) yields ‖xk − zk+j−1‖ ≤ αk(2j− 1)c which, together with (4.36),

shows that

Fj(xk)− Fj(zk+j−1) ≤ 2αkc
2(2j − 1). (4.38)

Combining (4.35) and (4.38), we have

‖xk+m−y‖2 ≤ ‖xk−y‖2−2αk

(
F (xk)−F (y)

)
+mα2

kc
2+4α2

kc
2

m∑
j=1

(2j−1),

and finally

‖xk+m − y‖2 ≤ ‖xk − y‖2 − 2αk

(
F (xk)− F (y)

)
+mα2

kc
2 + 4α2

kc
2m2,

which is of the form (4.31) with β = 1
m + 4.

For algorithm (4.25), a similar argument goes through using Assumption

4.2. In place of (4.32), using the nonexpansion property of the projection,

the definition of subgradient, and (4.28), we obtain, for all y ∈ X and k ≥ 0,

‖zk − y‖2 ≤ ‖xk − y‖2 − 2αk

(
hik(xk)− hik(y)

)
+ α2

kc
2. (4.39)

