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Machine learning’s goal is to provide algorithms able to deal with new

situations or data. Thus, what matters is their performance on unseen test

data. For that purpose, we have at our disposal data on which we can train

our model. Much previous work aimed at taking account of the fact that the

training data are only a sample from the distribution of interest, for instance,

by optimizing training error plus a regularization term. We present here a

new way to take that information into account, based on an estimator of

the gradient of generalization error that takes this uncertainty into account

through a weak prior. We show how taking into account the uncertainty

across training data can yield faster and more stable convergence, even

when using a first-order method. We then show that in spite of apparent

similarities with second-order methods, taking this uncertainty into account

is different and can be used in conjunction with an approximate Newton

method to yield even faster convergence.

15.1 Introduction

Machine learning often looks like optimization: write down the likelihood of

some training data under some model and find the model parameters which
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maximize that likelihood, or which minimize some divergence between the

model and the data. In this context, conventional wisdom is that one should

find in the optimization literature the state-of-the-art optimizer for one’s

problem, and use it.

However, this should not hide the fundamental difference between these

two concepts: while optimization is about minimizing some error on the

training data, it is the performance on the test data we care about in machine

learning. Of course, by their very definition, test data are not available to

us at training time, and thus we must use alternative techniques to prevent

the model from focusing too much on the training data at the expense of

generalization performance (a phenomenon known as overfitting), such as

weight decay or limited model capacity.

The goal of this chapter is to prove that this misfit between training and

test error can be dealt with by modifying the optimization procedure rather

than the objective function itself, using a technique similar to the natural

gradient. It is organized as follows: we start by exploring the differences

between the optimization and the learning frameworks in section 15.2, before

introducing a model of the gradients which modifies the search direction in

section 15.3. Then, after exploring the similarities and differences between

the covariance and the Hessian in section 15.4, we propose a modification

of our model of the gradients, enabling us to use second-order information

to find the optimal search direction, in section 15.5. Section 15.6 presents

TONGA, an efficient algorithm to obtain these new search directions, which

is tested in section 15.7.

15.2 Optimization Versus Learning

15.2.1 Optimization Methods

The goal of optimization is to minimize a function f , which we will assume

to be twice differentiable and defined from a space E to R, over E. This is

a problem with a considerable literature (see Nocedal and Wright (2006),

for instance). It is well known that second-order descent methods, which

rely on the Hessian of f (or approximations thereof), enjoy much faster

theoretical convergence than first-order methods (quadratic versus linear),

in terms of number of updates. Such methods include the following: Newton,

Gauss-Newton, Levenberg-Marquardt, and quasi-Newton (such as BFGS).



15.2 Optimization Versus Learning 405

15.2.2 Online Learning

The learning framework for online learning differs slightly from the opti-

mization one. The function f we wish to minimize (which we call the cost

function) is defined as the expected value of a function L under a distribution

p over the space E of possible inputs, that is,

f(θ) =

∫
x∈E

L(θ, x)p(x) dx, (15.1)

and we have access only to samples xi drawn from p. If we have n samples,

we can define a new function,

f̂(θ) =
1

n

∑
i

L(θ, xi) . (15.2)

Let us call f the test cost, and f̂ the training cost. The xi are the training

data. As n goes to infinity, the difference between f and f̂ vanishes.

Bottou and Bousquet (2008) study the case where one has access to a

potentially infinite amount of training data but only a finite amount of

time. This setting, which they dub large-scale learning, calls for a tradeoff

between the quality of the optimization for each data point and the number

of data points treated. They show that

1. good optimization algorithms may be poor learning algorithms;

2. stochastic gradient descent enjoys a faster convergence rate than batch

gradient descent;

3. introducing second-order information can win us a constant factor (the

condition parameter).

Therefore, the choice lies between first- and second-order stochastic gradient

descent, depending on the additional cost of taking second-order information

into account and the condition parameter. Several authors have developed

algorithms allowing for efficient use of this second-order information in a

stochastic setting (Schraudolph et al., 2007; Bordes et al., 2009). However,

we argue, all of these methods are derived from optimization methods

without taking into account the particular nature of the learning problem.

More precisely, the gradient we would like to compute is the one of the

true cost defined in (15.1). Differentiating both sides of this equation with

respect to θ yields (assuming we can swap the integral and the derivative)

g∗(θ0) =
∂f

∂θ
(θ0) =

∫
x∈E

∂L

∂θ
(θ0, xi)p(x) dx . (15.3)
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Similarly, differentiating both sides of (15.2) with respect to θ yields

g(θ0) =
∂f̂

∂θ
(θ0) =

1

n

∑
i

∂L

∂θ
(θ0, xi) . (15.4)

Thus, for each parameter value θ0, the true gradient g∗ is the expectation

of
∂L

∂θ
(θ0, x) under p, and we are given only samples gi =

∂L

∂θ
(θ0, xi) from

this distribution. This bears a lot of resemblance to the standard setting of

machine learning: given a set of samples (here, the gi’s) from a distribution,

one wishes to estimate interesting properties of that distribution (here, its

expectation). We will thus proceed in the standard way, that is, we shall

build a model of the gradients gi and estimate its parameters. At this point,

it is important to recall that our model is valid only for one value of θ0, and

thus needs to be reevaluated every time we move in parameter space. We

shall discuss this issue further in section 15.3.1.

Also, note that the same reasoning may be applied to stochastic optimiza-

tion. Modeling the distribution of the gradients will prevent us from focusing

too much on the previously seen examples, which should enhance the final

performance of the algorithm. This intuition will be proved in section 15.7.

15.3 Building a Model of the Gradients

We shall now describe in detail the model of gradients we use. Since our

goal is to achieve fast treatment of incoming data, it must be simple enough

to be estimated accurately with little computation. Additionally, a simpler

model will regularize our estimate, making it more robust. We will thus use

a Gaussian model, which we will see has the extra advantage of having an

interpretation as an approximation to the central-limit theorem.

The only quantity we are interested in is the mean of this Gaussian, which

is the true gradient g∗.
The likelihood term is

gi|g∗ ∼ N(g∗, C∗) (15.5)

where C∗ is the true covariance of the gradients, that is,

C∗ =
∫
x

(
∂L(θ, x)

∂θ
− g∗

)(
∂L(θ, x)

∂θ
− g∗

)T

p(x) dx. (15.6)

Indeed, according to the central-limit theorem, if the gi’s were averages

of gradients over a minibatch, then their distribution would converge to a

Gaussian as the minibatch size grows to infinity, thus yielding the correct
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likelihood. Of course, one must bear in mind that this becomes an approxi-

mation for finite sizes, and even more so when gi is a single gradient.

Before receiving any gradient, we know neither the direction nor the

amplitude of the true gradient. Hence it is reasonable to take a prior over

g∗ that is centered on 0 and has an isotropic covariance:

g∗ ∼ N(0, σ2I) . (15.7)

Assuming we receive n gradients g1, . . . , gn with average g, the posterior

distribution over g∗ is obtained by combining (15.7) and (15.5), yielding

g∗|(g1, . . . , gn) ∼ N

([
I +

C∗

nσ2

]−1

g,

[
nC∗−1 +

I

σ2

]−1
)

. (15.8)

Even though we care about only the mean g∗, its posterior depends on the

covariance matrix C∗, which should be estimated using data. Though the

proper Bayesian way would be to place a prior on C∗ (which could be inverse-

Wishart to keep the model conjugate) and estimate the joint posterior over

(g, C∗), we will set C∗ to the empirical covariance matrix C of the gradients.

In doing so, we will lose in robustness but gain in computational efficiency.

Replacing C∗ with the empirical covariance C in (15.8), we have the

estimator

g∗|(g1, . . . , gn) ∼ N

([
I +

C

nσ2

]−1

g,

[
nC−1 +

I

σ2

]−1
)
, (15.9)

with

C =
1

n

n∑
i=1

(gi − g) (gi − g)T . (15.10)

Now that we have estimated the posterior distribution over g∗, we can

estimate the expected decrease in L for a given update Δθ, which is simply

E[ΔL] = (Δθ)TE[g∗] . (15.11)

For a given norm of Δθ, the optimal decrease is obtained for Δθ ∝ −E[g∗],
that is,

(Δθ)opt ∝ −
[
I +

C

nσ2

]−1

g . (15.12)

This quantity, which we call consensus gradient, is reminiscent of the natural

gradient of Amari (1998). In his work, Amari showed that in a neural

network, the direction of steepest descent in the Riemannian manifold
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defined by that network is

(Δθ)Amari ∝ −
[
GGT + λI

]−1
g , (15.13)

where G is the matrix containing one gradient per column (λI acts as a

regularizer and the direction of steepest descent uses λ = 0). However,

there are some important differences. First, here the covariance matrix C

is centered and scaled, and thus not the Fisher information matrix, GGT ,

as in Amari’s work. Second, and perhaps more important, this formulation

makes it obvious that the term C
nσ2 acts here as a regularizer of the standard

gradient direction, rather than defining a completely new direction based on

another metric.

Let us pause a bit and analyze the behavior of such a direction. If there is

a strong disagreement between gradients along a direction d, the covariance

will be large along this direction (that is, the value of dTCd will be large),

which will reduce the update Δθ along d. Thus, (15.12) naturally and

gracefully deals with incoherent or noisy data. This is in stark contrast with,

for example, outlier detectors which discard data points entirely. Moreover,

the direction along which to shrink the updates is also learned and does not

require any heuristic.

If, on the other hand, there is very little disagreement along a direction,

then the step along this direction will be taken as usual. It is worth empha-

sizing that in this setting, the smallest eigenvalues of C are unimportant, as

they will have very little effect on the final direction, as opposed to existing

natural gradient methods, where they dominate the final update. As they

are often harder to estimate correctly, those methods need to add a regular-

izer, which is unnecessary here. Once again, in our case the matrix C is the

regularizer, not the identity matrix. soit clair. Le style me parat aussi lourd

et redondant.

Figure 15.1 shows an example of consensus gradient and one of mean

gradient directions, with varying amounts of disagreement among gradients.

Figure 15.1: Left: when gradients (solid lines) agree, the consensus gradient
direction (dashed line) is indistinguishable from the mean gradient (dashed-dotted
line). Right: when gradients disagree, the consensus gradient shrinks in direction
of high variance while leaving the others untouched.
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The dot product of the empirical gradient and the consensus gradient

direction of (15.12) is gT
[
I +

C

nσ2

]−1

g, which is always positive since(
I + C

nσ2

)
is a positive definite matrix. Thus, though the consensus gradient

direction is a modification of the original direction, they will never be in

disagreement (that is, if the magnitude of the update is small enough, the

training cost is guaranteed to decrease as well).

Moreover, when the number n of gradients goes to infinity, the optimal

direction converges to g: this makes sense, since the modification to standard

gradient descent arises from the uncertainty around the particular set of

samples chosen, which becomes nonexistent in the case of infinite sample

size. However, as we recover a standard optimization problem, we may be

disappointed by the use of a first-order method, which, as mentioned earlier,

is theoretically slower than second-order ones.

15.3.1 Setting a Zero-Centered Prior at Each Timestep

Before moving on to the second-order version of our consensus gradient

algorithm, we will briefly comment on the choice of our prior at each step.

Indeed, (15.9) has been obtained using the zero-centered Gaussian prior

defined in (15.7). Except for the first update, one may wonder why we would

use such a distribution rather than the posterior distribution at the previous

timestep as our prior. There are two reasons for that. The first one is that

whenever we update the parameters of our model, the distribution over the

gradients changes. If the function to optimize were truly quadratic, we could

quantify the change in gradient exactly using the Hessian. Unfortunately,

this is not the case, and if this path is explored (as we believe it should

be), it will involve approximations of the posterior. The second reason is

computational. Even if we were able to follow the mean of the posterior

exactly, the resulting distributions would become more and more complex

over time (while still being Gaussians, their means and covariances would

depend on a sum of covariance matrices). Thus, while acknowledging that

using the prior of (15.7) at every timestep is a suboptimal strategy that

future work might enhance, we believe that it is very appealing because of

the simplicity of the algorithm.

15.4 The Relative Roles of the Covariance and the Hessian

In its original formulation, the natural gradient algorithm has often been

considered as approximation to the Newton method. Indeed, their updates
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look very similar (d = (GGT )−1g for the natural gradient and d = H−1g

for the Newton method), and there are several reasons to believe that the

covariance (either centered, that is, C, or uncentered, that is, GGT ) and H

have analogous properties. However, as we will see, they encode completely

different kinds of information. From there, it seems natural to exploit both,

yielding an algorithm combining their advantages.

15.4.1 Similarities Between C and H

Let us first focus on the similarities between the covariance matrix and the

Hessian.

15.4.1.1 Maximum Likelihood

Let us assume that we are training a density model by minimizing the

negative log-likelihood. The cost function fnll is defined by

fnll(θ) = −
∫
x
log[L(θ, x)]p(x) dx . (15.14)

Note that this L is related to the L used in section 15.2.2 through L =

− logL, but with the constraint that L is a distribution. Let us consider

the case where there is a parameter vector θ such that our model is perfect

(where p(x) = L(θ, x)) and that we are at this θ. Then the covariance matrix

of the gradients at that point is equal to the Hessian of fnll. In the general

case, this equality does not hold.

15.4.1.2 Gauss-Newton

Gauss-Newton is an approximation to the Newton method when f can be

written as a sum of squared residuals:

f(θ) =
1

2

∑
i

fi(θ)
2. (15.15)

Computing the Hessian of f yields

∂2f(θ)

∂θ2
=
∑
i

fi(θ)
∂2fi
∂θ2

+
∑
i

∂fi
∂θ

∂fi
∂θ

T

. (15.16)

If the fi get close to 0 (relative to their gradient), the first term may be

ignored, yielding the following approximation to the Hessian:

H ≈
∑
i

∂fi
∂θ

∂fi
∂θ

T

. (15.17)
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One, however, must be aware of the following:

this approximation is interesting only when the fi are residuals (that is,

when the approximation is valid close to the optimum);

the gradients involved are those of fi and not of f2
i ;

the term on the right-hand side is the uncentered covariance of these

gradients.

In order to compare the result of (15.17) to the natural gradient, we will

assume that the sum in (15.15) is over data points, that is,

f(θ) =
1

2

∑
i

fi(θ)
2 =

1

N

∑
i

L(θ, xi) (15.18)

with the cost for each data point being

L(θ, xi) =
N

2
fi(θ)

2 . (15.19)

The gradient of this cost with respect to θ is

gi =
∂L(θ, xi)

∂θ
= Nfi(θ)

∂fi(θ)

∂θ
. (15.20)

At the optimum (where the average of the gradients is zero and the centered

and uncentered covariance matrices are equal), the covariance matrix of the

gi’s is

C =
∑
i

gig
T
i = N2

∑
i

fi(θ)
2∂fi
∂θ

∂fi
∂θ

T

, (15.21)

which is a weighted sum of the terms involved in (15.17). Thus the natural

gradient and the Gauss-Newton approximation, while related, are different

quantities and (as we will show) have very different properties.

15.4.2 Differences Between C and H

Remember what the Hessian is: a measure of the change in gradient when

we move in parameter space. In other words, the Hessian helps to answer

the following question: If I were at a slightly different position in parameter

space, how different would the gradient be? It is a quantity defined for any

(twice differentiable) function.

On the other hand, the covariance matrix of the gradients captures the

uncertainty around this particular choice of training data, that is, the change

in gradient when we move in input space. In other words, the covariance helps

us to answer the following question: If I had slightly different training data,
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how different would the gradient be? This quantity makes only sense when

there are training data.

Whereas the Hessian seems naturally suited to optimization problems (it

allows us to be less shortsighted when minimizing a function), the covariance

matrix unleashes its power in the learning setting, where we are given

only a subset of the data. We do not claim that there are no numerical

similarities between them, and indeed the experiments hint at differing and

complementary effects, so we really wish to clarify how they differ.

From this observation, it seems natural to combine these two matrices.

15.5 A Second-Order Model of the Gradients

In our first model of the gradients, in section 15.3, we did not assume

any particular form of the function L to minimize. In the Newton method,

however, one assumes that the cost function is locally quadratic, that is,

L(θ) ≈ f(θ) =
1

2
(θ − θ∗)TH(θ − θ∗) (15.22)

for some value of θ∗.
The derivative of this cost is

g∗(θ) =
∂f(θ)

∂θ
= H(θ − θ∗) . (15.23)

We can see that in the context of a quadratic function, the isotropic prior

over g∗ proposed in (15.7) is erroneous, as g∗ is clearly influenced by H. We

shall, rather, consider an isotropic Gaussian prior on the quantity θ− θ∗, as
we do not have any information about the position of θ relative to θ∗. The
resulting prior distribution over g∗ is

g∗ ∼ N
(
0, σ2H2

)
, (15.24)

where we omit the dependence on θ to keep the notation uncluttered. In

a fashion similar to section 15.3, we will suppose that we are given only a

finite training set composed of n data points xi with associated gradients

gi. The empirical gradient g is the mean of the gi’s. Using the central limit

theorem, we again have

g|g∗ ∼ N

(
g,

C∗

n

)
(15.25)

where C∗ is the true covariance of the gradients, which we will once again

replace with the empirical covariance C. Therefore, the posterior distribution
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over g is

g∗|g ∼ N

([
I +

CH−2

nσ2

]
g,

[
H−2

σ2
+ nC−1

]−1
)

. (15.26)

Since the function L is locally quadratic, we wish to move in the direction

H−1g. This direction follows the Gaussian distribution

H−1g|g ∼ N

([
I +

H−1CH−1

nσ2

]−1

H−1g,

[
I

σ2
+ nHC−1H

]−1
)

. (15.27)

Since the mean of the Gaussian in (15.27) appears complicated, we shall

explain it. Let us write di for the Newton directions:

di = H−1gi . (15.28)

Since C is the covariance matrix of the gradients gi, H
−1CH−1 = CH is the

covariance matrix of the di’s. We can therefore rewrite

H−1g|g ∼ N

([
I +

CH

nσ2

]−1

d,

[
I

σ2
+ n(CH)−1

]−1
)

(15.29)

where d is the average of the Newton directions, that is, d = H−1g. The

direction which maximizes the expected gain is thus

Δθ ∝ −
[
I +

CH

nσ2

]−1

d . (15.30)

This formula is exactly the consensus gradient (15.12), but on the Newton

directions. This makes perfect sense, as the Newton method is the standard

gradient descent on a space linearly reparameterized by H0.5. Here, the

direction is the one obtained after having computed the consensus gradient

in the same linearly reparameterized space.

From a computational perspective, this simple combination is excellent

news. It means that one may choose his or her favorite second-order gradient

descent method to compute the Newton directions, and then his or her

favorite consensus gradient algorithm to apply to these Newton directions,

to yield an algorithm combining the advantages of both methods.

As a side note, one can see that as the number n of data points used to

compute the mean increases, the prior vanishes and the posterior distribu-

tion concentrates around the empirical Newton direction. This is in contrast

with the method of section 15.3, which converged to the first-order gradient

descent algorithm.



414 Improving First and Second-Order Methods by Modeling Uncertainty

15.6 An Efficient Implementation of Online Consensus Gradient: TONGA

So far, we have

provided a justification for the consensus gradient as a means of dealing

with the uncertainty arising from having only a finite number of samples in

our dataset;

explored the similarities and differences between the covariance matrix C

and the Hessian H;

shown how the information in these two matrices could be combined to

yield an efficient algorithm, both from an optimization and from a learning

point of view.

However, these techniques require matrix inversions, which makes them

unsuitable for practical cases, where the number of model parameters and

of training data may be very large. Also, since our main focus is online

learning, we wish to be able to update our parameters after each example

(stochastic), or each small group of examples (minibatch), as recommended

in Bottou and Bousquet (2008).

Section 15.6.1 will uncover a set of optimizations and approximations

which renders possible fast online natural or consensus gradient algorithms:

TONGA. This algorithm will provide the basis for the second-order version

using the Hessian.

15.6.1 Computing a Low-Rank Approximation of the Covariance

Matrix

In a model with P parameters, the covariance C of the gradients over n

data points takes O(nP 2) to compute and has an O(P 2) memory storage

requirement. Computing its first k eigenvectors is in O(kP 2). When P is

large, none of these operations is feasible. This section will thus introduce a

way of finding the first k eigenvectors of the covariance matrix without ever

storing it.

For the moment, we will assume that the centered covariance matrix may

be written in the form C = GGT for some matrix G. The proof that such

a factorization is possible and the explicit formula for G will appear in

section 15.6.2. We will assume that G has n columns (and P rows for C to

have the correct size).

Writing G in terms of its compact SVD, we get

G = UGΣGV
T
G , (15.31)
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where (assuming we have n < P ) UG is of size P ×n, and ΣG and VG are of

size n × n. With this notation, the eigenvectors of C associated with non-

zero eigenvalues are the columns of UG and the associated eigenvalues are

the diagonal elements of Σ2
G.

Let us now consider the matrix

D = GTG . (15.32)

This is an n×n matrix whose eigenvectors are the columns of VG and whose

eigenvalues are the same as those of C. Left-multiplying those eigenvectors

by G and right-multiplying them by Σ−1
V , we get

GVGΣ
−1
G = UG . (15.33)

Thus, we can retrieve the first k eigenvectors and eigenvalues of C by

computing D (for a cost of O(Pn2)), extracting its first k eigenvectors (for a

cost of O(kn2)), and then performing the matrix multiplications (for a cost

of O(Pn2)). Therefore, if n is much smaller than P , this method is much

faster than computing C and its eigenvectors directly (O(Pn2), instead of

O(nP 2)).

Another advantage is that it is never required to store or even compute

C, but only to have access to the matrix G. Section 15.6.2 will show how to

get this matrix G efficiently whenever a new data point comes in.

15.6.2 A Fast Update of the Covariance Matrix

Since efficiency is our main goal, we need a fast way to update the covariance

matrix of the data points as they arrive. Also, we need to satisfy two con-

straints. First, the covariance needs to be estimated over many data points.

Second, as it will change during the optimization, we need to progressively

reduce the contribution of the older data points and replace it with the con-

tribution of the newer ones. For that purpose, we shall use exponentially

moving mean μn and covariance Cn:

μ1 = g1 (15.34)

C1 = 0 (15.35)

μn = γμn−1 + (1− γ)gn (15.36)

Cn = γCn−1 + γ(1− γ)(gn − μn−1)(gn − μn−1)
T (15.37)

where gi is the gradient obtained at time step i and γ is the discount factor.

The closer γ is to 1, the longer an example seen at time t will influence the

means and covariance estimated at later times.

Thus, since we wish to keep a factorization of C under the form GGT ,
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whenever a new gradient gn comes in, we simply have to

1. multiply G by
√
γ

2. append the column (gn − μn−1)
√

γ(1− γ) to G.

15.6.3 Finding the Consensus Gradient Direction Between Two Updates

In section 15.6.1, we have showed that computing the first k eigenvectors of

the matrix C = GGT when G has n columns and is in O(Pn2). We could

thus use the following strategy:

1. compute the first k eigenvectors of C,

2. compute the consensus gradient update using the eigendecomposition of

C,

3. write the low-rank approximation under the form UUT (U then being

the matrix of unnormalized eigenvectors),

4. update the matrix U when a new data point arrives, following sec-

tion 15.6.2, where G plays the role of U ,

5. recompute the first k eigenvectors of the new C for a cost of O(P (k+1)2),

6. iterate from 2.

One can see that the cost of this algorithm is O(Pk2) for every new gradient,

which is approximately k2 slower than standard gradient descent. The idea

will thus be to update this covariance matrix as new data points arrive,

but not to recompute the eigendecomposition every time. Instead, we will

add data points until there are k + B vectors in the matrix G (with B a

hyperparameter), at which point we will recompute the eigendecomposition

of this new covariance matrix.

There is a problem, however. While it is easy to compute the consensus

gradient direction when one has access to the eigendecomposition of C, this

will not be the case when several data points have been added. Luckily,

the computation remains tractable, as we will see. b steps after the last

eigendecomposition, the matrix G may be written as

G = [K0U K1(g1 − μ0) . . .Kb(gb − μb−1)]

(the constants K0, . . . ,Kb stem from the
√
γ and

√
γ(1− γ) factors of

section 15.6.2). Since C = GGT , and in order to compute the naturalized

gradient d = (I + C/[nσ2])−1gb, we wish to find the direction d such that(
I +

GGT

nσ2

)
d = gb . (15.38)
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We will assume that d is of the form d = Gx + λμb−1 for some vector x

and some value of λ. With y = [0 . . . 0 (1/Kb)]
T , we have gb = Gy + μb−1,

and (15.38) thus becomes

Gx+ λμb−1 +
GGTGx+ λGGTμb−1

nσ2
= Gy + μb−1 .

Using λ = 1 and moving the fraction to the right-hand side, we get

Gx = Gy − GGTGx+ λGGTμb−1

nσ2
(15.39)

x =

(
I +

GTG

nσ2

)−1(
y − GTμb−1

nσ2

)
(15.40)

(assuming G is of full rank), yielding

d = G

(
I +

GTG

nσ2

)−1(
y − GTμb−1

nσ2

)
+ μb−1 . (15.41)

Since G is of size P × (k + b), computing d costs O((k + b)3 + P (k +B)) =

O(P (k + B)), since we will limit ourselves to the setting where the rank of

the covariance matrix is much less than the square root of the number of

parameters.

15.6.4 Analysis of the Computational Cost

We will now briefly analyze the average computational cost of a gradient

update where there are P parameters. We will assume that the gradients

are computed over minibatches of size m:

1. every B steps, we compute the first k eigenvectors of the covariance ma-

trix of k+B data points for a total cost of O(P (k+B)2) (see section 15.6.1)

2. every step, we compute the consensus gradient direction for a total cost

of O(P (k +B)) (see section 15.6.3)

3. computing the average gradient over a minibatch costs O(Pm) at every

step.

The average cost per update is thus O
(
P
[
m+ k +B + (k+B)2

B

])
as

opposed to O(Pm) for standard minibatch gradient descent. Thus, if we

keep (k+B) close to m, the cost of each iteration will be of the same order

of magnitude as the standard gradient descent.
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15.6.5 Block-Diagonal Online Consensus Gradient for Neural Networks

We now have a strategy to compute the consensus gradient direction using

a low-rank approximation of the covariance matrix (with the rank varying

between k and k+B). The question remains as to which value of k provides

a reasonable approximation. Unfortunately, experiments showed that, in

general, a high value of k (around 200 for P = 2000) was necessary for

d to be a meaningful modification of the original gradient direction. In this

setting, provided m, the minibatch size, is small (between 5 and 10), each

update is at least 20 times slower than the standard gradient descent, and

this extra computational cost cannot be made up by better search directions.

One might thus wonder if there are better approximations of the covari-

ance matrix C than computing its first k eigenvectors. Collobert (2004)

showed that the Hessian of a neural network with one hidden layer trained

with the cross-entropy cost converges to a block-diagonal matrix during op-

timization. These blocks are composed of the weights linking all the hidden

units to one output unit and all the input units to one hidden unit (fan-

in). Since we listed some of the numerical similarities between the Hessian

and the covariance, it may be useful to investigate the use of such a block

structure for the covariance estimator. We will thus use a block-diagonal

approximation of the covariance matrix. Instead of computing the first k

eigenvectors of the entire covariance matrix, we will compute the first k

eigenvectors of each block. Some remarks are worth making on that point:

the rank of the approximation is not k but k× (number of blocks), which

is much higher;

all the terms outside of these blocks are set to 0. Thus, this approximation

will be better only if these elements are actually negligible in the original

covariance matrix;

one may pick a different value of k for each block, depending on its size or

the knowledge one has about the problem.

Figure 15.2 shows the correlation between the standard stochastic gradi-

ents of the parameters of a 16 − 50 − 26 neural network. The first blocks

represent the weights going from the input units to each hidden unit (thus

50 blocks of size 17, bias included), and the following blocks represent the

weights going from the hidden units to each output unit (26 blocks of size

51). One can see that the block-diagonal approximation is reasonable. In the

matrices shown in figure 15.2, which are of size 2176, a value of k = 5 yields

an approximation of rank 380.

Another way of verifying the validity of our block-diagonal assumption
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Figure 15.2: Absolute value of correlation between the standard stochastic gradi-
ents after one epoch in a neural network with 16 input units, 50 hidden units and
26 output units when following stochastic gradient directions (left) and consensus
gradient directions (right). The first blocks in the diagonal are for input to hidden
weights (per hidden unit), and the larger ones that follow are for hidden output
weights (per output unit), showing a strong within-block correlation. One can see
that the off-block terms are not zero, but still are much smaller than the terms in
the block. Also, following natural directions helped in making the covariance more
block-diagonal, though the reason behind it is unknown.

is to compute the error induced by our low-rank approximations, with or

without this assumption. Figure 15.3 shows the relative approximation error

of the covariance matrix as a ratio of Frobenius norms ‖C−C̄‖2
F

‖C‖2
F

for different

types of approximations C̄ (full or block-diagonal). We can first notice that

approximating only the blocks yields a ratio of .35 (in comparison, taking

only the diagonal of C yields a ratio of .80), even though we considered only

82, 076 out of the 4, 734, 976 elements of the matrix (1.73 percent of the

total). This ratio is almost obtained with k = 6. We can also notice that for

k < 30, the block-diagonal approximation is much better (in terms of the

Frobenius norm) than the full approximation, which proves its effectiveness

in the case of neural networks. Yet this approximation also readily applies

to any mixture algorithm where we can assume some form of decoupling

between the components.

Thus in all our experiments, we used a value of k = 5, which allowed us

to keep a cost per iteration of the same order of magnitude as standard

gradient descent.

15.7 Experiments

In our experiments we wish to validate the two claims we have made so far:
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Figure 15.3: Quality of the approximation C̄ of the covariance C, depending on
the number of eigenvectors kept (k), in terms of the ratio of the Frobenius norms
‖C−C̄‖2

F

‖C‖2
F

, for different types of approximation C̄ (full matrix or block-diagonal).

On the right we zoom on smaller values of k where the full matrix low-rank
approximation overtakes the block-diagonal approximation.

1. that taking the uncertainty into account will speed up learning;

2. that C and H encode different pieces of information and that combining

them will lead to even faster convergence.

The first set of experiments will thus compare TONGA with standard

stochastic gradient descent, whereas the second will compare an approximate

Newton method with the second-order TONGA, which we call Natural-

Newton.

15.7.1 Datasets

Several datasets, architectures, and losses were used in our experiments.

15.7.1.1 Experiments with TONGA

We tried TONGA on two different datasets:

1. the MNIST digits dataset consists of 50, 000 training samples, 10, 000

validation samples, and 10, 000 test samples, each one composed of 784

pixels. There are 10 classes (one for every digit)

2. the UCI USPS dataset consists of 9298 samples (broken into 6291 for

training, 1000 for validation, and 2007 for the official test set), each one

composed of 256 pixels. There are 10 different classes (one for every digit).

In both cases we minimized the negative log-likelihood on the training

set, using a neural network with one hidden layer. The block-diagonal

approximation of section 15.6.5 was used for TONGA, and no second-order

information was used.
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15.7.1.2 Experiments with Natural-Newton (Second-Order TONGA)

Whereas the goal of the experiments with TONGA was to determine if it

was possible to use the information contained in the covariance matrix in

an efficient manner, the experiments with Natural-Newton aim at exploring

the differences between C and H.

As mentioned in section 15.5, one needs to use a second-order gradient

descent method to compute the Newton directions. We chose to use the

SGD-QN algorithm (Bordes et al., 2009), since it had recently won the Wild

Track competition at the Pascal Large Scale Learning Challenge, on the

same datasets it was used on: Alpha, Gamma, Delta, Epsilon, Zeta, and

Face.

Labels were available only for the training examples of the challenge. We

therefore split these examples into several sets:

the first 100K (1M for the Face dataset) examples constituted our training

set;

the last 100K (1M for the Face dataset) examples constituted our test set.

The architecture used was a linear SVM. We did not change the hyperpa-

rameters of the SGD-QN algorithm; the interested reader may find them in

the original paper.

Since this method uses a diagonal approximation to the Hessian, we

decided to use a diagonal approximation to the covariance matrix. Though

this was not required, and we could have used a low-rank covariance matrix,

using a diagonal approximation shows the improvements over the original

method that one can obtain with little extra effort. Thus, though (15.30)

was used, none of the tricks presented in section 15.6 were necessary, except

for the exponentially moving covariance matrix.

15.7.2 Experimental Details for Natural-Newton

15.7.2.1 Frequency of Updates

The covariance matrix of the gradients changes very slowly. Therefore, one

does not need to update it as often as the Hessian approximation. In the

SGD-QN algorithm, the authors introduce a counter skip which specifies how

many gradient updates are done before the approximation to the Hessian

is updated. We introduce an additional variable skipC , which specifies

how many Hessian approximation updates are done before updating the

covariance approximation. The total number of gradient updates between

two covariance approximation updates is therefore skip · skipC .
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Experiments using the validation set showed that using values of skipC

lower than 8 did not yield any improvement while increasing the cost of each

update. We therefore used this value in all our experiments. This allows us to

use the information contained in the covariance with very little computation

overhead.

15.7.2.2 Limiting the Influence of the Covariance

Equation (15.29) tells us that the direction to follow is[
I +

CH

nσ2

]−1

d̂. (15.42)

The only unknown in this formula is σ2, which is the variance of our Gaussian

prior on θ − θ∗. To avoid having to set this quantity by hand at every time

step, we will devise a heuristic to find a sensible value of σ2. While this

will lack the purity of a full Bayesian treatment, it will allow us to reduce

the number of parameters to be set by hand, which we think is a valuable

feature of any gradient descent algorithm.

If we knew the distance from our position in parameter space, θ, to the

optimal solution, θ∗, then the optimal value for σ2 would be ‖θ − θ∗‖2. Of

course, this information is not available to us. However, if the function to be

optimized were truly quadratic, the squared norm of the Newton direction

would be exactly ‖θ − θ∗‖2. We shall therefore replace σ2 with the squared

norm of the last-computed Newton direction. Since this estimate may be

too noisy, we will replace it with the squared norm of the running average

of the Newton directions, that is, ‖μn‖2.
Even then, however, we may still get undesirable variations. We shall

therefore adopt a conservative strategy: we will set an upper bound on the

correction to the Newton method brought by (15.42). More precisely, we will

bound the eigenvalues of CH

n‖μn‖2 by a positive number BC . The parameter

update then becomes

θn − θn−1 = −
[
I +min

(
BC ,

CH

n‖μn‖2
)]−1

H−1gn (15.43)

where BC is a scalar hyperparameter and min(BC ,M) is defined for sym-

metric matrices M with eigenvectors u1, . . . , un and eigenvalues λ1, . . . , λn

as

min(BC ,M) =

n∑
i=1

min(BC , λi)uiu
T
i (15.44)
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(we bound each eigenvalue of M by BC). If we set BC = 0, we recover

the standard Newton method. This modification transforms the algorithm

in a conservative way, trading off potential gains brought by the covariance

matrix for guarantees that the parameter update will not differ too much

from the Newton direction.

In our experiments, the last 50K (500K for the Face dataset) examples

of the training set were used as validation examples to tune the bound BC

defined in (15.43).

The pseudocode for the full algorithm, which we call Natural-Newton, is

shown in algorithm 15.1.

Algorithm 15.1 Pseudocode of the Natural-Newton algorithm

Require: : skip (number of gradient updates between Hessian updates)
Require: : skipC (number of Hessian updates between covariance updates). Default

value is skipC = 8.
Require: : θ0 (the original set of parameters)
Require: : γ (the discount factor). Default value is 0.995.
Require: : T (the total number of epochs)
Require: : t0
Require: : λ (the weight decay)
Require: : BC the bound on the eigenvalues of the covariance matrix. Default value is

BC = 2.
1: t = 0, count = skip, countC = skipC
2: H− = λ I, D = I
3: μ0 = 0 (the running mean vector ), CH

0 = 0 (the running covariance matrix)
4: while t �= T do
5: gt ← ∂L(θt,xt,yt)

∂θt

6: θt+1 ← θt − (t+ t0)
−1DH−gt

7: if count == 0 then
8: count ← skip
9: Update H−, the approximate inverse Hessian computed by SGD-QN.
10: if countC == 0 then
11: countC ← skipC
12: μt ← γμt−1 + (1− γ)dt
13: CH

t ← γCH
t−1 + γ(1− γ)(dt − μt−1)(dt − μt−1)

T

14: D =

(
I +

min(BC ,CH
t+1)

N·‖μt+1‖2

)−1

15: else
16: countC ← countC - 1
17: end if
18: else
19: count ← count - 1
20: end if
21: end while
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15.7.2.3 Parameter Tuning

In all the experiments γ has been set to 0.995, as in TONGA. Again, to

test the sensitivity of the algorithm to this parameter, we tried other values

(0.999, 0.992, 0.99, and 0.9) without noticing any significant difference in

validation errors.

We optimized the bound on the covariance (section 15.7.2.2) based on

validation set error. The best value was chosen for the test set, but we found

that a value of 2 yielded near-optimal results on all datasets, the difference

between B = 1, B = 2, and B = 5 being minimal, as shown in figure 15.6

in the case of the Alpha dataset.

15.7.3 Results

15.7.3.1 TONGA

We performed a small number of experiments with TONGA’s low-rank ap-

proximation of the full covariance matrix, keeping the overhead of the con-

sensus gradient small (i.e., limiting the rank of the approximation). Regret-

tably, TONGA performed only as well as stochastic gradient descent, while

being rather sensitive to the hyperparameter values. The following exper-

iments, on the other hand, use TONGA with the block-diagonal approx-

imation and yield impressive results. We believe this is a reflection of the

phenomenon illustrated in figure 15.3 (right): the block-diagonal approxima-

tion makes for a very cost-effective approximation of the covariance matrix.

All the experiments have been done by optimizing hyperparameters on a

validation set (not shown here) and selecting the best set of hyperparame-

ters for testing, trying to keep the overhead small due to natural gradient

calculations.

One could worry about the number of hyperparameters of TONGA.

However, default values of k = 5, B = 50, and γ = .995 yielded good

results in every experiment.

Figure 15.4 shows that in terms of training CPU time (which includes

the overhead due to TONGA), TONGA allows much faster convergence

in training NLL, as well as in testing classification error and NLL than

ordinary stochastic and minibatch gradient descent on this task. Also note

that the minibatch stochastic gradient is able to profit from matrix-matrix

multiplications, but this advantage is seen mainly in training classification

error.

Note that the gain obtained on the USPS dataset is much slimmer. One

possibility is that since the training set is much smaller, the independence
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Figure 15.4: Comparison between stochastic gradient (with different minibatch
sizes) and TONGA on the MNIST dataset, in terms of training (50, 000 examples)
and test (10, 000 examples) classification error and negative log-likelihood (NLL).
The mean and standard error have been computed using nine different initializa-
tions.

assumption used to obtain (15.9) becomes invalid.

Finally, though we expected an improvement only on the convergence

speed of the test error, the training error decreased faster when using

TONGA. This may be due to the stochastic nature of the optimization,

where using the covariance prevented disagreeing gradients from having too

much influence and ultimately slowing down the optimization.

15.7.3.2 Natural-Newton

Natural-Newton exhibited various behaviors on the datasets it was tried on:

Natural-Newton never performs worse than SGD-QN and always better

than TONGA. Using a large value of skipC ensures that the overhead of
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Figure 15.5: Comparison of stochastic gradient and TONGA on the USPS dataset,
in terms of training (6291 examples) and test (2007 examples) classification error
and negative log-likelihood (NLL). The mean and standard error were computed
using nine different initializations.

using the covariance matrix is negligible.

On the Alpha dataset, using the information contained in the covariance

resulted in significantly faster convergence, with or without second-order

information.

On the Epsilon, Zeta, and Face datasets, using the covariance information

stabilized the results while yielding the same convergence speed. This is in

accordance with the use of the covariance, which reduces the influence of

directions where gradients vary wildly.

On the Gamma and the Delta datasets, using the covariance information

helped a lot when the Hessian was not used, and provided no improvement

otherwise.
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Figure 15.6: Validation error versus time on the Alpha dataset, for various values
of B.

15.8 Conclusion

A lot of effort has been put into designing efficient online optimization al-

gorithms, with great results. Most of these algorithms rely on some approx-

imation to the Hessian or to the covariance matrix of the gradients. While

the latter is commonly believed to be an approximation of the former, we

showed that they encode very different kinds of information. Based on this,

we proposed a way of combining information contained in the Hessian and

in the covariance matrix of the gradients.

Experiments showed that on most datasets, our method offered either

faster convergence or increased robustness, compared with the original

algorithm. Furthermore, the second-order version of our algorithm never

performed worse than the Newton algorithm it was built upon.

Moreover, our algorithm is able to use any existing second-order algorithm

as base method. Therefore, while we used SGD-QN for our experiments, one

may pick any algorithm best suited for a given task.

We hope to have shown two things. First, the covariance matrix of the

gradients is usefully viewed not as an approximation to the Hessian, but as

a source of additional information about the problem, for typical machine

learning objective functions. Second, it is possible with little extra effort to

use this information in addition to that provided by the Hessian matrix, in

some cases yielding faster or more robust convergence.
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Figure 15.7: Test error versus time on the Alpha (top left), the Gamma (top
right), the Delta (middle left), the Epsilon (middle right), the Zeta (bottom left),
and the Face (bottom right) datasets.

Despite all these successes, we believe that these algorithms may be

improved in several ways, whether it is by retaining some of the information

contained in the posterior distribution between timesteps or in the selection

of the parameter σ2.



15.9 References 429

15.9 References

S. Amari. Natural gradient works efficiently in learning. Neural Computation, 10
(2):251–276, 1998.

A. Bordes, L. Bottou, and P. Gallinari. SGD-QN: Careful quasi-newton stochastic
gradient descent. Journal of Machine Learning Research, 10:1737–1754, July
2009.

L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In J. C. Platt,
D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information
Processing Systems 20, pages 161–168. MIT Press, 2008.

R. Collobert. Large Scale Machine Learning. PhD thesis, Université de Paris VI,
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