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Interior-point methods for linear and (convex) quadratic programming dis-

play several features which make them particularly attractive for very large-

scale optimization. They have an impressive low-degree polynomial worst-

case complexity. In practice, they display an unrivalled ability to deliver

optimal solutions in an almost constant number of iterations which depends

very little, if at all, on the problem’s dimension. Since many problems in

machine learning can be recast as linear or quadratic optimization problems

and it is common for them to have large or huge sizes, interior-point methods

are natural candidates to be applied in this context.

In this chapter we will discuss several major issues related to interior point

methods, including the worst-case complexity result, the features responsible

for their ability to solve very large problems, and their existing and potential

applications in machine learning.

12.1 Introduction

Soon after Karmarkar (1984) had published his seminal paper, interior-

point methods (IPMs) were claimed to have unequalled efficiency when

applied to large-scale problems. Karmarkar’s first worst-case complexity

proof was based on the use of projective geometry and cleverly chosen

potential function, but was rather complicated. It generated huge interest in

the optimization community and soon led to improvements and clarifications
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of the theory. A major step in this direction was made by Gill et al. (1986),

who drew the community’s attention to a close relation between Karmarkar’s

projective method and the projected Newton barrier method. The impressive

effort of Lustig, Marsten, Shanno, and their collaborators in the late 1980s

provided a better understanding of the computational aspects of IPMs for

linear programming, including the central role played by the logarithmic

barrier functions in the theory (Marsten et al., 1990). In the early 1990s

sufficient evidence was already gathered to justify claims of the spectacular

efficiency of IPMs for very large-scale linear programming (Lustig et al.,

1994) and their ability to compete with a much older rival, the simplex

method (Dantzig, 1963).

The simplex method has also gone through major developments over the

last 25 years (Forrest and Goldfarb, 1992; Maros, 2003; Hall and McKinnon,

2005). It remains competitive for solving linear optimization problems and

certainly provides a healthy pressure for further development of IPMs. It is

widely accepted nowadays that there exist classes of problems for which one

method may significantly outperform the other. The large size of the problem

generally seems to favor interior-point methods. However, the structure of

the problem, and in particular the sparsity pattern of the constraint matrix

which determines the cost of linear algebra operations, may occasionally

render one of the approaches impractical. The simplex method exploits

well the hypersparsity of the problem (Hall and McKinnon, 2005). On the

other hand, interior-point methods have a well-understood ability to take

advantage of any block-matrix structure in the linear algebra operations,

and therefore are significantly easier to parallelize (Gondzio and Grothey,

2006).

Many machine learning (ML) applications are formulated as optimization

problems. Although, the vast majority of them lead to (easy) unconstrained

optimization problems, certain classes of ML applications require dealing

with linear constraints or variable nonnegativity constraints. interior-point

methods are well suited to solve such problems because of their ability to

handle inequality constraints very efficiently by using the logarithmic barrier

functions.

The support vector machine training problems form an important class

of ML applications which lead to constrained optimization formulations,

and therefore can take a full advantage of IPMs. The early attempts to

apply IPMs in the support vector machine training context (Ferris and

Munson, 2003; Fine and Scheinberg, 2002; Goldfarb and Scheinberg, 2004)

were very successful and generated further interest among the optimization

community, stimulating several new developments (Gertz and Griffin, 2009;

Jung et al., 2008; Woodsend and Gondzio, 2009, 2010). They relied on
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the ability of IPMs at taking advantage of the problem’s special structure

to reduce the cost of linear algebra operations. In this chapter we will

concentrate on the support vector machine training problems and will use

them to demonstrate the main computational features of interior-point

methods.

The chapter is organized as follows. In Section 12.2 we will introduce the

quadratic optimization problem and define the notation used. In Section 12.3

we will comment on the worst-case complexity result of a particular interior-

point algorithm for convex quadratic programming, the feasible algorithm

operating in a small neighborhood of the central path induced by the 2-

norm. In Section 12.4 we will discuss several applications of interior-point

methods which have been developed since about 2000 for solving different

constrained optimization problems arising in support vector machine train-

ing. In Section 12.5 we will discuss existing and potential techniques which

may accelerate the performance of interior-point methods in this context.

Finally, in Section 12.6 we will give our conclusions and comment on possible

further developments of interior-point methods.

12.2 Interior-Point Methods: Background

Consider the primal-dual pair of convex quadratic programming (QP) prob-

lems

Primal Dual

min cTx+ 1
2x

TQx max bT y − 1
2x

TQx

s.t. Ax = b, s.t. AT y + s−Qx = c,

x ≥ 0; y free, s ≥ 0,

(12.1)

where A ∈ Rm×n has full row rank m ≤ n, Q ∈ Rn×n is a positive

semidefinite matrix, x, s, c ∈ Rn, and y, b ∈ Rm. Using Lagrangian duality

theory (see Bertsekas, 1995), the first-order optimality conditions for these

problems can be written as

Ax = b

AT y + s−Qx = c

XSe = 0

(x, s) ≥ 0,

(12.2)

where X and S are diagonal matrices in Rn×n with elements of vectors x and

s spread across the diagonal, respectively, and e ∈ Rn is the vector of ones.

The third equation, XSe = 0, called the complementarity condition, can be

rewritten as xjsj = 0, ∀j = {1, 2, . . . , n} and implies that at least one of the
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two variables xj and sj has to be zero at the optimum. The complementarity

condition is often a source of difficulty when solving optimization problems,

and the optimization approaches differ essentially in the way they deal with

this condition.

Active set methods and their prominent example, the simplex method

for linear programming, make an intelligent guess that either xj = 0 or

sj = 0. They choose a subset of indices j ∈ B ⊂ {1, 2, . . . , n} such that xj
is allowed to be nonzero and force the corresponding sj = 0, while for the

remaining indices j ∈ N = {1, 2, . . . , n}\B they force xj = 0 and allow sj to

take nonzero values. Such a choice simplifies the linear algebra operations

which can be reduced (in the LP case) to consider only a submatrix of

A induced by columns from set B. The simplex method allows only one

index to be swapped between B and N at each iteration. (In the more

general context of active set methods, only one index of variable and/or

active constraint can be exchanged at each iteration.) Hence an inexpensive

update is performed to refresh active/inactive matrices, and this is reflected

in a very low (almost negligible) cost of a single iteration. However, active

set methods may require a huge number of iterations to be performed.

This is a consequence of the difficulty in guessing the correct partition of

indices into basic-nonbasic (active-inactive) subsets. The simplex method for

linear programming is not a polynomial algorithm. Klee and Minty (1972)

constructed a problem of dimension n, the solution of which requires 2n

iterations of the simplex method. However, in practice it is very rare for

the simplex method to perform more than m + n iterations on its way to

an optimal solution (Forrest and Goldfarb, 1992; Maros, 2003; Hall and

McKinnon, 2005).

Interior-point methods perturb the complementarity condition and re-

place xjsj = 0 with xjsj = μ, where the parameter μ is driven to zero.

This removes the need to “guess” the partitioning into active and inactive

inequality constraints: the algorithm gradually reduces μ, and the partition

of vectors x and s into zero and nonzero elements is gradually revealed as the

algorithm progresses. Removing the need to “guess” the optimal partition

is at the origin of the proof of the polynomial worst-case complexity of the

interior-point method. Indeed, the best IPM algorithm known to date finds

the ε-accurate solution of an LP or convex QP problem in O(
√
n log(1/ε))

iterations (Renegar, 1988). Again, in practice IPMs perform much better

than that and converge in a number of iterations which is almost a constant,

independent of the problem dimension (Colombo and Gondzio, 2008). How-

ever, one iteration of an IPM may be costly. Unlike the simplex method,

which works with a submatrix of A, IPM involves the complete matrix A

to compute the Newton direction for the perturbed first-order optimality



12.2 Interior-Point Methods: Background 335

conditions, and for nontrivial sparsity patterns in A this operation may be

expensive and occasionally prohibitive.

The derivation of an interior-point method for optimization relies on three

basic ideas:

1. Logarithmic barrier functions are used to “replace” the inequality con-

straints

2. Duality theory is applied to barrier subproblems to derive the first-order

optimality conditions which take the form of a system of nonlinear equations,

and

3. Newton’s method is employed to solve this system of nonlinear equations.

To avoid the need to guess the activity of inequality constraints x ≥ 0,

interior-point methods employ the logarithmic barrier function of the form

−μ∑n
j=1 log xj added to the objective of the primal problem in (12.1). The

barrier parameter μ weighs the barrier in relation to the QP objective. A

large value of μ means that the original objective is less important, and

the optimization focuses on minimizing the barrier term. The repelling

force of the barrier prevents any of the components xj from approaching

their boundary value of zero. In other words, the presence of the barrier

keeps the solution x in the interior of the positive orthant. Reducing the

barrier term changes the balance between the original QP objective and the

penalty for approaching the boundary. The smaller μ is the stronger the role

of the original QP objective is. Much of the theory and practice of IPMs

concentrates on clever ways of reducing the barrier term from a large initial

value, used to promote centrality at the beginning of the optimization, to

small values needed to weaken the barrier and to allow the algorithm to

approach an optimal solution. In the linear programming case, the optimal

solution lies on the boundary of the feasible region and many components

of vector x are zero.

Applying Lagrangian duality theory to the barrier QP subproblem

min cTx+
1

2
xTQx− μ

n∑
j=1

log xj s.t. Ax = b (12.3)

gives the following first-order optimality conditions:

Ax = b

AT y + s−Qx = c

XSe = μe

(x, s) ≥ 0.

(12.4)

Comparison of (12.2) and (12.4) reveals that the only difference is a pertur-
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bation of the complementarity constraint which for the barrier subproblem

requires all complementarity products xjsj to take the same value μ. Ob-

serve that the perturbed complementarity condition is the only nonlinear

equation in (12.4). For any μ > 0, system (12.4) has a unique solution,

(x(μ), y(μ), s(μ)), x(μ) > 0, s(μ) > 0, which is called a μ-center. A family

of these solutions for all positive values of μ determines a (continuous) path

{(x(μ), y(μ), s(μ)) : μ > 0} which is called the primal-dual central path or

central trajectory.

interior-point algorithms apply Newton’s method to solve the system of

nonlinear equations (12.4). There is no need to solve this system to a high

degree of accuracy. Recall that (12.4) is only an approximation of (12.2)

corresponding to a specific choice of the barrier parameter μ. There is

no need to solve it exactly because the barrier μ will have to be reduced

anyway. IPMs apply only one iteration of the Newton method to this system

of nonlinear equations and immediately reduce the barrier. Driving μ to

zero is a tool which enforces convergence of (12.4) to (12.2), and takes

iterates of IPM toward an optimal solution of (12.1). To perform a step of

Newton’s method for (12.4), the Newton direction (Δx,Δy,Δs) is computed

by solving the following system of linear equations,⎡⎣ A 0 0

−Q AT In
S 0 X

⎤⎦ ·
⎡⎣ Δx

Δy

Δs

⎤⎦ =

⎡⎣ ξp
ξd
ξμ

⎤⎦ =

⎡⎣ b−Ax

c+Qx−AT y − s

μe−XSe

⎤⎦ ,(12.5)
where In denotes the identity matrix of dimension n.

The theory of interior-point methods requires careful control of the error

in the perturbed complementarity condition XSe ≈ μe. Take an arbitrary

θ ∈ (0, 1), compute μ = xT s/n, and define

N2(θ) = {(x, y, s) ∈ F0 | ‖XSe− μe‖ ≤ θμ}, (12.6)

where F0 = {(x, y, s) |Ax = b, AT y + s − Qx = c, (x, s) > 0} denotes

the primal-dual strictly feasible set. (Unless explicitly stated otherwise, the

vector norm ‖ · ‖ will always denote the Euclidean norm.) Observe that all

points in N2(θ) exactly satisfy the first two (linear) equations in (12.4) and

approximately satisfy the third (nonlinear) equation. In fact, N2(θ) defines a

neighborhood of the central path. Interestingly, the size of this neighborhood

reduces with the barrier parameter μ. The theory of IPMs requires all the

iterates to stay in this neighborhood. This explains why an alternative

name to IPMs is path-following methods: indeed, these algorithms follow

the central path on their way to optimality.

In the next section we will comment on an impressive feature of the

interior-point method: it is possible to prove that an algorithm operating



12.3 Polynomial Complexity Result 337

in the N2(θ) neighborhood that is applied to a convex QP converges to an

ε-accurate solution in O(
√
n log(1/ε)) iterations.

12.3 Polynomial Complexity Result

A detailed proof of the complexity result is beyond the scope of this chapter.

The reader interested in the proof may consult an excellent textbook on

IPMs by Wright (1997) in which a proof for the linear programming case is

given. An extension to an IPM for quadratic programming requires some

extra effort, and care has to be taken of terms which result from the

quadratic objective.

The proof heavily uses the fact that all iterates belong to an N2(θ)

neighborhood (12.6) of the central path. Consequently, all iterates are

strictly primal-dual feasible which simplifies the right-hand-side vector in

the linear system defining the Newton direction (12.5):⎡⎣ A 0 0

−Q AT In
S 0 X

⎤⎦ ·
⎡⎣ Δx

Δy

Δs

⎤⎦ =

⎡⎣ 0

0

σμe−XSe

⎤⎦ . (12.7)

A systematic (though very slow) reduction of the complementarity gap

is imposed by forcing a decrease of the barrier term in each iteration l.

The required reduction of μ may seem very small: μl+1 = σμl, where

σ = 1 − β/
√
n for some β ∈ (0, 1). However, after a sufficiently large

number of iterations, proportional to
√
n, the achieved reduction is already

noticeable because

μl

μ0
= (1− β/

√
n)

√
n ≈ e−β .

After C · √n iterations, the reduction achieves e−Cβ. For a sufficiently

large constant C the reduction can thus be arbitrarily large (i.e., the

complementarity gap can become arbitrarily small). In other words, after a

number of iterations proportional to
√
n, the algorithm gets arbitrarily close

to a solution. In the parlance of complexity theory, the algorithm converges

in O(
√
n) iterations. We state the complexity result but omit the proof.

Theorem 12.3.1. Given ε > 0, suppose that a feasible starting point

(x0, y0, s0) ∈ N2(0.1) satisfies (x0)T s0 = nμ0, where μ0 ≤ 1/εκ, for some

positive constant κ. Then there exists an index L with L = O(
√
n ln(1/ε)),

such that μl ≤ ε, ∀l ≥ L.

The very good worst-case complexity result of IPM for quadratic program-
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ming is beyond any competition in the field of optimization. Two features

in particular are unprecedented. First, the number of iterations is bounded

by the square root of the problem dimension. The computational experience

of Colombo and Gondzio (2008) shows a much better practical iteration

complexity which displays a logarithmic dependence on the problem dimen-

sion. Second, the complexity result reveals the dependence O(ln(1/ε)) on the

required precision ε. Unlike IPMs, gradient methods (Nesterov, 2005) can

provide only complexity results of O(1/ε) or O(1/ε2). If one solves problems

to merely 1- or 2-digit exact solution (ε = 10−1 or ε = 10−2), the terms

1/ε or 1/ε2 in the complexity result may seem acceptable. However, for a

higher accuracy, say, ε = 10−3 or smaller, the superiority of IPMs becomes

obvious. (In the author’s opinion, this outstanding feature of IPMs is not

appreciated enough by the machine learning community.)

The practical implementation of IPMs differs in several points from the

algorithm which possesses the best theoretical worst-case complexity. First,

the most efficient primal-dual method is the infeasible algorithm. Indeed,

there is no reason to force the algorithm to stay within the primal-dual

strictly feasible set F0 and unnecessarily limit its space to maneuver. IPMs

deal easily with any infeasibility in the primal and dual equality constraints

by taking them into account in the Newton system (12.5). Second, there is

no reason to restrict the iterates to the (very small) N2(θ) neighborhood of

the central path. Practical algorithms (Colombo and Gondzio, 2008) use a

symmetric neighborhood NS(γ) = {(x, y, s) ∈ F0 | γμ ≤ xjsj ≤ 1/γμ, ∀j},
where γ ∈ (0, 1) or a so-called infinity neighborhood N∞(γ) = {(x, y, s) ∈
F0 | γμ ≤ xjsj , ∀j}, in which only too-small complementarity products are

forbidden. Third, there is no reason to be overcautious in reducing the

complementarity gap by a term σ = 1−β/√n which is so close to 1. Practical

algorithms allow σ to be any number from the interval (0, 1] and, indeed, the

author’s experience (Colombo and Gondzio, 2008) shows that the average

reduction of the complementarity gap achieved in each IPM iteration σaverage
is usually in the interval (0.1, 0.5). Deviation from the (close to 1) value of

σ allowed by the theory requires the extra safeguards to make sure x and s

remain nonnegative. This means that Newton steps have to be damped and

stepsize α takes values smaller than 1.

12.4 Interior-Point Methods for Machine Learning

The main difficulty and the main computational effort in IPM algorithms is

the solution of the Newton equation system: either (12.7) if we use a feasible

algorithm of theoretical interest, or (12.5) if we use a practical infeasible
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algorithm. A common approach is to eliminate Δs = X−1(ξμ − SΔx) and

get the following symmetric but indefinite augmented system,[ −Q−Θ−1 AT

A 0

] [
Δx

Δy

]
=

[
f

h

]
=

[
ξd −X−1ξμ

ξp

]
, (12.8)

where Θ = XS−1, or make one more elimination step Δx = (Q +

Θ−1)−1(ATΔy − f) and get the symmetric and positive definite normal

equations system

(A(Q+Θ−1)−1AT )Δy = g = A(Q+Θ−1)−1f + h. (12.9)

For linear optimization problems (when Q = 0) the normal equations system

(12.9) is usually the preferred (and default) option. For quadratic optimiza-

tion problems with nontrivial matrix Q, an augmented system (12.8) is the

best option. Indeed, the inversion of (Q + Θ−1) might completely destroy

the sparsity in (12.9) and make the solution of this system very inefficient.

There exists an important class of separable quadratic optimization problems

in which Q is a diagonal matrix, and therefore the operation (Q + Θ−1)−1

produces a diagonal matrix and allows for the reduction to normal equations.

Several well-known reformulation tricks allow the extension of the class

of separable problems and the conversion of certain nonseparable problems

into separable ones (see Vanderbei, 1997). This is possible, for example, when

matrixQ can be represented asQ = Q0+VDV T , whereQ0 is easily invertible

(say, diagonal) and V ∈ Rn×k, D ∈ Rk×k with k 
 n defining a low-

rank correction. By introducing an extra variable u = V Tx, the quadratic

objective term in problem (12.1) can be rewritten as xTQx = xTQ0x+uTDu

and the following quadratic optimization problem equivalent to (12.1) is

obtained:

min cTx+ 1
2x

TQ0x+ uTDu

s.t. Ax = b,

V Tx− u = 0,

x ≥ 0, u free.

(12.10)

Although this new problem has more constraints (m + k as opposed to m

in (12.1)) and has n+ k variables, while (12.1) had only n, it is significantly

easier to solve because its quadratic form

[
Q0 0
0 D

]
is easily invertible

(diagonal) and allows for the use of the normal equations formulation in the

computation of Newton direction.

Numerous classification problems in support vector machine training ap-

plications benefit from the above transformation. They include, for exam-

ple, 1- or 2-norm classification, universum classification, and ordinal and

ε-insensitive regressions. To demonstrate how the technique works, we will
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consider a 2-norm classification with support vector machines using the sim-

plest linear kernel. Let a training set of n points pj ∈ Rk, j = 1, 2, ..., n with

binary labels rj ∈ {−1, 1}, j = 1, 2, ..., n be given. We look for a hyperplane

wT p+w0 = 0 which best separates the points with different labels, namely,

it maximizes the separation margin and minimizes the overall 1-norm error

of misclassifications. The corresponding quadratic optimization problem and

its dual have the following forms:

Primal Dual

min 1
2w

Tw + τeT ξ max eTz− 1
2z

T(RP TPR)z

s.t. R(P Tw + w0e) ≥ e−ξ s.t. rT z = 0

ξ ≥ 0; 0 ≤ z ≤ τe,

(12.11)

where P ∈ Rk×n is a matrix the columns of which are formed by the

points pj ∈ Rk, R ∈ Rn×n is a diagonal matrix with labels rj on the

diagonal, ξ ∈ Rn are errors of misclassification, and τ is a positive parameter

measuring the penalty of misclassifications.

Direct application of IPM to any of these problems would be challenging

because of the expected very large size of the data set n. The primal

problem has an easy, separable quadratic objective but a large number of

linear constraints. The dual problem, on the other hand, has only a single

equality constraint but its Hessian matrix RP TPR ∈ Rn×n is completely

dense. The dual form is preferred by the ML community because it can

easily accommodate any general kernel K. (The dual problem in (12.11)

corresponds to a linear kernel K = P TP .)

To provide a better understanding of where the difficulty is hidden, we

give forms of augmented equation systems which would be obtained if an

IPM was applied directly to the primal or to the dual in (12.11):⎡⎣ −Ik 0 PR

0 −Θ−1
ξ In

RP T In 0

⎤⎦⎡⎣ Δw

Δξ

Δy

⎤⎦ =

⎡⎣ fw
fξ
h

⎤⎦ (12.12)

and [ −(RP TPR+Θ−1
z ) r

rT 0

] [
Δz

Δy

]
=

[
fz
h

]
. (12.13)

To simplify the discussion, we keep using the notation of (12.8) and always

denote Lagrange multipliers associated with the linear constraints as y and

the right-hand-side vectors in these equations as (f, h). The dimensions of

these vectors have to be derived from the formulations of the primal and

dual problems in (12.11). For example, for the primal problem and equation
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(12.12), Δy ∈ Rn, fw ∈ Rk, fξ ∈ Rn, and h ∈ Rn; for the dual problem and

equation (12.13), Δy ∈ R, fz ∈ Rn, and h ∈ R. It is easy to verify that the

elimination of diagonal block diag{Ik,Θ−1
ξ } in (12.12) (which corresponds

to the elimination of Δw and Δξ) would create a dense normal equations

matrix of form RP TPR+Θξ, producing a dense linear equation system with

difficulty comparable to that of (12.13).

Although the matrix RP TPR + Θξ ∈ Rn×n (or RP TPR + Θ−1
z ∈ Rn×n

in (12.13)) is completely dense and is expected to be large, its inversion

can be computed efficiently using the Sherman-Morrison-Woodbury (SMW)

formula, which exploits the low-rank representation of this matrix. Indeed,

since PR ∈ Rk×n and Θξ ∈ Rn×n is invertible, we can write

(RP TPR+Θξ)
−1 = Θ−1

ξ −Θ−1
ξ RP T (Ik +PRΘ−1

ξ RP T )PRΘ−1
ξ (12.14)

and then replace equation (RP TPR + Θξ)Δy = g with a sequence of

operations:

Step 1: calculate t1 = PRΘ−1
ξ g,

Step 2: solve (Ik + PRΘ−1
ξ RP T )t2 = t1,

Step 3: calculate Δy = Θ−1
ξ (g −RP T t2).

Since we expect k 
 n, the application of the SMW formula offers a

major improvement over a direct inversion of the large and dense matrix

RP TPR+Θξ. Indeed, SMW requires several matrix-vector multiplications

with PR ∈ Rk×n which involve only kn flops, and building and inversion of

the Schur complement matrix

S = Ik + PRΘ−1
ξ RP T , (12.15)

which needs O(k2n + k3) flops. In contrast, building and inversion of

RP TPR + Θξ would require O(kn2 + n3) flops. An additional and very

important advantage of the SMW algorithm is its storage efficiency: the

matrix RP TPR + Θξ does not have to be formulated and stored; we only

need to store original data PR ∈ Rk×n and the k × k Schur complement

matrix (12.15).

Ferris and Munson (2003) considered a variety of formulations of linear

support vector machines and applied interior-point methods to solve them.

They used the OOQP solver of Gertz and Wright (2003) as a basic tool

for their developments. The Newton equation systems were solved using the

SMW formula. The results of their efforts very clearly demonstrated the

IPM’s ability to deal with problems in which the number of data points n

was large, reaching millions. Their test examples had a moderate number of

features k = 34.

The efficiency of an SMW-based IPM implementation is determined by
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the linear algebra operation of solving (12.12) (or (12.13)). This approach

is very easy to parallelize (Ferris and Munson, 2003) because the bulk of

the work lies in the matrix-vector multiplications operating on PR and its

transpose. Indeed, significant speedups may be achieved simply by splitting

the storage of this matrix between different processors and reducing the

number ni of points stored on a given processor i = 1, 2, ..., p, (
p∑

i=1
ni = n)

to improve data locality.

The Schur complement approach has an inherent weakness that is difficult

to overcome. Its numerical accuracy critically depends on the stability of

the easily invertible matrix (Θξ in (12.14)) and the scaling of columns in

the low-rank corrector (PR in (12.14)). It is actually a general weakness

of SMW that is unrelated to IPM applications. In our case, when SMW is

applied in the interior-point method for support vector machines, only one

of these two potential weaknesses can be remedied. It is possible to scale

the original problem data P and improve the properties of the low-rank

corrector PR. However, to the best of the author’s knowledge, there is no

easy way to control the behavior of matrix Θξ. The entries of this matrix

display a disastrous difference in magnitude: as IPM approaches optimality,

elements in one subset go to infinity while elements in the other subset go to

zero. Consequently, the inversion of Θξ is very unstable and always adversely

affects the accuracy of the solution which can be obtained using the SMW

formula (12.14).

Goldfarb and Scheinberg (2008) constructed a small artificial dataset

on which a Schur complement-based IPM implementation ran into nu-

merical difficulties and could not attain the required accuracy of solution.

The product-form Cholesky factorization (PFCF) approach of Goldfarb and

Scheinberg (2004) can handle such cases in a stable way. Instead of comput-

ing an explicit Cholesky decomposition, their approach builds the Cholesky

matrix through a sequence of updates of an initial factor. The approach is

well suited to dealing with matrices of the form Q = Q0 + V V T , such as

the matrix Θξ + RP TPR in (12.14). It starts from a decomposition of Q0

and updates it after adding every rank-1 corrector ViV
T
i from the matrix

V V T . The approach has been implemented in two solvers, SVM-QP and

SVM-QP-presolve (Goldfarb and Scheinberg, 2008), and when applied to

medium-scale problems it has demonstrated numerical stability in practice.

It is not clear whether the PFCF can be implemented in parallel and this

seems to question its applicability to large-scale machine learning problems

(see Woodsend and Gondzio, 2009).

Bearing in mind the need to develop parallel implementation to tackle very

large problems, Woodsend and Gondzio (2010) have exploited the separable
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QP formulations of several support vector machine problems and solved

them directly with an interior-point method. Their approach avoids the use

of the SMW formula, which could introduce instability but still relies on

parallelism-friendly block-matrix operations. We will illustrate the key idea

by considering the dual in (12.11).

As we have already observed, the matrix of the quadratic form in this

problem, RP TPR, is dense. However, it is a low-rank matrix and we will

exploit its known decomposition. Namely, we define u = PRz and observe

that zTRP TPRz = uTu, so the problem can be reformulated as

min −eT z + 1
2u

Tu

s.t. rT z = 0

PRz − u = 0

0 ≤ z ≤ τe, u free.

(12.16)

Unlike the dual in (12.11), which had n variables and only one constraint,

the new problem has n+k variables and k+1 constraints. It is slightly larger

than (12.11) but is separable, and the linear equation system to compute

the Newton direction⎡⎢⎢⎣
−Θ−1

z 0 r RP T

0 −Ik 0 −Ik
rT 0 0 0

PR −Ik 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣

Δz

Δu

Δy1
Δy2

⎤⎥⎥⎦ =

⎡⎢⎢⎣
fz
fu
h1
h2

⎤⎥⎥⎦ , (12.17)

has an easy-to-invert (n+k)×(n+k) diagonal block at position (1, 1). After

the elimination of this leading block (which corresponds to the elimination

of Δz and Δu), we obtain the normal equations([
rT 0

PR −Ik

] [
Θz 0

0 Ik

] [
r RP T

0 −Ik

])[
Δy1
Δy2

]
=

[
g1
g2

]
, (12.18)

which form a system of only k + 1 linear equations with k + 1 unknowns.

Forming the matrix involved in this system can easily be parallelized. It

suffices to split the matrix P ∈ Rk×n into blocks Pi ∈ Rk×ni , i = 1, 2, ..., p

with
p∑

i=1
ni = n and gather the partial summation results in the operation

PRΘzRP T =

p∑
i=1

PiRiΘziRiP
T
i , (12.19)

executed on p independent blocks. The separability-exploiting IPM approach

of Woodsend and Gondzio (2009) described above has been implemented

using OOPS (Gondzio and Grothey, 2006) and tested on very large-scale

problems from the PASCAL Challenge,
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http://largescale.first.fraunhofer.de/.

The implementation is available for research use from

http://www.maths.ed.ac.uk/ERGO/software.html.

It is worth mentioning important advantages of the separable QP formu-

lation which distinguish it from two approaches discussed earlier: the one

based on the SMW formula (Ferris and Munson, 2003) and the one em-

ploying the product form Cholesky factorization (Goldfarb and Scheinberg,

2004, 2008). Unlike the SMW approach which can easily lose accuracy due

to multiple inversions of Θξ in (12.14), the separable formulation (12.16)

avoids such operations and does not suffer from any instability. In contrast

to the PFCF approach, which is inherently sequential, the separable formu-

lation (12.16) allows for an easy parallelization of its major computational

tasks.

In summary, interior-point methods provide an attractive alternative to

a plethora of other approaches in machine learning. In the context of sup-

port vector machines, extensive tests on large instances from the PASCAL

Challenge demonstrated (Woodsend and Gondzio, 2009) that IPMs compete

very well with the other approaches in terms of CPU time efficiency, and

outperform the other approaches in terms of reliability. This is consistent

with a general reputation of IPMs as very stable and reliable optimization

algorithms.

12.5 Accelerating Interior-Point Methods

Stability and reliability of IPMs have their origin in the use of the Newton

method for barrier subproblems and a very “mild” nonlinearity introduced

by the logarithmic barrier function. In some applications these features come

at too high a price. Numerous optimization problems, including those arising

in machine learning, do not have to be solved to a high degree of accuracy.

Therefore, fast algorithms are sought which could provide a very rough

approximation to the solution of the optimization problem in no time at

all. This is one of the reasons why the ML community is so keen on very

simple first-order (gradient)-based optimization techniques.

There have been several attempts to improve interior-point methods by

reducing the cost of a single iteration. Two of them have been specifically

developed for support vector machine applications. They share a common

feature and try to guess the activity of inequality constraints, then use only

a subset of these constraints when computing Newton directions. Consider

again the primal problem in (12.11) and the corresponding Newton equation
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system in (12.12). The elimination of a large but easily invertible block[ −Θ−1
ξ In

In 0

]
,

which corresponds to the elimination of Δξ and Δy from the equation system

(12.12), produces the small k × k system

(Ik + PRΘξRP T )Δw = gw. (12.20)

We have already mentioned that the magnitude of elements of matrix Θξ

may vary significantly. Indeed, Θξj = ξj/ηj , where ηj is the Lagrange

multiplier associated with the simple inequality constraint ξj ≥ 0. The

complementarity condition requires that ξjηj = 0 at optimality. IPM uses

a perturbed complementarity condition ξjηj = μ and forces ξj and ηj to

be strictly positive. However, when IPM approaches optimality, one of these

variables necessarily has to become very small. Consequently, the ratio ξj/ηj
goes either to infinity or to zero. Although this might be the source of

numerical difficulties when solving systems (12.12) and (12.20), it may also

be exploited as a feature to simplify these equations. The matrix in (12.20)

can be written in the outer product form

M = Ik +

n∑
j=1

r2jΘξjpjp
T
j , (12.21)

where r2j = 1 (because rj ∈ {−1,+1}) and pj denotes column j of P, that

is, point j in the training set. Since many elements of Θξ are very small,

their corresponding outer product contributions to M may be neglected. An

approximation of M may be formed as follows:

M̃ = Ik +
∑

{j:Θξj≥δ}
Θξjpjp

T
j , (12.22)

where δ is a prescribed tolerance.

Jung et al. (2008) use information on complementarity products of ξj
and ηj to determine small elements of Θξj which may be dropped in the

summation. The constraints rj(p
T
j w + w0) ≥ 1 − ξj in the primal problem

(12.11), which correspond to indices j associated with small terms Θξj , are

likely to be active at optimality. Jung et al. (2008) use the approximation M̃

of M to compute an approximate Newton step. Gertz and Griffin (2009) use

the same approximation for a different purpose. They employ a conjugate

gradient algorithm to solve (12.20) and use M̃ as a preconditioner of M . In

summary, both approaches try to simplify the computations and replace

M with its approximation M̃ , exploiting obvious savings resulting from
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replacing the summation over j ∈ {1, 2, ..., n} with the summation over

a subset of indices {j : Θξj ≥ δ}. However, both approaches have to deal

with certain computational overheads: Jung et al. (2008) have to accept

a significant increase of the number of iterations resulting from the use of

inexact directions, while Gertz and Griffin (2009) need to bear an extra

effort of matrix-vector multiplications in the conjugate gradient algorithm.

To conclude the discussion of different acceleration techniques applicable

in the IPM context, we need to draw the reader’s attention to a recent

development of a matrix-free variant of the interior-point method (Gondzio,

2010). This approach has been developed with the purpose of solving very

large and huge optimization problems for which storage of the problem

data alone may already be problematic, and constructing and factoring

any of the matrices in the Newton equations (augmented system or normal

equations) is expected to be prohibitive. The approach works in a matrix-

free regime: Newton equations are never formulated explicitly. Instead, an

inexact Newton method (Dembo et al., 1982; Bellavia, 1998) is used, that

is, the Newton direction is computed using an iterative approach from

the Krylov subspace family. The key feature of the new method which

distinguishes it from other matrix-free approaches is that the preconditioner

for the iterative method is constructed using the matrix-free regime as well.

The method has been described in Gondzio (2010) as a general-purpose one.

However, it should be straightforward to specialize it to machine learning

problems. We discuss it briefly below.

Consider a problem such as the separable reformulation (12.16) of the

dual problem (12.11) and assume that the number of rows, k + 1, and the

number of columns, n + k, are large. One might think of the number of

features k being one the order 104 or larger, and the number of training

points n going into millions or larger. The otherwise very efficient separable

formulation (12.16) would demonstrate its limitations for such dimensions

because the (k + 1) × (k + 1) normal equation matrix (12.18) would be

excessively expensive to form and factor. Following Woodsend and Gondzio

(2010), building the matrix would need O(nk2) flops, and factoring it would

require an additional O(k3) flops. The matrix-free approach (Gondzio, 2010)

solves (12.18) without forming and factoring the normal equation matrix. It

uses the conjugate gradient method, which does not require the normal

equation matrix

H = ĀD̄ĀT =

[
rT 0

PR −Ik

] [
Θz 0

0 Ik

] [
r RP T

0 −Ik

]
(12.23)

to be explicitly formulated but needs only to perform matrix-vector multi-

plications with it. These operations can be executed as a sequence of matrix-
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vector multiplications with the constraint matrix Ā, its transpose, and the

diagonal scaling matrix D̄. Matrix Θz in the diagonal part is always very

ill-conditioned, and consequently so is H. The conjugate gradient algorithm

will never converge unless an appropriate preconditioner is used. The pre-

conditioner proposed by Gondzio (2010) is a low-rank partial Cholesky fac-

torization of H which is also constructed in the matrix-free regime.

12.6 Conclusions

In this chapter we have discussed the main features of interior-point methods

which make them attractive for very large-scale optimization and for appli-

cation in the machine learning context. IPMs offer an unequalled worst-case

complexity: they converge to an ε-accurate solution in O(
√
n log(1/ε)) iter-

ations. In practice they perform much better than the worst-case analysis

predicts, and solve linear or convex quadratic problems in a number of itera-

tions which very slowly (logarithmically) grows with the problem dimension.

Since machine learning applications are usually very large, IPMs offer an at-

tractive solution methodology for them. We have illustrated the use of IPMs

in a particular class of ML problems: support vector machine training. IPMs

display excellent stability and robustness, which makes them very competi-

tive in this context. A novel matrix-free variant of the interior-point method

is a promising approach for solving very large and huge optimization prob-

lems arising in machine learning applications.
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