
3 Interior-Point Methods for Large-Scale

Cone Programming

Martin Andersen msa@ee.ucla.edu

University of California, Los Angeles

Los Angeles, CA 90095-1594, USA

Joachim Dahl dahl.joachim@gmail.com

MOSEK ApS

Fruebjergvej 3, 2100 København Ø, Denmark

Zhang Liu zhang.liu@gmail.com

Northrop Grumman Corporation

San Diego, CA 92127-2412, USA

Lieven Vandenberghe vandenbe@ee.ucla.edu

University of California, Los Angeles

Los Angeles, CA 90095-1594, USA

In the conic formulation of a convex optimization problem the constraints are

expressed as linear inequalities with respect to a possibly non-polyhedral con-

vex cone. This makes it possible to formulate elegant extensions of interior-

point methods for linear programming to general nonlinear convex optimiza-

tion. Recent research on cone programming algorithms has focused particu-

larly on three convex cones for which symmetric primal-dual methods have

been developed: the nonnegative orthant, the second-order cone, and the pos-

itive semidefinite matrix cone. Although not all convex constraints can be

expressed in terms of the three standard cones, cone programs associated

with these cones are sufficiently general to serve as the basis of convex mod-

eling packages. They are also widely used in machine learning.

The main difficulty in the implementation of interior-point methods for cone

programming is the complexity of the linear equations that need to be solved

at each iteration. These equations are usually dense, unlike the equations

that arise in linear programming, and it is therefore difficult to develop

general-purpose strategies for exploiting problem structure based solely on

56 Interior-Point Methods for Large-Scale Cone Programming

sparse matrix methods. In this chapter we give an overview of ad hoc

techniques that can be used to exploit nonsparse structure in specific classes

of applications. We illustrate the methods with examples from machine

learning and present numerical results with CVXOPT, a software package

that supports the rapid development of customized interior-point methods.

3.1 Introduction

3.1.1 Cone Programming

The cone programming formulation has been popular in the recent literature

on convex optimization. In this chapter we define a cone linear program (cone

LP or conic LP) as an optimization problem of the form

minimize cTx

subject to Gx �C h

Ax = b

(3.1)

with optimization variable x. The inequality Gx �C h is a generalized

inequality, which means that h − Gx ∈ C, where C is a closed, pointed,

convex cone with nonempty interior. We will also encounter cone quadratic

programs (cone QPs),

minimize (1/2)xTPx+ cTx

subject to Gx �C h

Ax = b,

(3.2)

with P positive semidefinite.

If C = R
p
+ (the nonnegative orthant in R

p), the generalized inequality is

a componentwise vector inequality, equivalent to p scalar linear inequalities,

and problem (3.1) reduces to a linear program (LP). If C is a nonpolyhedral

cone, the problem is substantially more general than an LP, in spite of the

similarity in notation. In fact, as Nesterov and Nemirovskii (1994) point

out, any convex optimization problem can be reformulated as a cone LP by

a simple trick: a general constraint x ∈ Q, whereQ is a closed convex set with

nonempty interior, can be reformulated in a trivial way as (x, t) ∈ C, t = 1, if

we define C as the conic hull of Q, that is, C = cl{(x, t) | t > 0, (1/t)x ∈ Q}.
More important in practice, it turns out that a surprisingly small number of

3.1 Introduction 57

cones is sufficient to express the convex constraints that are most commonly

encountered in applications. In addition to the nonnegative orthant, the

most common cones are the second-order cone,

Qp = {(y0, y1) ∈ R× R
p−1 | ‖y1‖2 ≤ y0},

and the positive semidefinite cone,

Sp =
{
vec(U) | U ∈ Sp

+

}
.

Here Sp
+ denotes the positive semidefinite matrices of order p and vec(U) is

the symmetric matrix U stored as a vector:

vec(U) =
√
2

(
U11√
2
, U21, . . . , Up1,

U22√
2
, U32, . . . , Up2, . . . ,

Up−1,p−1√
2

, Up,p−1,
Upp√
2

)
.

(The scaling of the off-diagonal entries ensures that the standard trace

inner product of symmetric matrices is preserved, that is, Tr(UV) =

vec(U)T vec(V) for all U , V .) Since the early 1990s a great deal of re-

search has been directed at developing a comprehensive theory and software

for modeling optimization problems as cone programs involving the three

“canonical” cones (Nesterov and Nemirovskii, 1994; Boyd et al., 1994; Ben-

Tal and Nemirovski, 2001; Alizadeh and Goldfarb, 2003; Boyd and Van-

denberghe, 2004). YALMIP and CVX, two modeling packages for general

convex optimization, use cone LPs with the three canonical cones as their

standard format (Löfberg, 2004; Grant and Boyd, 2007, 2008).

In this chapter we assume that the cone C in (3.1) is a direct product

C = C1 × C2 × · · · × CK , (3.3)

where each cone Ci is of one of the three canonical types (nonnegative

orthant, second-order cone, or positive semidefinite cone). These cones are

self-dual, and the dual of the cone LP therefore involves an inequality with

respect to the same cone:

maximize −hT z − bT y

subject to GT z +AT y + c = 0

z �C 0.

(3.4)

The cone LP (3.1) is called a second-order cone program (SOCP) if C is a

direct product of one or more second-order cones. (The nonnegative orthant

can be written as a product of second-order cones Q1 of order 1.) A common

58 Interior-Point Methods for Large-Scale Cone Programming

and more explicit standard form of an SOCP is

minimize cTx

subject to ‖Fix+ gi‖2 ≤ dTi x+ fi, i = 1, . . . ,K

Ax = b.

(3.5)

This corresponds to choosing

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−dT1
−F1

...

−dTK
−FK

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, h =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f1

g1
...

fK

gK

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, C = Qp1

× · · · × QpK

in (3.1), if the row dimensions of the matrices Fk are equal to pk − 1.

The cone LP (3.1) is called a semidefinite program (SDP) if C is a direct

product of positive semidefinite matrix cones. For purposes of exposition, a

simple standard form with one matrix inequality is sufficient:

minimize cTx

subject to
n∑

i=1
xiFi � F0

Ax = b,

(3.6)

where the coefficients Fi are symmetric matrices of order p and the inequality

denotes matrix inequality. This can be seen as the special case of (3.1)

obtained by choosing

G =
[
vec(F1) · · · vec(Fn)

]
, h = vec(F0), C = Sp. (3.7)

The SDP (3.6) is in fact as general as the cone LP (3.1) with an arbitrary

combination of the three cone types. A componentwise vector inequality

Gx � h can be represented as a diagonal matrix inequality Diag(Gx) �
Diag(h). A second-order cone constraint ‖Fx+ g‖2 ≤ dTx+ f is equivalent

to the linear matrix inequality[
dTx+ f (Fx+ g)T

Fx+ g (dTx+ f)I

]
� 0.

Multiple matrix inequalities can be represented by choosing block-diagonal

matrices Fi. For algorithmic purposes, however, it is better to handle the

three types of cones separately.

3.1 Introduction 59

3.1.2 Interior-Point Methods

Interior-point algorithms dominated the research on convex optimization

methods from the early 1990s until recently. They are popular because

they reach a high accuracy in a small number (10–50) of iterations, almost

independent of problem size, type, and data. Each iteration requires the

solution of a set of linear equations with fixed dimensions and known

structure. As a result, the time needed to solve different instances of a given

problem family can be estimated quite accurately. Interior-point methods

can be extended to handle infeasibility gracefully (Nesterov et al., 1999;

Andersen, 2000), by returning a certificate of infeasibility if a problem is

primal or dual infeasible. Finally, interior-point methods depend on only a

small number of algorithm parameters, which can be set to values that work

well for a wide range of data, and do not need to be tuned for a specific

problem.

The key to efficiency of an interior-point solver is the set of linear equa-

tions solved in each iteration. These equations are sometimes called Newton

equations, because they can be interpreted as a linearization of the non-

linear equations that characterize the central path, or Karush-Kuhn-Tucker

(KKT) equations, because they can be interpreted as optimality (or KKT)

conditions of an equality-constrained quadratic optimization problem. The

cost of solving the Newton equations determines the size of the problems

that can be solved by an interior-point method. General-purpose convex op-

timization packages rely on sparse matrix factorizations to solve the Newton

equations efficiently. This approach is very successful in linear programming,

where problems with several hundred thousand variables and constraints are

solved routinely. The success of general-purpose sparse linear programming

solvers can be attributed to two facts. First, the Newton equations of a

sparse LP can usually be reduced to sparse positive definite sets of equa-

tions, which can be solved very effectively by sparse Cholesky factorization

methods. Second, dense linear programs, which of course are not uncom-

mon in practice, can often be converted into sparse problems by introducing

auxiliary variables and constraints. This increases the problem dimensions,

but if the resulting problem is sufficiently sparse, the net gain in efficiency

is often significant.

For other classes of cone optimization problems (for example, semidefi-

nite programming), the sparse linear programming approach to exploiting

problem structure is less effective, either because the Newton equations are

not sufficiently sparse or because the translation of problem structure into

sparsity requires an excessive number of auxiliary variables. For these prob-

lem classes, it is difficult to develop general-purpose techniques that are as

60 Interior-Point Methods for Large-Scale Cone Programming

efficient and scalable as linear programming solvers. Nevertheless, the recent

literature contains many examples of large-scale convex optimization prob-

lems that were solved successfully by scalable customized implementations

of interior-point algorithms (Benson et al., 1999; Roh and Vandenberghe,

2006; Gillberg and Hansson, 2003; Koh et al., 2007; Kim et al., 2007; Joshi

and Boyd, 2008; Liu and Vandenberghe, 2009; Wallin et al., 2009). These

results were obtained by a variety of direct and iterative linear algebra tech-

niques that take advantage of non-sparse problem structure. The purpose

of this chapter is to survey some of these techniques and illustrate them

with applications from machine learning. There is of course a trade-off in

how much effort one is prepared to make to optimize performance of an

interior-point method for a specific application. We will present results for

a software package, CVXOPT (Dahl and Vandenberghe, 2009), that was

developed to assist in the development of custom interior-point solvers for

specific problem families. It allows the user to specify an optimization prob-

lem via an operator description, that is, by providing functions for evaluating

the linear mappings in the constraints and for supplying a custom method

for solving the Newton equations. This makes it possible to develop effi-

cient solvers that exploit various types of problem structure in a fraction of

the time needed to write a custom interior-point solver from scratch. Other

interior-point software packages that allow customization include the QP

solver OOQP (Gertz and Wright, 2003) and the Matlab-based conic solver

SDPT3 (Tütüncü et al., 2003).

3.2 Primal-Dual Interior-Point Methods

We first describe some implementation details for primal-dual interior-point

methods based on the Nesterov-Todd scaling (Nesterov and Todd, 1997,

1998). However, much of the following discussion also applies to other types

of primal-dual interior-point methods for second-order cone and semidefinite

programming (Helmberg et al., 1996; Kojima et al., 1997; Monteiro and

Zhang, 1998).

3.2.1 Newton Equations

Consider the cone LP (3.1) and cone QP (3.2). The Newton equations for a

primal-dual interior-point method based on the Nesterov-Todd scaling have

3.2 Primal-Dual Interior-Point Methods 61

the form⎡⎢⎣ P AT GT

A 0 0

G 0 −W TW

⎤⎥⎦
⎡⎢⎣ Δx

Δy

Δz

⎤⎥⎦ =

⎡⎢⎣ rx

ry

rz

⎤⎥⎦ (3.8)

(with P = 0 for the cone LP). The right-hand sides rx, ry, rz change at each

iteration and are defined differently in different algorithms. The matrix W

is a scaling matrix that depends on the current primal and dual iterates. If

the inequalities in (3.1) and (3.4) are generalized inequalities with respect to

a cone of the form (3.3), then the scaling matrix W is block-diagonal with

K diagonal blocks Wk, defined as follows:

If Ck is a nonnegative orthant of dimension p (Ck = R
p
+), then Wk is a

positive diagonal matrix,

Wk = Diag(d),

for some d ∈ R
p
++.

If Ck is a second-order cone of dimension p (Ck = Qp), then Wk is a

positive multiple of a hyperbolic Householder matrix

Wk = β(2vvT − J), J =

[
1 0

0 −I

]
, (3.9)

where β > 0, v ∈ R
p satisfies vTJv = 1, and I is the identity matrix of order

p− 1. The inverse of Wk is given by

W−1
k =

1

β
(2JvvTJ − J).

If Ck is a positive semidefinite cone of order p (Ck = Sp), then Wk is the

matrix representation of a congruence operation: Wk and its transpose are

defined by the identities

Wk vec(U) = vec(RTUR), W T
k vec(U) = vec(RURT), (3.10)

for all U , where R ∈ R
p×p is a nonsingular matrix. The inverses of Wk and

W T
k are defined by

W−1
k vec(U) = vec(R−TUR−1), W−T

k vec(U) = vec(R−1UR−T).

The values of the parameters d, β, v, R (or R−1) in these definitions depend

on the current primal and dual iterates, and are updated after each iteration

of the interior-point algorithm.

62 Interior-Point Methods for Large-Scale Cone Programming

The number of Newton equations solved per iteration varies with the type

of algorithm. It is equal to two in a predictor-corrector method, three in a

predictor-corrector method that uses a self-dual embedding, and it can be

higher than three if iterative refinement is used. However, since the scaling

W is identical for all the Newton equations solved in a single iteration, only

one factorization step is required per iteration, and the cost per iteration is

roughly equal to the cost of solving one Newton equation.

By eliminating Δz, the Newton equation can be reduced to a smaller

system:[
P +GTW−1W−TG AT

A 0

][
Δx

Δy

]
=

[
rx +GTW−1W−T rz

ry

]
. (3.11)

The main challenge in an efficient implementation is to exploit structure in

the matrices P , G, A when assembling the matrix

P +GTW−1W−TG = P +

K∑
k=1

GT
kW

−1
k W−T

k Gk, (3.12)

(where Gk is the block row of G corresponding to the kth inequality) and

when solving equation (3.11).

General-purpose solvers for cone programming rely on sparsity in P , G,

and A to solve large-scale problems. For example, if the problem does not

include equality constraints, one can solve (3.11) by a Cholesky factorization

of the matrix (3.12). For pure LPs or QPs (W diagonal) this matrix is

typically sparse if P and G are sparse, and a sparse Cholesky factorization

can be used. In problems that involve all three types of cones it is more

difficult to exploit sparsity. Even when P and G are sparse, the matrix (3.12)

is often dense. In addition, forming the matrix can be expensive.

3.2.2 Customized Implementations

In the following sections we will give examples of techniques for exploiting

certain types of non-sparse problem structure in the Newton equations (3.8).

The numerical results are obtained using the Python software package

CVXOPT, which provides two mechanisms for customizing the interior-

point solvers.

Users can specify the matrices G, A, P in (3.1) and (3.2) as operators by

providing Python functions that evaluate the matrix-vector products and

their adjoints.

Users can provide a Python function for solving the Newton equation (3.8).

3.2 Primal-Dual Interior-Point Methods 63

This is made straightforward by certain elements of the Python syntax, as

the following example illustrates. Suppose we are interested in solving several

equations of the form[
−I AT

A 0

][
x1

x2

]
=

[
b1

b2

]
, (3.13)

with the same matrix A ∈ R
m×n and different right-hand sides b1, b2. (We

assume m ≤ n and rank(A) = m.) The equations can be solved by first

solving

AATx2 = b2 +Ab1,

using a Cholesky factorization of AAT and then computing x1 from x1 =

ATx2 − b1. The following code defines a Python function factor() that

computes the Cholesky factorization of C = AAT , and returns a function

solve() that calculates x1 and x2 for a given right-hand side b. A function

call f = factor(A) therefore returns a function f that can be used to

compute the solution for a particular right-hand side b as x1, x2 = f(b).

from cvxopt import blas, lapack, matrix

def factor(A):

m, n = A.size

C = matrix(0.0, (m, m))

blas.syrk(A, C) # C := A * A^T.

lapack.potrf(C) # Factor C = L * L^T and set C := L.

def solve(b):

x2 = b[-m:] + A * b[:n]

lapack.potrs(C, x2) # x2 := L^-T * L^-1 * x2.

x1 = A.T * x2 - b[:n]

return x1, x2

return solve

Note that the Python syntax proves very useful in this type of application.

For example, Python treats functions as other objects, so the factor function

can simply return a solve function. Note also that the symbols A and C

are used in the body of the function solve() but are not defined there.

To resolve these names, Python therefore looks at the enclosing scope (the

function block with the definition of factor()). These scope rules make it

possible to pass problem-dependent parameters to functions without using

global variables.

64 Interior-Point Methods for Large-Scale Cone Programming

3.3 Linear and Quadratic Programming

In the case of a (non-conic) LP or QP the scaling matrix W in the Newton

equation (3.8) and (3.11) is a positive diagonal matrix. As already men-

tioned, general-purpose interior-point codes for linear and quadratic pro-

gramming are very effective at exploiting sparsity in the data matrices P ,

G, A. Moreover, many types of non-sparse problem structures can be trans-

lated into sparsity by adding auxiliary variables and constraints. Neverthe-

less, even in the case of LPs or QPs, it is sometimes advantageous to exploit

problem structure directly by customizing the Newton equation solver. In

this section we discuss a few examples.

3.3.1 �1-Norm Approximation

The basic idea is illustrated by the �1-norm approximation problem

minimize ‖Xu− d‖1, (3.14)

with X ∈ R
m×n, d ∈ R

m, and variable u ∈ R
n. This is equivalent to an LP

with m+ n variables and 2m constraints:

minimize 1T v

subject to

[
X −I

−X −I

][
u

v

]
�
[

d

−d

]
,

(3.15)

with 1 the m-vector with entries equal to one. The reduced Newton equa-

tion (3.11) for this LP is[
XT (W−2

1 +W−2
2)X XT (W−2

2 −W−2
1)

(W−2
2 −W−2

1)X W−2
1 +W−2

2

][
Δu

Δv

]
=

[
ru

rv

]
(3.16)

where W1 and W2 are positive diagonal matrices. (To simplify the notation,

we do not propagate the expressions for the right-hand sides when applying

block elimination.) By eliminating the variable Δv the Newton equation can

be further reduced to the equation

XTDXΔu = r,

where D is the positive diagonal matrix

D = 4W−2
1 W−2

2 (W−2
1 +W−2

2)−1 = 4(W 2
1 +W 2

2)
−1.

The cost of solving the �1-norm approximation problem is therefore equal

to a small multiple (10–50) of the cost of solving the same problem in

3.3 Linear and Quadratic Programming 65

the �2-norm, that is, solving the normal equations XTXu = XTd of the

corresponding least-squares problem (Boyd and Vandenberghe, 2004, page

617).

The Python code shown below exploits this fact. The matrix

G =

[
X −I
−X −I

]
is specified via a Python function G that evaluates the matrix-vector products

withG andGT . The function F factors the matrixXTDX and returns a solve

routine f that takes the right-hand side of (3.8) as its input argument and

replaces it with the solution. The input argument of F is the scaling matrix

W stored as a Python dictionary W containing the various parameters of W .

The last line calls the CVXOPT cone LP solver. The code can be further

optimized by a more extensive use of the BLAS.

Table 3.1 shows the result of an experiment with six randomly generated

dense matrices X. We compare the speed of the customized CVXOPT solver

shown above, the same solver with further BLAS optimizations, and the

general-purpose LP solver in MOSEK (MOSEK ApS, 2010), applied to the

LP (3.15). The last column shows the results for MOSEK applied to the

equivalent formulation

minimize 1T v + 1Tw

subject to Xu− d = v − w

v � 0, w � 0.

(3.17)

The times are in seconds on an Intel Core 2 Quad Q9550 (2.83 GHz) with

4GB of memory.

The table shows that a customized solver, implemented in Python with a

modest programming effort, can be competitive with one of the best general-

purpose sparse linear programming codes. In this example, the customized

solver takes advantage of the fact that the dense matrix X appears in two

positions of the matrix G. This property is not exploited by a general-

purpose sparse solver.

3.3.2 Least-Squares with �1-Norm Regularization

As a second example, we consider a least-squares problem with �1-norm

regularization,

minimize ‖Xu− d‖22 + ‖u‖1,

66 Interior-Point Methods for Large-Scale Cone Programming

from cvxopt import lapack, solvers, matrix, mul, div

m, n = X.size

def G(x, y, alpha = 1.0, beta = 0.0, trans = ’N’):

if trans == ’N’: # y := alpha * G * x + beta * y

u = X * x[:n]

y[:m] = alpha * (u - x[n:]) + beta * y[:m]

y[m:] = alpha * (-u - x[n:]) + beta * y[m:]

else: # y := alpha * G’ * x + beta * y

y[:n] = alpha * X.T * (x[:m] - x[m:]) + beta * y[:n]

y[n:] = -alpha * (x[:m] + x[m:]) + beta * y[n:]

def F(W):

d1, d2 = W[’d’][:m]**2, W[’d’][m:]**2

D = 4*(d1 + d2)**-1

A = X.T * spdiag(D) * X

lapack.potrf(A)

def f(x, y, z):

x[:n] += X.T * (mul(div(d2 - d1, d1 + d2), x[n:]) +

mul(.5*D, z[:m] - z[m:]))

lapack.potrs(A, x)

u = X * x[:n]

x[n:] = div(x[n:] - div(z[:m], d1) - div(z[m:], d2) +

mul(d1**-1 - d2**-1, u), d1**-1 + d2**-1)

z[:m] = div(u - x[n:] - z[:m], W[’d’][:m])

z[m:] = div(-u - x[n:] - z[m:], W[’d’][m:])

return f

c = matrix(n*[0.0] + m*[1.0])

h = matrix([d, -d])

sol = solvers.conelp(c, G, h, kktsolver = F)

3.3 Linear and Quadratic Programming 67

m n CVXOPT CVXOPT/BLAS MOSEK (3.15) MOSEK (3.17)

500 100 0.12 0.06 0.75 0.40

1000 100 0.22 0.11 1.53 0.81

1000 200 0.52 0.29 1.95 1.06

2000 200 1.23 0.60 3.87 2.19

1000 500 2.44 1.32 3.63 2.38

2000 500 5.00 2.68 7.44 5.11

2000 1000 17.1 9.52 32.4 12.8

Table 3.1: Solution times (seconds) for six randomly generated dense �1-norm
approximation problems of dimension m × n. Column 3 gives the CPU times for
the customized CVXOPT code. Column 4 gives the CPU times for a customized
CVXOPT code with more extensive use of the BLAS for matrix-vector and matrix-
matrix multiplications. Columns 5 and 6 show the times for the interior-point
solver in MOSEK v6 (with basis identification turned off) applied to the LPs (3.15)
and (3.17), respectively.

with X ∈ R
m×n. The problem is equivalent to a QP

minimize (1/2)‖Xu− d‖22 + 1T v

subject to −v � u � v,
(3.18)

with 2n variables and 2n constraints. The reduced Newton equation (3.11)

for this QP is[
XTX +W−2

1 +W−2
2 W−2

2 −W−2
1

W−2
2 −W−2

1 W−2
1 +W−2

2

][
Δu

Δv

]
=

[
ru

rv

]
where W1 and W2 are diagonal. Eliminating Δv, as in the example of

section 3.3.1, results in a positive definite equation of order n:

(XTX +D)Δu = r,

where D = 4(W 2
1 +W 2

2)
−1. Alternatively, we can apply the matrix inversion

lemma and convert this to an equation of order m:

(XD−1XT + I)Δũ = r̃. (3.19)

The second option is attractive when n � m, but requires a customized

interior-point solver, since the matrix D depends on the current iterates. A

general-purpose QP solver applied to (3.18), on the other hand, is expensive

if n � m, since it does not recognize the low-rank structure of the matrix

XTX in the objective.

Table 3.2 shows the result of an experiment with randomly generated

68 Interior-Point Methods for Large-Scale Cone Programming

m n CVXOPT MOSEK (3.18) MOSEK (3.20)

50 200 0.02 0.35 0.32

50 400 0.03 1.06 0.59

100 1000 0.12 9.57 1.69

100 2000 0.24 66.5 3.43

500 1000 1.19 10.1 7.54

500 2000 2.38 68.6 17.6

Table 3.2: Solution times (seconds) for six randomly generated dense least-squares
problems with �1-norm regularization. The matrixX has dimensionm×n. Column 3
gives the CPU times for the customized CVXOPT code. Column 4 shows the times
for MOSEK applied to (3.18). Column 5 shows the times for MOSEK applied
to (3.20).

dense matrices X. We compare the speed of a customized QP solver with

the general-purpose QP solver in MOSEK applied to the QP (3.18) and the

equivalent QP

minimize (1/2)wTw + 1T v

subject to −v � x � v

Xu− w = d

(3.20)

with variables u, v, w. Although this last formulation has more variables

and constraints than (3.18), MOSEK solves it more efficiently because it

is sparser. For the custom solver the choice between (3.18) and (3.20) is

irrelevant because the Newton equations for both QPs reduce to an equation

of the form (3.19).

3.3.3 Support Vector Machine Training

A well-known example of the technique in the previous section arises in the

training of support vector machine classifiers via the QP:

minimize (1/2)uTQu− dTu

subject to 0 � Diag(d)u � γ1

1Tu = 0.

(3.21)

In this problem Q is the kernel matrix and has entries Qij = k(xi, xj),

i, j = 1, . . . , N , where x1, . . . , xN ∈ R
n are the training examples and k :

R
n×Rn → R is a positive definite kernel function. The vector d ∈ {−1,+1}N

contains the labels of the training vectors. The parameter γ is given. The

3.3 Linear and Quadratic Programming 69

reduced Newton equation for (3.21) is[
Q+W−2

1 +W−2
2 1

1T 0

][
Δu

Δy

]
=

[
ru

ry

]
. (3.22)

This equation is expensive to solve whenN is large because the kernel matrix

Q is generally dense. If the linear kernel k(v, ṽ) = vT ṽ is used, the kernel

matrix can be written as Q = XXT where X ∈ R
N×n is the matrix with

rows xTi . If N � n, we can apply the matrix inversion lemma as in the

previous example, and reduce the Newton equation to an equation(
I +XT (W−2

1 +W−2
2)−1X

)
Δw = r

of order n. This method for exploiting low-rank structure or diagonal-plus-

low-rank structure in the kernel matrix Q is well known in machine learning

(Ferris and Munson, 2002; Fine and Scheinberg, 2002).

Crammer and Singer (2001) extended the binary SVM classifier to classi-

fication problems with more than two classes. The training problem of the

Crammer-Singer multiclass SVM can be expressed as a QP

minimize (1/2)Tr(UTQU)− Tr(ETU)

subject to U � γE

U1m = 0

(3.23)

with a variable U ∈ R
N×m, where N is the number of training examples

and m is the number of classes. As in the previous section, Q is a kernel

matrix with entries Qij = k(xi, xj), i, j = 1, . . . , N . The matrix E ∈ R
N×m

is defined as

Eij =

{
1 training example i belongs to class j

0 otherwise.

The inequality U � γE denotes componentwise inequality between matrices.

From the optimal solution U one obtains the multiclass classifier, which maps

a test point x to the class number

argmax
j=1,...,m

N∑
i=1

Uijk(xi, x).

An important drawback of this formulation, compared with multiclass

classifiers based on a combination of binary classifiers, is the high cost of

solving the QP (3.23), which has Nm variables, Nm inequality constraints,

and N equality constraints. Let us therefore examine the reduced Newton

70 Interior-Point Methods for Large-Scale Cone Programming

equations⎡⎢⎢⎢⎢⎢⎢⎢⎣

Q+W−2
1 0 · · · 0 I

0 Q+W−2
2 · · · 0 I

...
...

. . .
...

...

0 0 · · · Q+W−2
m I

I I · · · I 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Δu1

Δu2
...

Δum

Δy

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ru1

ru2

...

rum

ry

⎤⎥⎥⎥⎥⎥⎥⎥⎦
with variables Δuk, Δy ∈ R

N . The variables Δuk are the columns of the

search direction ΔU corresponding to the variable U in (3.23). Eliminating

the variables Δuk gives the equation HΔy = r with

H =

m∑
k=1

(Q+W−2
k)−1.

Now suppose the linear kernel is used, and Q = XXT with X ∈ R
N×n and

N large (compared to mn). Then we can exploit the low rank structure in

Q and write H as

H =

m∑
k=1

(
W 2

k −W 2
kX(I +XTW 2

kX)−1XTW 2
k

)
= D − Y Y T

where D =
∑

k W
2
k is diagonal and Y is an N ×mn matrix, and

Y =
[
W 2

1XL−1
1 W 2

2XL−1
2 · · · W 2

mXL−1
m

]
where Lk is a Cholesky factor of I+XTW 2

kX = LkL
T
k . A second application

of the matrix inversion lemma gives

Δy = (D − Y Y T)−1r

=
(
D−1 +D−1Y (I + Y TD−1Y)−1Y TD−1

)
r.

The largest dense matrix that needs to be factored in this method is the

mn × mn matrix I + Y TD−1Y . For large N the cost is dominated by

the matrix products XTW 2
i D

−1W 2
j X, i, j = 1, . . . ,m, needed to compute

Y TD−1Y . This takes O(m2n2N) operations.

In table 3.3 we show computational results for the multiclass classifier

applied to the MNIST handwritten digit data set (LeCun and Cortes, 1998).

The images are 28×28. We add a constant feature to each training example,

so the dimension of the feature space is n = 1 + 282 = 785. We use

γ = 105/N . For the largest N , the QP (3.23) has 600, 000 variables and

inequality constraints, and 60, 000 equality constraints.

3.4 Second-Order Cone Programming 71

N time iterations test error

10000 5699 27 8.6%

20000 12213 33 4.0%

30000 35738 38 2.7%

40000 47950 39 2.0%

50000 63592 42 1.6%

60000 82810 46 1.3%

Table 3.3: Solution times (seconds) and numbers of iterations for the multiclass
SVM training problem applied to the MNIST set of handwritten digits (m = 10
classes, n = 785 features)

3.4 Second-Order Cone Programming

Several authors have provided detailed studies of techniques for exploiting

sparsity in SOCPs (Andersen et al., 2003; Goldfarb and Scheinberg, 2005).

The coefficient matrix (3.12) of the reduced Newton equation of a linear and

quadratic cone program with K second-order cone constraints of dimension

p1, . . . , pK is

P +

K∑
k=1

GT
kW

−2
k Gk, W−1

k =
1

βk
(2Jvkv

T
k J − J). (3.24)

The scaling matrices are parameterized by parameters βk > 0 and vk ∈ R
pk

with vTk Jvk = 1 and J the sign matrix defined in (3.9). Note that

W−2
k =

1

β2
(2wkw

T
k −J) =

1

β2
(I+2wkw

T
k −2e0e

T
0), wk =

[
vTk vk

−2vk0vk1

]
where e0 is the first unit vector in R

p, vk0 is the first entry of vk, and vk1 is

the (p− 1)-vector of the other entries. Therefore

GT
kW

−2
k Gk =

1

β2

(
GT

kGk + 2(GT
kwk)(G

T
kwk)

T − 2(GT
k e0)(G

T
k e0)

T
)
,

that is, a multiple of GT
kGk plus a rank-two term.

We can distinguish two cases when examining the sparsity of the

sum (3.24). If the dimensions pk of the second-order cones are small, then

the matrices Gk are likely to have many zero columns and the vectors GT
kwk

will be sparse (for generic dense wk). Therefore the products G
T
kW

−2
k Gk and

the entire matrix (3.24) are likely to be sparse. At the extreme end (pk = 1)

this reduces to the situation in linear programming where the matrix (3.12)

has the sparsity of P +GTG.

72 Interior-Point Methods for Large-Scale Cone Programming

The second case arises when the dimensions pk are large. Then GT
kwk is

likely to be dense, which results into a dense matrix (3.24). If K
 n, we

can still separate the sum (3.24) in a sparse part and a few dense rank-

one terms, and apply techniques for handling dense rows in sparse linear

programs (Andersen et al., 2003; Goldfarb and Scheinberg, 2005).

3.4.1 Robust Support Vector Machine Training

Second-order cone programming has found wide application in robust opti-

mization. As an example, we discuss the robust SVM formulation of Shiv-

aswamy et al. (2006). This problem can be expressed as a cone QP with

second-order cone constraints:

minimize (1/2)wTw + γ1T v

subject to Diag(d)(Xw + b1) � 1− v + Eu

v � 0

‖Sjw‖2 ≤ uj , j = 1, . . . , t.

(3.25)

The variables are w ∈ R
n, b ∈ R, v ∈ R

N , and u ∈ R
t. The matrixX ∈ R

N×n

has as its rows the training examples xTi , and the vector d ∈ {−1, 1}N
contains the training labels. For t = 0, the term Eu and the norm constraints

are absent, and the problem reduces to the standard linear SVM

minimize (1/2)wTw + γ1T v

subject to di(x
T
i w + b) ≥ 1− vi, i = 1, . . . , N

v � 0.

(3.26)

In problem (3.25) the inequality constraints in (3.26) are replaced by a

robust version that incorporates a model of the uncertainty in the training

examples. The uncertainty is described by t matrices Sj , with t ranging

from 1 to N , and an N ×n-matrix E with 0-1 entries and exactly one entry

equal to one in each row. The matrices Sj can be assumed to be symmetric

positive semidefinite. To interpret the constraints, suppose Eij = 1. Then

the constraint in (3.25) that involves training example xi can be written as

a second-order cone constraint:

di(x
T
i w + b)− ‖Sjw‖2 ≥ 1− vi.

This is equivalent to

inf
‖η‖2≤1

(
di(xi + Sjη)

Tw + b
) ≥ 1− vi.

3.4 Second-Order Cone Programming 73

In other words, we replace the training example xi with an ellipsoid {xi +
Sjη | ‖η‖2 ≤ 1} and require that di(x

Tw + b) ≥ 1− vi holds for all x in the

ellipsoid. The matrix Sj defines the shape and magnitude of the uncertainty

about training example i. If we take t = 1, we assume that all training

examples are subject to the same type of uncertainty. Values of t larger

than one allow us to use different uncertainty models for different subsets of

the training examples.

To evaluate the merits of the robust formulation, it is useful to compare the

costs of solving the robust and non-robust problems. Recall that the cost per

iteration of an interior-point method applied to the QP (3.26) is of orderNn2

if N ≥ n, and is dominated by an equation of the form (I+XTDX)Δw = r

with D positive diagonal. To determine the cost of solving the robust

problem, we write it in the standard cone QP form (3.2) by choosing

x = (w, b, v, u) ∈ R
n×R×R

N ×R
t, K = 1+ t, C = R

2N
+ ×Qn+1× · · ·Qn+1.

We have

P =

⎡⎢⎢⎢⎢⎣
I 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎦ , G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Diag(d)X −d −I E

0 0 −I 0

0 0 0 −eT1
−S1 0 0 0
...

...
...

...

0 0 0 −eTt
−St 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where ek is the kth unit vector in R

t. Note that ETDE is diagonal for any

diagonal matrix D, and this property makes it inexpensive to eliminate the

extra variable Δu from the Newton equations. As in the nonrobust case, the

Newton equations can then be further reduced to an equation in n variables

Δw. The cost of forming the reduced coefficient matrix is of order Nn2+tn3.

When n ≤ N and for modest values of t, the cost of solving the robust

counterpart of the linear SVM training problem is therefore comparable to

the standard non-robust linear SVM.

Table 3.4 shows the solution times for a customized CVXOPT interior-

point method applied to randomly generated test problems with n = 200

features. Each training vector is assigned to one of t uncertainty models. For

comparison, the general-purpose solver SDPT3 v.4 called from CVX takes

about 130 seconds for t = 50 and N = 4000 training vectors.

74 Interior-Point Methods for Large-Scale Cone Programming

N t = 2 t = 10 t = 50 t = 100

4000 2.5 2.8 4.1 5.0

8000 5.4 5.3 6.0 6.9

16000 12.5 12.5 12.7 13.7

Table 3.4: Solution times (seconds) for customized interior-point method for robust
SVM training (n = 200 features and t different uncertainty models)

3.5 Semidefinite Programming

We now turn to the question of exploiting problem structure in cone pro-

grams that include linear matrix inequalities. To simplify the notation, we

explain the ideas for the inequality form SDP (3.6).

Consider the coefficient matrix H = GTW−1W−TG of the reduced New-

ton equations, with G defined in (3.7) and the scaling matrix W defined

in (3.10). The entries of H are

Hij = Tr
(
R−1FiR

−TR−1FjR
−T
)
, i, j = 1, . . . , n. (3.27)

The matrix R is generally dense, and therefore the matrixH is usually dense,

so the equation HΔx = r must be solved by a dense Cholesky factorization.

The cost of evaluating the expressions (3.27) is also significant, and often

exceeds the cost of solving the system. For example, if p = O(n) and the

matrices Fi are dense, then it takes O(n4) operations to compute the entire

matrix H and O(n3) operations to solve the system.

Efforts to exploit problem structure in SDPs have focused on using sparsity

and low-rank structure in the coefficient matrices Fi to reduce the cost of as-

sembling H. Sparsity is exploited, in varying degrees, by all general-purpose

SDP solvers (Sturm, 1999, 2002; Tütüncü et al., 2003; Yamashita et al.,

2003; Benson and Ye, 2005; Borchers, 1999). Several of these techniques

use ideas from the theory of chordal sparse matrices and positive definite

matrix completion theory to reduce the problem size or speed up critical cal-

culations (Fukuda et al., 2000; Nakata et al., 2003; Burer, 2003; Andersen

et al., 2010). It was also recognized early on that low-rank structure in the

coefficients Fi can be very useful to reduce the complexity of interior-point

methods (Gahinet and Nemirovski, 1997; Benson et al., 1999). For example,

if Fi = aia
T
i , then it can be verified that

H = (ATR−TR−1A) ◦ (ATR−TR−1A)

where A is the matrix with columns ai and ◦ is componentwise matrix mul-

tiplication. This expression for H takes only O(n3) operations to evaluate

3.5 Semidefinite Programming 75

if p = O(n). Low-rank structure is exploited in the LMI Control Tool-

box (Gahinet et al., 1995), DSDP (Benson and Ye, 2005), and SDPT3

(Tütüncü et al., 2003). Recent applications of dense, low-rank structure

include SDPs derived from sum-of-squares formulations of nonnegative poly-

nomials (Löfberg and Parrilo, 2004; Roh and Vandenberghe, 2006; Roh et al.,

2007; Liu and Vandenberghe, 2007). Kandola et al. (2003) describe an ap-

plication in machine learning.

Sparsity and low-rank structure do not exhaust the useful types of problem

structure that can be exploited in SDP interior-point methods, as demon-

strated by the following two examples.

3.5.1 SDPs with Upper Bounds

A simple example from Toh et al. (2007) and Nouralishahi et al. (2008)

will illustrate the limitations of techniques based on sparsity. Consider a

standard form SDP with an added upper bound:

minimize Tr(CX)

subject to Tr(AiX) = bi, i = 1, . . . ,m

0 � X � I.

(3.28)

The variable X is a symmetric matrix of order p. Since general-purpose

SDP solvers do not accept this format directly, the problem needs to be

reformulated as one without upper bounds. An obvious reformulation is to

introduce a slack variable S and solve the standard form SDP

minimize Tr(CX)

subject to Tr(AiX) = bi, i = 1, . . . ,m

X + S = I

X � 0, S � 0.

(3.29)

This is the semidefinite programming analog of converting an LP with

variable bounds,

minimize cTx

subject to Ax = b

0 � x � 1,

76 Interior-Point Methods for Large-Scale Cone Programming

into a standard form LP,

minimize cTx

subject to Ax = b, x+ s = 1

x � 0, s � 0.

(3.30)

Even though this is unnecessary in practice (LP solvers usually handle vari-

able upper bounds directly), the transformation to (3.30) would have only a

minor effect on the complexity. In (3.30) we add n extra variables (assuming

the dimension of x is n) and n extremely sparse equality constraints. A good

LP solver that exploits the sparsity will solve the LP at roughly the same cost

as the corresponding problem without upper bounds. The situation is very

different for SDPs. In (3.29) we increase the number of equality constraints

from m to m+p(p+1)/2. SDP solvers are not as good at exploiting sparsity

as LP solvers, so (3.29) is much harder to solve using general-purpose solvers

than the corresponding problem without upper bound.

Nevertheless, the SDP with upper bounds can be solved at a cost compa-

rable to the standard form problem, via a technique proposed by Toh et al.

(2007) and Nouralishahi et al. (2008). The reduced Newton equations (3.11)

for the SDP with upper bounds (3.29) are

T1ΔXT1 + T2ΔXT2 +
m∑
i=1

ΔyiAi = rX (3.31a)

Tr(AiΔX) = ryi, i = 1, . . . ,m (3.31b)

where T1 = R−T
1 R−1

1 and T2 = R−T
2 R−1

2 are positive definite matrices. (The

Newton equations for the standard form problem (3.28) are similar, but have

only one term TΔXT in the first equation, making it easy to eliminate ΔX.)

To solve (3.31) we first determine a congruence transformation that si-

multaneously diagonalizes T1 and T2,

V TT1V = I, V TT2V = Diag(γ),

where γ is a positive vector (see (Golub and Van Loan, 1996, section 8.7.2)).

If we define ΔX̃ = V −1ΔXV −T , Ãi = V TAiV , the equations reduce to

ΔX̃ +Diag(γ)ΔX̃ Diag(γ) +

m∑
i=1

ΔyiÃi = V T rXV

Tr(ÃiΔX̃) = ryi
, i = 1, . . . ,m.

From the first equation, we can express ΔX̃ in terms of Δy:

ΔX̃ = (V T rXV) ◦ Γ−
m∑
i=1

Δyi(Ãi ◦ Γ) (3.32)

3.5 Semidefinite Programming 77

m = p time per iteration

50 0.05

100 0.33

200 2.62

300 10.5

400 30.4

500 70.8

Table 3.5: Time (seconds) per iteration of a customized interior-point method
for SDPs with upper bounds

where Γ is the symmetric matrix with entries Γij = 1/(1+γiγj). Substituting

this in the second equation gives a set of equations HΔy = r where

Hij = Tr(Ãi(Ãj ◦ Γ)) = Tr((Ãi ◦ Ãj)Γ)), i, j = 1, . . . ,m.

After solving for Δy, one easily obtains ΔX from (3.32). The cost of this

method is dominated by the cost of computing the matrices Ãi (O(p4) flops

if m = O(p)), the cost of assembling H (O(p4) flops), and the cost of solving

for Δy (O(p3) flops). For dense coefficient matrices Ai, the overall cost is

comparable to the cost of solving the Newton equations for the standard

form SDP (3.28) without upper bound.

Table 3.5 shows the time per iteration of a CVXOPT implementation of

the method described above. The test problems are randomly generated,

with m = p and dense coefficient matrices Ai. The general-purpose SDP

solver SDPT3 v.4, called from CVX, and applied to problem (3.29) with

m = p = 100, takes about 23 seconds per iteration.

3.5.2 Nuclear Norm Approximation

In section 3.3.1 we discussed the �1-norm approximation problem (3.14)

and showed that the cost per iteration of an interior-point method is

comparable to the cost of solving the corresponding least-squares problem

(that is,O(mn2) operations). We can ask the same question about the matrix

counterpart of �1-norm approximation, the nuclear norm approximation

problem:

minimize ‖X(u)−D‖∗. (3.33)

Here ‖ · ‖∗ denotes the nuclear matrix norm (sum of singular values) and

X(u) =
∑n

i=1 uiXi is a linear mapping from R
n to R

p×q. The nuclear norm

is popular in convex heuristics for rank minimization problems in system

78 Interior-Point Methods for Large-Scale Cone Programming

theory and machine learning (Fazel et al., 2001; Fazel, 2002; Fazel et al.,

2004; Recht et al., 2010; Candès and Plan, 2010). These heuristics extend

�1-norm heuristics for sparse optimization.

Problem (3.33) is equivalent to an SDP

minimize (TrV1 +TrV2)/2

subject to

[
V1 X(u)−D

(X(u)−D)T V2

]
� 0,

(3.34)

with auxiliary symmetric matrix variables V1, V2. The presence of the extra

variables V1 and V2 clearly makes solving (3.34) using a general-purpose SDP

solver very expensive unless p and q are small, and much more expensive

than solving the corresponding least-squares approximation problem (that

is, problem (3.33) with the Frobenius norm replacing the nuclear norm).

A specialized interior-point method is described in Liu and Vandenberghe

(2009). The basic idea can be summarized as follows. The Newton equations

for (3.34) are

ΔZ11 = rV1
, ΔZ22 = rV2

, Tr(XT
i ΔZ12) = rui

, i = 1, . . . , n

and [
ΔV1 X(Δu)

X(Δu)T ΔV2

]
+ T

[
ΔZ11 ΔZ12

ΔZT
12 ΔZ22

]
T = rZ ,

where T = RRT . The variables ΔZ11, ΔZ22, ΔV1, ΔV2 are easily eliminated,

and the equations reduce to

X(Δu) + T11ΔZ12T22 + T12ΔZT
12T12 = rZ12

Tr(XT
i ΔZ12) = rui

, i = 1, . . . , n,

where Tij are subblocks of T partitioned as the matrix in the con-

straint (3.34). The method of Liu and Vandenberghe (2009) is based on

applying a transformation that reduces T11 and T22 to identity matrices and

T12 to a (rectangular) diagonal matrix, and then eliminating ΔZ12 from the

first equation, to obtain a dense linear system in Δu. The cost of solving

the Newton equations is O(n2pq) operations if n ≥ max{p, q}. For dense Xi

this is comparable to the cost of solving the approximation problem in the

least-squares (Frobenius norm) sense.

Table 3.6 shows the time per iteration of a CVXOPT code for (3.34). The

problems are randomly generated with n = p = 2q. Note that the SDP (3.34)

has n+ p(p+ 1)/2 + q(q + 1)/2 variables and is very expensive to solve by

general-purpose interior-point codes. CVX/SDPT3 applied to (3.33) takes

3.6 Conclusion 79

n = p = 2q time per iteration

100 0.30

200 2.33

300 8.93

400 23.9

500 52.4

Table 3.6: Time (seconds) per iteration of a customized interior-point method
for the nuclear norm approximation problem

22 seconds per iteration for the first problem (n = p = 100, q = 50).

3.6 Conclusion

Interior-point algorithms for conic optimization are attractive in machine

learning and other applications because they converge to a high accuracy

in a small number of iterations and are quite robust with respect to data

scaling. The main disadvantages are the high memory requirements and the

linear algebra complexity associated with the linear equations that are solved

at each iteration. It is therefore critical to exploit problem structure when

solving large problems. For linear and quadratic programming, sparse ma-

trix techniques provide a general and effective approach to handling problem

structure. For nonpolyhedral cone programs, and semidefinite programs in

particular, the sparse approach is less effective for two reasons. First, trans-

lating non-sparse problem structure into a sparse model may require intro-

ducing a very large number of auxiliary variables and constraints. Second,

techniques for exploiting sparsity in SDPs are less well developed than for

LPs. It is therefore difficult to develop general-purpose techniques for exploit-

ing problem structure in cone programs that are as scalable as sparse linear

programming solvers. However, it is sometimes quite straightforward to find

special-purpose techniques that exploit various types of problem structure.

When this is the case, customized implementations can be developed that

are orders of magnitude more efficient than general-purpose interior-point

implementations.

3.7 References

F. Alizadeh and D. Goldfarb. Second-order cone programming. Mathematical
Programming, series B, 95:3–51, 2003.

80 Interior-Point Methods for Large-Scale Cone Programming

E. D. Andersen. On primal and dual infeasibility certificates in a homogeneous
model for convex optimization. SIAM Journal on Optimization, 11(2):380–388,
2000.

E. D. Andersen, C. Roos, and T. Terlaky. On implementing a primal-dual interior-
point method for conic quadratic optimization. Mathematical Programming,
series B, 95(2):249–277, 2003.

M. S. Andersen, J. Dahl, and L. Vandenberghe. Implementation of nonsymmetric
interior-point methods for linear optimization over sparse matrix cones. Mathe-
matical Programming Computation, 2(3–4):167–201, 2010.

A. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Optimization: Analysis,
Algorithms, and Engineering Applications. SIAM, Philadelphia, 2001.

S. J. Benson and Y. Ye. DSDP5: Software for semidefinite programming. Technical
Report ANL/MCS-P1289-0905, Mathematics and Computer Science Division,
Argonne National Laboratory, Argonne, IL, 2005.

S. J. Benson, Y. Ye, and X. Zhang. Solving large-scale sparse semidefinite programs
for combinatorial optimization. SIAM Journal on Optimization, 10:443–461,
1999.

B. Borchers. CSDP, a C library for semidefinite programming. Optimization
Methods and Software, 11(1):613–623, 1999.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in
System and Control Theory, volume 15 of SIAM Studies in Applied Mathematics.
Philadelphia, 1994.

S. Burer. Semidefinite programming in the space of partial positive semidefinite
matrices. SIAM Journal on Optimization, 14(1):139–172, 2003.

E. J. Candès and Y. Plan. Matrix completion with noise. Proceedings of the IEEE,
98(6):925–936, 2010.

K. Crammer and Y. Singer. On the algorithmic implementation of the multiclass
kernel-based vector machines. Journal of Machine Learning Research, 2:265–292,
2001.

J. Dahl and L. Vandenberghe. CVXOPT: A Python Package for Convex Optimiza-
tion. http://abel.ee.ucla.edu/cvxopt, 2009.

M. Fazel. Matrix Rank Minimization with Applications. PhD thesis, Stanford
University, 2002.

M. Fazel, H. Hindi, and S. Boyd. A rank minimization heuristic with application to
minimum order system approximation. In Proceedings of the American Control
Conference, volume 6, pages 4734–4739, 2001.

M. Fazel, H. Hindi, and S. Boyd. Rank minimization and applications in system
theory. In Proceedings of the American Control Conference, pages 3273–3278,
2004.

M. C. Ferris and T. S. Munson. Interior-point methods for massive support vector
machines. SIAM Journal on Optimization, 13(3):783–804, 2002.

S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel represen-
tations. Journal of Machine Learning Research, 2:243–264, 2002.

M. Fukuda, M. Kojima, K. Murota, and K. Nakata. Exploiting sparsity in semidef-
inite programming via matrix completion I: general framework. SIAM Journal

3.7 References 81

on Optimization, 11(3):647–674, 2000.

P. Gahinet and A. Nemirovski. The projective method for solving linear matrix
inequalities. Mathematical Programming, 77(2):163–190, May 1997.

P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali. LMI Control Toolbox. The
MathWorks, 1995.

E. M. Gertz and S. J. Wright. Object-oriented software for quadratic programming.
ACM Transactions on Mathematical Software, 29(1):58–81, 2003.

J. Gillberg and A. Hansson. Polynomial complexity for a Nesterov-Todd potential-
reduction method with inexact search directions. In Proceedings of the 42nd
IEEE Conference on Decision and Control, volume 3, pages 3824–3829, 2003.

D. Goldfarb and K. Scheinberg. Product-form Cholesky factorization in interior
point methods for second-order cone programming. Mathematical Programming
Series A, 103(1):153–179, 2005.

G. H. Golub and C. F. Van Loan. Matrix Computations. John Hopkins University
Press, third edition, 1996.

M. Grant and S. Boyd. CVX: Matlab Software for Disciplined Convex Programming
(Web Page and Software). http://stanford.edu/~boyd/cvx, 2007.

M. Grant and S. Boyd. Graph implementations for nonsmooth convex programs.
In V. Blondel, S. Boyd, and H. Kimura, editors, Recent Advances in Learning
and Control (a Tribute to M. Vidyasagar), pages 95–110. Springer, 2008.

C. Helmberg, F. Rendl, R. J. Vanderbei, and H. Wolkowicz. An interior-point
method for semidefinite programming. SIAM Journal on Optimization, 6(2):
342–361, 1996.

S. Joshi and S. Boyd. An efficient method for large-scale gate sizing. IEEE
Transactions on Circuits and Systems I, 55(9):2760–2773, 2008.

J. Kandola, T. Graepel, and J. Shawe-Taylor. Reducing kernel matrix diagonal
dominance using semi-definite programming. In B. Schölkopf and M. War-
muth, editors, Learning Theory and Kernel Machines, Proceedings of the 16th
Annual Conference on Learning Theory and 7th Kernel Workshop, pages 288–
302. Springer-Verlag, 2003.

S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky. An interior-point
method for large-scale �1-regularized least squares. IEEE Journal on Selected
Topics in Signal Processing, 1(4):606–617, 2007.

K. Koh, S.-J. Kim, and S. Boyd. An interior-point method for large-scale �1-
regularized logistic regression. Journal of Machine Learning Research, 8:1519–
1555, 2007.

M. Kojima, S. Shindoh, and S. Hara. Interior-point methods for the monotone
semidefinite linear complementarity problem in symmetric matrices. SIAM
Journal on Optimization, 7:86–125, 1997.

Y. LeCun and C. Cortes. The MNIST Database of Handwritten Digits. Available
at http://yann.lecun.com/exdb/mnist/, 1998.

Z. Liu and L. Vandenberghe. Low-rank structure in semidefinite programs derived
from the KYP lemma. In Proceedings of the 46th IEEE Conference on Decision
and Control, pages 5652–5659, 2007.

Z. Liu and L. Vandenberghe. Interior-point method for nuclear norm approximation
with application to system identification. SIAM Journal on Matrix Analysis and
Applications, 31(3):1235–1256, 2009.

82 Interior-Point Methods for Large-Scale Cone Programming

J. Löfberg. YALMIP: A Toolbox for Modeling and Optimization in MATLAB. In
Proceedings of the International Symposium on Computer Aided Control Systems
Design, pages 284–289, 2004.

J. Löfberg and P. A. Parrilo. From coefficients to samples: A new approach to
SOS optimization. In Proceedings of the 43rd IEEE Conference on Decision and
Control, volume 3, pages 3154–3159, 2004.

R. D. C. Monteiro and Y. Zhang. A unified analysis for a class of long-step
primal-dual path-following interior-point algorithms for semidefinite program-
ming. Mathematical Programming, 81:281–299, 1998.

MOSEK ApS. The MOSEK Optimization Tools Manual. Version 6.0., 2010.
Available from www.mosek.com.

K. Nakata, K. Fujisawa, M. Fukuda, M. Kojima, and K. Murota. Exploiting
sparsity in semidefinite programming via matrix completion II: Implementation
and numerical details. Mathematical Programming, series B, 95(2):303–327, 2003.

Y. Nesterov and A. Nemirovskii. Interior-Point Polynomial Methods in Convex
Programming, volume 13 of Studies in Applied Mathematics. SIAM, Philadelphia,
1994.

Y. Nesterov, M. J. Todd, and Y. Ye. Infeasible-start primal-dual methods and
infeasibility detectors for nonlinear programming problems. Mathematical Pro-
gramming, 84(2):227–267, 1999.

Y. E. Nesterov and M. J. Todd. Self-scaled barriers and interior-point methods for
convex programming. Mathematics of Operations Research, 22(1):1–42, 1997.

Y. E. Nesterov and M. J. Todd. Primal-dual interior-point methods for self-scaled
cones. SIAM Journal on Optimization, 8(2):324–364, May 1998.

M. Nouralishahi, C. Wu, and L. Vandenberghe. Model calibration for optical
lithography via semidefinite programming. Optimization and Engineering, 9:
19–35, 2008.

B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed minimum-rank solutions of linear
matrix equations via nuclear norm minimization. SIAM Review, 52(3):471–501,
2010.

T. Roh and L. Vandenberghe. Discrete transforms, semidefinite programming, and
sum-of-squares representations of nonnegative polynomials. SIAM Journal on
Optimization, 16(4):939–964, 2006.

T. Roh, B. Dumitrescu, and L. Vandenberghe. Multidimensional FIR filter design
via trigonometric sum-of-squares optimization. IEEE Journal of Selected Topics
in Signal Processing, 1(4):641–650, 2007.

P. K. Shivaswamy, C. Bhattacharyya, and A. J. Smola. Second order cone program-
ming approaches for handling missing and uncertain data. Journal of Machine
Learning Research, 7:1283–1314, 2006.

J. F. Sturm. Using SEDUMI 1.02, a Matlab toolbox for optimization over symmetric
cones. Optimization Methods and Software, 11-12:625–653, 1999.

J. F. Sturm. Implementation of interior point methods for mixed semidefinite and
second order cone optimization problems. Optimization Methods and Software,
17(6):1105–1154, 2002.

K. C. Toh, R. H. Tütüncü, and M. J. Todd. Inexact primal-dual path-following
algorithms for a special class of convex quadratic SDP and related problems.
Pacific Journal of Optimization, 3, 2007.

3.7 References 83

R. H. Tütüncü, K. C. Toh, and M. J. Todd. Solving semidefinite-quadratic-linear
programs using SDPT3. Mathematical Programming, series B, 95:189–217, 2003.

R. Wallin, A. Hansson, and J. H. Johansson. A structure exploiting preprocessor
for semidefinite programs derived from the Kalman-Yakubovich-Popov lemma.
IEEE Transactions on Automatic Control, 54(4):697–704, 2009.

M. Yamashita, K. Fujisawa, and M. Kojima. Implementation and evaluation of
SDPA 6.0 (Semidefinite Programming Algorithm 6.0). Optimization Methods
and Software, 18(4):491–505, 2003.

