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This chapter develops a theoretical framework that takes into account the ef-

fect of approximate optimization on learning algorithms. The analysis shows

distinct tradeoffs for the case of small-scale and large-scale learning prob-

lems. Small-scale learning problems are subject to the usual approximation–

estimation tradeoff. Large-scale learning problems are subject to a qualita-

tively different tradeoff involving the computational complexity of the under-

lying optimization algorithm in non-trivial ways. For instance, a mediocre

optimization algorithm, stochastic gradient descent, is shown to perform very

well on large-scale learning problems.

13.1 Introduction

The computational complexity of learning algorithms has seldom been taken

into account by the learning theory. Valiant (1984) states that a problem

is “learnable” when there exists a “probably approximately correct” learn-

ing algorithm with polynomial complexity. Whereas much progress has been

made on the statistical aspect (e.g., Vapnik, 1982; Boucheron et al., 2005;

Bartlett and Mendelson, 2006), very little has been said about the complex-

ity side of this proposal (e.g., Judd, 1988).

Computational complexity becomes the limiting factor when one envisions
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large amounts of training data. Two important examples come to mind:

Data mining exists because competitive advantages can be achieved by

analyzing the masses of data that describe the life of our computerized

society. Since virtually every computer generates data, the data volume is

proportional to the available computing power. Therefore, one needs learning

algorithms that scale roughly linearly with the total volume of data.

Artificial intelligence attempts to emulate the cognitive capabilities of

human beings. Our biological brains can learn quite efficiently from the

continuous streams of perceptual data generated by our senses, using limited

amounts of sugar as a source of power. This observation suggests that there

are learning algorithms whose computing time requirements scale roughly

linearly with the total volume of data.

This chapter develops the ideas initially proposed by Bottou and Bousquet

(2008). Section 13.2 proposes a decomposition of the test error where

an additional term represents the impact of approximate optimization.

In the case of small-scale learning problems, this decomposition reduces

to the well-known tradeoff between approximation error and estimation

error. In the case of large-scale learning problems, the tradeoff is more

complex because it involves the computational complexity of the learning

algorithm. Section 13.3 explores the asymptotic properties of the large-

scale learning tradeoff for various prototypical learning algorithms under

various assumptions regarding the statistical estimation rates associated

with the chosen objective functions. This part clearly shows that the best

optimization algorithms are not necessarily the best learning algorithms.

Maybe more surprisingly, certain algorithms perform well regardless of

the assumed rate of the statistical estimation error. Section 13.4 reports

experimental results supporting this analysis.

13.2 Approximate Optimization

13.2.1 Setup

Following Duda and Hart (1973) and Vapnik (1982), we consider a space of

input-output pairs (x, y) ∈ X × Y endowed with a probability distribution

P (x, y). The conditional distribution P (y|x) represents the unknown rela-

tionship between inputs and outputs. The discrepancy between the predicted

output ŷ and the real output y is measured with a loss function �(ŷ, y). Our
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benchmark is the function f∗ that minimizes the expected risk

E(f) =

∫
�(f(x), y) dP (x, y) = E [�(f(x), y)],

that is,

f∗(x) = argmin
ŷ

E [�(ŷ, y)|x].

Although the distribution P (x, y) is unknown, we are given a sample S of

n independently drawn training examples (xi, yi), i = 1 . . . n. We define the

empirical risk

En(f) =
1

n

n∑
i=1

�(f(xi), yi) = En[�(f(x), y)].

Our first learning principle is choosing a family F of candidate prediction

functions and finding the function fn = argminf∈F En(f) that minimizes the

empirical risk. Well-known combinatorial results (e.g., Vapnik, 1982) support

this approach, provided that the chosen family F is sufficiently restrictive.

Since the optimal function f∗ is unlikely to belong to the family F, we also

define f∗
F = argminf∈F E(f). For simplicity, we assume that f∗, f∗

F, and fn
are well defined and unique.

We can then decompose the excess error as

E = E [E(f∗
F)− E(f∗)] + E [E(fn)− E(f∗

F)]

= Eapp + Eest, (13.1)

where the expectation is taken with respect to the random choice of training

set. The approximation error Eapp measures how closely functions in F can

approximate the optimal solution f∗. The estimation error Eest measures

the effect of minimizing the empirical risk En(f) instead of the expected

risk E(f). The estimation error is determined by the number of training

examples and by the capacity of the family of functions (Vapnik, 1982).

Large families1 of functions have smaller approximation errors but lead to

higher estimation errors. This tradeoff has been extensively discussed in the

literature (Vapnik, 1982; Boucheron et al., 2005) and has led to excess errors

that scale between the inverse and the inverse square root of the number of

1. We often consider nested families of functions of the form Fc = {f ∈ H, Ω(f) ≤ c}.
Then, for each value of c, function fn is obtained by minimizing the regularized empirical
risk En(f)+λΩ(f) for a suitable choice of the Lagrange coefficient λ. We can then control
the estimation-approximation tradeoff by choosing λ instead of c.
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examples (Zhang, 2004; Steinwart and Scovel, 2005).

13.2.2 Optimization Error

Finding fn by minimizing the empirical risk En(f) is often a computationally

expensive operation. Since the empirical risk En(f) is already an approxima-

tion of the expected risk E(f), it should not be necessary to carry out this

minimization with great accuracy. For instance, we could stop an iterative

optimization algorithm long before its convergence.

Let us assume that our minimization algorithm returns an approximate

solution f̃n such that En(f̃n) < En(fn) + ρ where ρ ≥ 0 is a predefined

tolerance. An additional term Eopt = E
[
E(f̃n)− E(fn)

]
then appears in the

decomposition of the excess error E = E
[
E(f̃n)− E(f∗)

]
:

E = E [E(f∗
F)− E(f∗)] + E [E(fn)− E(f∗

F)] + E
[
E(f̃n)− E(fn)

]
= Eapp + Eest + Eopt. (13.2)

We call this additional term the optimization error. It reflects the impact

of the approximate optimization on the generalization performance. Its

magnitude is comparable to ρ (see section 13.3.1).

13.2.3 The Approximation–Estimation–Optimization Tradeoff

This decomposition leads to a more complicated compromise. It involves

three variables and two constraints. The constraints are the maximal number

of available training examples and the maximal computation time. The

variables are the size of the family of functions F, the optimization accuracy

ρ, and the number of examples n. This is formalized by the following

optimization problem:

min
F,ρ,n

E = Eapp+Eest+Eopt subject to

{
n ≤ nmax

T (F, ρ, n) ≤ Tmax
(13.3)

The number n of training examples is a variable because we could choose

to use only a subset of the available training examples in order to complete

the optimization within the alloted time. This happens often in practice.

Table 13.1 summarizes the typical evolution of the quantities of interest as

the three variables F, n, and ρ increase.

The solution of the optimization program (13.3) depends critically on

which budget constraint is active: constraint n < nmax on the number of

examples, or constraint T < Tmax on the training time.
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Table 13.1: Typical variations when F, n, and ρ increase

F n ρ

Eapp (approximation error) ↘
Eest (estimation error) ↗ ↘
Eopt (optimization error) · · · · · · ↗
T (computation time) ↗ ↗ ↘

We speak of a small-scale learning problem when (13.3) is constrained by

the maximal number of examples nmax. Since the computing time is not

limited, we can reduce the optimization error Eopt to insignificant levels by

choosing a ρ that is arbitrarily small. The excess error is then dominated by

the approximation and estimation errors, Eapp and Eest. Taking n = nmax, we

recover the approximation-estimation tradeoff that is the object of abundant

literature.

We speak of a large-scale learning problem when (13.3) is constrained

by the maximal computing time Tmax. Approximate optimization, that

is, choosing ρ > 0, possibly can achieve better generalization because

more training examples can be processed during the allowed time. The

specifics depend on the computational properties of the chosen optimization

algorithm through the expression of the computing time T (F, ρ, n).

13.3 Asymptotic Analysis

In section 13.2.2, we extended the classical approximation–estimation trade-

off by taking the optimization error into account. We gave an objective

criterion to distiguish small-scale and large-scale learning problems. In the

small-scale case, we recovered the classical tradeoff between approximation

and estimation. The large-scale case is substantially different because it in-

volves the computational complexity of the learning algorithm. In order to

clarify the large-scale learning tradeoff with sufficient generality, this section

makes several simplifications:

We are studying upper bounds of the approximation, estimation, and

optimization errors (13.2). It is often accepted that these upper bounds

give a realistic idea of the actual convergence rates (Vapnik et al., 1994;

Bousquet, 2002; Tsybakov, 2004; Bartlett et al., 2006). Another way to find

comfort in this approach is to say that we study guaranteed convergence

rates instead of the possibly pathological special cases.
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We are studying the asymptotic properties of the tradeoff when the

problem size increases. Instead of carefully balancing the three terms, we

write E = O(Eapp) + O(Eest) + O(Eopt) and only need to ensure that the

three terms decrease with the same asymptotic rate.

We are considering a fixed family of functions F, and therefore avoid taking

into account the approximation error Eapp. This part of the tradeoff covers

a wide spectrum of practical realities, such as choosing models and features.

In the context of this work, we do not believe we can meaningfully address

this without discussing, for instance, the thorny issue of feature selection.

Instead, we focus on the choice of optimization algorithm.

Finally, in order to keep this chapter short, we consider that the family of

functions F is linearly parameterized by a vector w ∈ R
d. We also assume

that x, y, and w are bounded, ensuring that there is a constant B such that

0 ≤ �(fw(x), y) ≤ B and �(·, y) is Lipschitz.
We first explain how the uniform convergence bounds provide conver-

gence rates that take the optimization error into account. Then we discuss

and compare the asymptotic learning properties of several optimization al-

gorithms.

13.3.1 Convergence of the Estimation and Optimization Errors

The optimization error Eopt depends on the optimization accuracy ρ. How-

ever, the accuracy ρ involves the empirical quantity En(f̃n)−En(fn), whereas

the optimization error Eopt involves its expected counterpart E(f̃n)−E(fn).

This section discusses the impact of the optimization error Eopt and of the

accuracy ρ on generalization bounds that leverage the uniform convergence

concepts pioneered by Vapnik and Chervonenkis (e.g., Vapnik, 1982).

Following Massart (2000), in the following discussion we use the letter c

to refer to any positive constant. Successive occurrences of the letter c do

not necessarily imply that the constants have identical values.

13.3.1.1 Simple Uniform Convergence Bounds

Recall that we assume that F is linearly parameterized by w ∈ R
d. Elemen-

tary uniform convergence results then state that

E

[
sup
f∈F

|E(f)− En(f)|
]
≤ c

√
d

n
,



13.3 Asymptotic Analysis 357

where the expectation is taken with respect to the random choice of the

training set.2 This result immediately provides a bound on the estimation

error:

Eest = E
[ (

E(fn)− En(fn)
)
+
(
En(fn)− En(f

∗
F)
)
+
(
En(f

∗
F)− E(f∗

F)
) ]

≤ 2 E

[
sup
f∈F

|E(f)− En(f)|
]
≤ c

√
d

n
.

This same result also provides a combined bound for the estimation and

optimization errors:

Eest + Eopt = E
[
E(f̃n)− En(f̃n)

]
+ E
[
En(f̃n)− En(fn)

]
+ E [En(fn)− En(f

∗
F)] + E [En(f

∗
F)− E(f∗

F)]

≤ c

√
d

n
+ ρ+ 0 + c

√
d

n
= O

(
ρ+

√
d

n

)
.

Unfortunately, this convergence rate is known to be pessimistic in many

important cases. More sophisticated bounds are required.

13.3.1.2 Faster Rates in the Realizable Case

When the loss function �(ŷ, y) is positive, with probability 1 − e−τ for any

τ > 0, relative uniform convergence bounds (e.g., Vapnik, 1982) state that

sup
f∈F

E(f)− En(f)√
E(f)

≤ c

√
d

n
log

n

d
+

τ

n
.

This result is very useful because it provides faster convergence rates

O(log n/n) in the realizable case, that is, when �(fn(xi), yi) = 0 for all train-

ing examples (xi, yi). We then have En(fn) = 0, and En(f̃n) ≤ ρ, and we

can write

E(f̃n)− ρ ≤ c

√
E(f̃n)

√
d

n
log

n

d
+

τ

n
.

Viewing this as a second-degree polynomial inequality in variable

√
E(f̃n),

we obtain

2. Although the original Vapnik-Chervonenkis bounds have the form c
√

d
n
log n

d
, the

logarithmic term can be eliminated using the “chaining” technique (e.g., Bousquet, 2002).
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E(f̃n) ≤ c

(
ρ+

d

n
log

n

d
+

τ

n

)
.

Integrating this inequality using a standard technique (see, e.g., Massart,

2000), we obtain a better convergence rate of the combined estimation and

optimization error:

Eest + Eopt = E

[
E(f̃n)− E(f∗

F)
]
≤ E

[
E(f̃n)

]
= c

(
ρ+

d

n
log

n

d

)
.

13.3.1.3 Fast Rate Bounds

Many authors (e.g., Bousquet, 2002; Bartlett and Mendelson, 2006; Bartlett

et al., 2006) obtain fast statistical estimation rates in more general condi-

tions. These bounds have the general form

Eapp + Eest ≤ c

(
Eapp +

(
d

n
log

n

d

)α )
for

1

2
≤ α ≤ 1 . (13.4)

This result holds when one can establish the following variance condition:

∀f ∈ F E

[(
�(f(X), Y )− �(f∗

F(X), Y )
)2] ≤ c

(
E(f)− E(f∗

F)

)2− 1
α

. (13.5)

The convergence rate of (13.4) is described by the exponent α, which is

determined by the quality of the variance bound (13.5). Works on fast

statistical estimation identify two main ways to establish such a variance

condition.

Exploiting the strict convexity of certain loss functions (Bartlett et al.,

2006, theorem 12). For instance, Lee et al. (1998) establish a O(log n/n)

rate using the squared loss �(ŷ, y) = (ŷ − y)2.

Making assumptions on the data distribution. In the case of pattern recog-

nition problems, for instance, the Tsybakov condition indicates how cleanly

the posterior distributions P (y|x) cross near the optimal decision bound-

ary (Tsybakov, 2004; Bartlett et al., 2006). The realizable case discussed in

section 13.3.1.2 can be viewed as an extreme example of this.

Despite their much greater complexity, fast rate estimation results can

accommodate the optimization accuracy ρ, using essentially the methods

illustrated in sections 13.3.1.1 and 13.3.1.2. We then obtain a bound of the

form
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E = Eapp +Eest +Eopt = E

[
E(f̃n)− E(f∗)

]
≤ c

(
Eapp +

(
d

n
log

n

d

)α

+ ρ

)
.

(13.6)

For instance, a general result with α = 1 is provided by Massart (2000,

theorem 4.2). Combining this result with standard bounds on the complexity

of classes of linear functions (e.g., Bousquet, 2002) yields the following result:

E = Eapp+Eest+Eopt = E

[
E(f̃n)− E(f∗)

]
≤ c

(
Eapp +

d

n
log

n

d
+ ρ

)
. (13.7)

See also Mendelson (2003), and Bartlett and Mendelson (2006) for more

bounds taking the optimization accuracy into account.

13.3.2 Gradient Optimization Algorithms

We now discuss and compare the asymptotic learning properties of four

gradient optimization algorithms. Recall that the family of function F is

linearly parameterized by w ∈ R
d. Let w∗

F and wn correspond to the

functions f∗
F and fn defined in section 13.2.1. In this section, we assume

that the functions w �→ �(fw(x), y) are convex and twice differentiable

with continuous second derivatives. For simplicity we also assume that the

empirical const function C(w) = En(fw) has a single minimum, wn.

Two matrices play an important role in the analysis: the Hessian matrix

H and the gradient covariance matrix G, both measured at the empirical

optimum wn:

H =
∂2C

∂w2
(wn) = En

[
∂2�(fwn

(x), y)

∂w2

]
, (13.8)

G = En

[(
∂�(fwn

(x), y)

∂w

)(
∂�(fwn

(x), y)

∂w

)′ ]
. (13.9)

The relation between these two matrices depends on the chosen loss function.

In order to summarize them, we assume that there are constants λmax ≥
λmin > 0 and ν > 0 such that, for any η > 0, we can choose the number of

examples n large enough to ensure that the following assertion is true with

probability greater than 1− η :

tr(GH−1) ≤ ν and EigenSpectrum(H) ⊂ [λmin , λmax ] . (13.10)

The condition number κ = λmax/λmin provides a convenient measure of

the difficulty of the optimization problem (Dennis Jr. and Schnabel, 1983).
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The assumption λmin > 0 avoids complications with stochastic gradient al-

gorithms. This assumption is weaker than strict convexity because it applies

only in the vicinity of the optimum. For instance, consider a loss function

obtained by smoothing the well-known hinge loss �(z, y) = max{0, 1−yz} in
a small neighborhood of its non-differentiable points. Function C(w) is then

piecewise linear with smoothed edges and vertices. It is not strictly convex.

However, its minimum is likely to be on a smoothed vertex with a non singu-

lar Hessian. When we have strict convexity, the argument of Bartlett et al.

(2006, theorem 12) yields fast estimation rates α ≈ 1 in (13.4) and (13.6).

That is not necessarily the case here.

The four algorithms considered in this chapter use information about the

gradient of the cost function to iteratively update their current estimate

w(t) of the parameter vector.

Gradient descent (GD) iterates

w(t+ 1) = w(t)− η
∂C

∂w
(w(t)) = w(t)− η

1

n

n∑
i=1

∂

∂w
�
(
fw(t)(xi), yi

)
where η > 0 is a small enough gain. GD is an algorithm with linear con-

vergence (Dennis Jr. and Schnabel, 1983): when η = 1/λmax, this algorithm

requires O(κ log(1/ρ)) iterations to reach accuracy ρ. The exact number of

iterations depends on the choice of the initial parameter vector.

Second-order gradient descent (2GD) iterates

w(t+1) = w(t)−H−1∂C

∂w
(w(t)) = w(t)− 1

n
H−1

n∑
i=1

∂

∂w
�
(
fw(t)(xi), yi

)
where matrix H−1 is the inverse of the Hessian matrix (13.8). This is

more favorable than Newton’s algorithm because we do not evaluate the

local Hessian at each iteration, but optimistically assume that an oracle

has revealed in advance the value of the Hessian at the optimum. 2GD is

a superlinear optimization algorithm with quadratic convergence (Dennis

Jr. and Schnabel, 1983). When the cost is quadratic, a single iteration is

sufficient. In the general case, O(log log(1/ρ)) iterations are required to reach

accuracy ρ.

Stochastic gradient descent (SGD) picks a random training example (xt, yt)

at each iteration and updates the parameter w on the basis of this example
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only:

w(t+ 1) = w(t)− η

t

∂

∂w
�
(
fw(t)(xt), yt

)
.

Murata (1998, section 2.2) characterizes the mean ES[w(t)] and variance

VarS[w(t)] with respect to the distribution implied by the random exam-

ples drawn from a given training set S at each iteration. Applying this

result to the discrete training set distribution for η = 1/λmin, we have

δw(t)2 = O(1/t) where δw(t) is a shorthand notation for w(t)− wn.

We can then write

ES[C(w(t))− inf C ] = ES

[
tr
(
H δw(t) δw(t)′

)]
+ o
(
1
t

)
= tr

(
H ES[δw(t)]ES[δw(t)]

′
+H VarS[w(t)]

)
+ o
(
1
t

)
≤ tr(GH)

t + o
(
1
t

) ≤ νκ2

t + o
(
1
t

)
.

(13.11)

Therefore, the SGD algorithm reaches accuracy ρ after less than νκ2/ρ +

o(1/ρ) iterations on average. The SGD convergence is essentially limited by

the stochastic noise induced by the random choice of one example at each

iteration. Neither the initial value of the parameter vector w nor the total

number of examples n appears in the dominant term of this bound! When

the training set is large, one could reach the desired accuracy ρ measured on

the whole training set without even visiting all the training examples. This

is in fact a kind of generalization bound.

Second-order stochastic gradient descent (2SGD) replaces the gain η with

the inverse of the Hessian matrix H:

w(t+ 1) = w(t)− 1

t
H−1 ∂

∂w
�
(
fw(t)(xt), yt

)
.

Unlike standard gradient algorithms, using the second-order information

does not change the influence of ρ on the convergence rate but improves the

constants. Again using (Murata, 1998, theorem 4), accuracy ρ is reached

after ν/ρ+ o(1/ρ) iterations.

For each of the four gradient algorithms, the first three columns of

table 13.2 report the time for a single iteration, the number of iterations

needed to reach a predefined accuracy ρ, and their product, the time needed

to reach accuracy ρ. These asymptotic results are valid with probability 1,

since the probability of their complement is smaller than η for any η > 0.

The fourth column bounds the time necessary to reduce the excess error E

below c (Eapp + ε) where c is the constant from (13.6). This is computed by
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Algorithm Cost of one Iterations Time to reach Time to reach
iteration to reach ρ accuracy ρ E ≤ c (Eapp + ε)

GD O(nd) O
(
κ log 1

ρ

)
O
(
ndκ log 1

ρ

)
O
(

d2 κ

ε1/α
log2 1

ε

)
2GD O

(
d2 + nd

)
O
(
log log 1

ρ

)
O
((

d2 + nd
)
log log 1

ρ

)
O
(

d2

ε1/α
log 1

ε
log log 1

ε

)
SGD O(d) νκ2

ρ
+ o

(
1
ρ

)
O
(

dνκ2

ρ

)
O
(

d ν κ2

ε

)
2SGD O

(
d2
)

ν
ρ
+ o

(
1
ρ

)
O
(

d2ν
ρ

)
O
(

d2 ν
ε

)
Table 13.2: Asymptotic results for gradient algorithms (with probability 1).
Compare the second-to-last column (time to optimize) with the last column (time
to reach the excess test error ε). n–number of examples; d–parameter dimension;
for κ, ν see equation (13.10).

observing that choosing ρ ∼ ( dn log n
d

)α
in (13.6) achieves the fastest rate for

ε, with minimal computation time. We can then use the asymptotic equiv-

alences ρ ∼ ε and n ∼ d
ε1/α

log 1
ε . Setting the fourth column expressions to

Tmax and solving for ε yields the best excess error achieved by each algorithm

within the limited time Tmax . This provides the asymptotic solution of the

estimation–optimization tradeoff (13.3) for large-scale problems satisfying

our assumptions.

These results clearly show that the generalization performance of large-

scale learning systems depends on both the statistical properties of the ob-

jective function and the computational properties of the chosen optimization

algorithm. Their combination leads to surprising consequences:

The SGD and 2SGD results do not depend on the estimation rate α. When

the estimation rate is poor, there is less need to optimize accurately. That

leaves time to process more examples. A potentially more useful interpreta-

tion leverages the fact that (13.11) is already a kind of generalization bound:

its fast rate trumps the slower rate assumed for the estimation error.

Second-order algorithms bring few asymptotical improvements in ε. Al-

though the superlinear 2GD algorithm improves the logarithmic term, all

four algorithms are dominated by the polynomial term in (1/ε). However,

there are important variations in the influence of the constants d, κ, and ν.

These constants are very important in practice.

Stochastic algorithms (SGD, 2SGD) yield the best generalization perfor-

mance despite showing the worst optimization performance on the empirical

cost. This phenomenon has already been described and observed in experi-

ments (e.g., Bottou and Le Cun, 2004).

In contrast, since the optimization error Eopt of small-scale learning systems

can be reduced to insignificant levels, their generalization performance is
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Model Algorithm Training Time Objective Test Error

Hinge loss
λ = 10−4

SVMLight 23,642 secs 0.2275 6.02%
SVMPerf 66 secs 0.2278 6.03%
SGD 1.4 secs 0.2275 6.02%

Logistic loss
λ = 10−5

TRON (ρ = 10−2) 30 secs 0.18907 5.68%
TRON (ρ = 10−3) 44 secs 0.18890 5.70%
SGD 2.3 secs 0.18893 5.66%

Table 13.3: Results with linear Support Vector Machines on the RCV1 dataset.

determined solely by the statistical properties of the objective function.

13.4 Experiments

This section empirically compares SGD with other optimization algorithms

on two well known machine learning tasks. The SGD C++ source code is

available from http://leon.bottou.org/projects/sgd.

13.4.1 SGD for Support Vector Machines

We first consider a well-known text categorization task, the classification of

documents belonging to the ccat category in the RCV1-v2 dataset (Lewis

et al., 2004). In order to collect a large training set, we swap the RCV1-

v2 official training and testing sets. The resulting training sets and test

sets contain 781,265 and 23,149 examples, respectively. The 47,152 TF/IDF

features are recomputed on the basis of this new split. We use a simple linear

model with the usual hinge loss Support Vector Machine objective function

min
w

C(w, b) =
λ

2
+

1

n

n∑
i=1

�(yt(wxt + b)) with �(z) = max{0, 1− z} .

The first two rows of table 13.3 replicate the results reported by Joachims

(2006) for the same data and the same value of the hyperparameter λ.

The third row of table 13.3 reports results obtained with the SGD algo-

rithm:

wt+1 = wt − ηt

(
λw +

∂�(yt(wxt + b))

∂w

)
with ηt =

1

λ(t+ t0)
.

The bias b is updated similarly. Since λ is a lower bound of the smallest

eigenvalue of the Hessian, our choice of gains ηt approximates the optimal

schedule (see section 13.3.2 ). The offset t0 was chosen to ensure that the



364 The Tradeoffs of Large-Scale Learning

50

100

0.1 0.01 0.001 0.0001 1e−05 1e−07 1e−08 1e−09

Training time (secs)

1e−06

Optimization accuracy (trainingCost−optimalTrainingCost) 

TRON

SGD

0.25 Expected risk

0.20

Figure 13.1: Training time and testing loss as a function of the optimization
accuracy ρ for SGD and TRON (Lin et al., 2007)
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Figure 13.2: Testing loss versus training time for SGD, and for conjugate
gradients running on subsets of the training set
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initial gain is comparable with the expected size of the parameter w. The

results clearly indicate that SGD offers a good alternative to the usual

Support Vector Machine solvers.

Comparable results were obtained by Shalev-Shwartz et al. (2007), using

an algorithm that essentially amounts to a stochastic gradient corrected by

a projection step. Our results indicate that the projection step is not an

essential component of this performance.

Table 13.3 also reports results obtained with the logistic loss �(z) =

log(1 + e−z) in order to avoid the issues related to the nondifferentiability

of the hinge loss. Note that this experiment uses a much better value for λ.

Our comparison points were obtained with a state-of-the-art superlinear

optimizer (Lin et al., 2007), using the stopping criteria ρ = 10−2 and

ρ = 10−3. The very simple SGD algorithm clearly learns faster.

Figure 13.1 shows how much time each algorithm takes to reach a given op-

timization accuracy. The superlinear algorithm TRON reaches the optimum

with 10 digits of accuracy in less than one minute. The stochastic gradient

starts more quickly but is unable to deliver such a high accuracy. The upper

part of the figure clearly shows that the testing set loss stops decreasing long

before the superlinear algorithm overcomes the SGD algorithm.

Figure 13.2 shows how the testing loss evolves with the training time.

The stochastic gradient descent curve can be compared with the curves

obtained using conjugate gradients3 on subsets of the training examples with

increasing sizes. Assume, for instance, that our computing time budget is

one second. Running the conjugate gradient algorithm on a random subset of

30,000 training examples achieves a much better performance than running

it on the whole training set. How to guess the right subset size a priori

remains unclear. Meanwhile, running the SGD algorithm on the full training

set reaches the same testing set performance much faster.

13.4.2 SGD for Conditional Random Fields

The CoNLL 2000 chunking task (Tjong Kim Sang and Buchholz, 2000)

consists of dividing a sentence into syntactically correlated segments such as

noun phrase, verb phrase, and so on. The training set contains 8936 sentences

divided into 106,978 segments. Error measurements are performed using a

separate set of 2012 sentences divided into 23,852 segments. Results are

3. This experimental setup was suggested by Olivier Chapelle (personal communication).
His variant of the conjugate gradient algorithm performs inexact line searches using a single
inexpensive Newton step. This is effective because exact line searches usually demand
many function evaluations which are expensive when the training set is large.
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Algorithm Training Time Training Cost Test F1 Score

CRF++/L-BFGS 4335 secs 9042 93.74%
CRFSGD 568 secs 9098 93.75%

Table 13.4: Results for Conditional Random Fields on the CoNLL 2000 chunking
task

traditionally reported using an F1 measure that takes into account both the

segment boundaries and the segment classes.

The chunking task has been successfully approached using Conditional

Random Fields (Lafferty et al., 2001; Sha and Pereira, 2003) to tag the

words with labels indicating the class and the boundaries of each segment.

Our baseline is the Conditional Random Field model provided with the

CRF++ software (Kudo, 2007). Our CRFSGD implementation replicates

the features of the CRF++ software but uses SGD to optimize the Con-

ditional Random Field objective function. The model contains 1,679,700

parameters in both cases.

Table 13.4 compares the training time, the final training cost, and the test

performance of the model when trained using the standard CRF++ L-BFGS

optimizer and the SGD implementation. The SGD version runs considerably

faster.

Comparable speeds were obtained by Vishwanathan et al. (2006), using

a stochastic gradient with a novel adaptive gain scheduling method. Our

results indicate that this adaptive gain is not the essential component of this

performance. The main cause lies with the fundamental tradeoffs outlined

in this chapter.

13.5 Conclusion

Taking into account budget constraints on both the number of examples and

the computation time, we find qualitative differences between the general-

ization performance of small-scale learning systems and large-scale learning

systems. The generalization properties of large-scale learning systems de-

pend on both the statistical properties of the objective function and the

computational properties of the optimization algorithm. We illustrate this

fact with some asymptotic results on gradient algorithms.

This framework leaves room for considerable refinements. Shalev-Shwartz

and Srebro (2008) rigorously extend the analysis to regularized risk formula-

tions with linear parameterization and find again that, for learning purposes,

SGD algorithms are often more attractive than standard primal or dual al-
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gorithms with good optimization complexity (Joachims, 2006; Hush et al.,

2006). It could also be interesting to investigate how the choice of a surro-

gate loss function (Zhang, 2004; Bartlett et al., 2006) impacts the large-scale

case.
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