

Machine Learning Yearning is a

deeplearning.ai project.

© 2018 Andrew Ng. All Rights Reserved.

Page 2 Machine Learning Yearning-Draft Andrew Ng

Table of Contents

1 Why Machine Learning Strategy

2 How to use this book to help your team

3 Prerequisites and Notation

4 Scale drives machine learning progress

5 Your development and test sets

6 Your dev and test sets should come from the same distribution

7 How large do the dev/test sets need to be?

8 Establish a single-number evaluation metric for your team to optimize

9 Optimizing and satisficing metrics

10 Having a dev set and metric speeds up iterations

11 When to change dev/test sets and metrics

12 Takeaways: Setting up development and test sets

13 Build your first system quickly, then iterate

14 Error analysis: Look at dev set examples to evaluate ideas

15 Evaluating multiple ideas in parallel during error analysis

16 Cleaning up mislabeled dev and test set examples

17 If you have a large dev set, split it into two subsets, only one of which you look at

18 How big should the Eyeball and Blackbox dev sets be?

19 Takeaways: Basic error analysis

20 Bias and Variance: The two big sources of error

21 Examples of Bias and Variance

22 Comparing to the optimal error rate

23 Addressing Bias and Variance

24 Bias vs. Variance tradeoff

25 Techniques for reducing avoidable bias
Page 3 Machine Learning Yearning-Draft Andrew Ng

26 Techniques for reducing Variance

27 Error analysis on the training set

28 Diagnosing bias and variance: Learning curves

29 Plotting training error

30 Interpreting learning curves: High bias

31 Interpreting learning curves: Other cases

32 Plotting learning curves

33 Why we compare to human-level performance

34 How to define human-level performance

35 Surpassing human-level performance

36 Why train and test on different distributions

37 Whether to use all your data

38 Whether to include inconsistent data

39 Weighting data

40 Generalizing from the training set to the dev set

41 Addressing Bias and Variance

42 Addressing data mismatch

43 Artificial data synthesis

44 The Optimization Verification test

45 General form of Optimization Verification test

46 Reinforcement learning example

47 The rise of end-to-end learning

48 More end-to-end learning examples

49 Pros and cons of end-to-end learning

50 Learned sub-components

51 Directly learning rich outputs

Page 4 Machine Learning Yearning-Draft Andrew Ng

52 Error Analysis by Parts

53 Beyond supervised learning: What’s next?

54 Building a superhero team - Get your teammates to read this

55 Big picture

56 Credits

Page 5 Machine Learning Yearning-Draft Andrew Ng

1 Why Machine Learning Strategy

Machine learning is the foundation of countless important applications, including web

search, email anti-spam, speech recognition, product recommendations, and more. I assume

that you or your team is working on a machine learning application, and that you want to

make rapid progress. This book will help you do so.

Example: Building a cat picture startup

Say you’re building a startup that will provide an endless stream of cat pictures to cat lovers.

You use a neural network to build a computer vision system for detecting cats in pictures.

But tragically, your learning algorithm’s accuracy is not yet good enough. You are under

tremendous pressure to improve your cat detector. What do you do?

Your team has a lot of ideas, such as:

• Get more data: Collect more pictures of cats.

• Collect a more diverse training set. For example, pictures of cats in unusual positions; cats

with unusual coloration; pictures shot with a variety of camera settings; ….

• Train the algorithm longer, by running more gradient descent iterations.

• Try a bigger neural network, with more layers/hidden units/parameters.

Page 6 Machine Learning Yearning-Draft Andrew Ng

• Try a smaller neural network.

• Try adding regularization (such as L2 regularization).

• Change the neural network architecture (activation function, number of hidden units, etc.)

• …

If you choose well among these possible directions, you’ll build the leading cat picture

platform, and lead your company to success. If you choose poorly, you might waste months.

How do you proceed?

This book will tell you how. Most machine learning problems leave clues that tell you what’s

useful to try, and what’s not useful to try. Learning to read those clues will save you months

or years of development time.

Page 7 Machine Learning Yearning-Draft Andrew Ng

2 How to use this book to help your team

After finishing this book, you will have a deep understanding of how to set technical

direction for a machine learning project.

But your teammates might not understand why you’re recommending a particular direction.

Perhaps you want your team to define a single-number evaluation metric, but they aren’t

convinced. How do you persuade them?

That’s why I made the chapters short: So that you can print them out and get your

teammates to read just the 1-2 pages you need them to know.

A few changes in prioritization can have a huge effect on your team’s productivity. By helping

your team with a few such changes, I hope that you can become the superhero of your team!

Page 8 Machine Learning Yearning-Draft Andrew Ng

3 Prerequisites and Notation

If you have taken a Machine Learning course such as my machine learning MOOC on

Coursera, or if you have experience applying supervised learning, you will be able to

understand this text.

I assume you are familiar with supervised learning: learning a function that maps from x

to y, using labeled training examples (x,y). Supervised learning algorithms include linear

regression, logistic regression, and neural networks. There are many forms of machine

learning, but the majority of Machine Learning’s practical value today comes from

supervised learning.

I will frequently refer to neural networks (also known as “deep learning”). You’ll only need a

basic understanding of what they are to follow this text.

If you are not familiar with the concepts mentioned here, watch the first three weeks of

videos in the Machine Learning course on Coursera at http://ml-class.org

Page 9 Machine Learning Yearning-Draft Andrew Ng

http://ml-class.org/

4 Scale drives machine learning progress

Many of the ideas of deep learning (neural networks) have been around for decades. Why are

these ideas taking off now?

Two of the biggest drivers of recent progress have been:

• Data availability. People are now spending more time on digital devices (laptops, mobile

devices). Their digital activities generate huge amounts of data that we can feed to our

learning algorithms.

• Computational scale. We started just a few years ago to be able to train neural

networks that are big enough to take advantage of the huge datasets we now have.

In detail, even as you accumulate more data, usually the performance of older learning

algorithms, such as logistic regression, “plateaus.” This means its learning curve “flattens

out,” and the algorithm stops improving even as you give it more data:

It was as if the older algorithms didn’t know what to do with all the data we now have.

If you train a small neutral network (NN) on the same supervised learning task, you might

get slightly better performance:

Page 10 Machine Learning Yearning-Draft Andrew Ng

Here, by “Small NN” we mean a neural network with only a small number of hidden

units/layers/parameters. Finally, if you train larger and larger neural networks, you can

obtain even better performance:
1

Thus, you obtain the best performance when you (i) Train a very large neural network, so

that you are on the green curve above; (ii) Have a huge amount of data.

Many other details such as neural network architecture are also important, and there has

been much innovation here. But one of the more reliable ways to improve an algorithm’s

performance today is still to (i) train a bigger network and (ii) get more data.

1 This diagram shows NNs doing better in the regime of small datasets. This effect is less consistent

than the effect of NNs doing well in the regime of huge datasets. In the small data regime, depending

on how the features are hand-engineered, traditional algorithms may or may not do better. For

example, if you have 20 training examples, it might not matter much whether you use logistic

regression or a neural network; the hand-engineering of features will have a bigger effect than the

choice of algorithm. But if you have 1 million examples, I would favor the neural network.

Page 11 Machine Learning Yearning-Draft Andrew Ng

The process of how to accomplish (i) and (ii) are surprisingly complex. This book will discuss

the details at length. We will start with general strategies that are useful for both traditional

learning algorithms and neural networks, and build up to the most modern strategies for

building deep learning systems.

Page 12 Machine Learning Yearning-Draft Andrew Ng

Setting up

development and

test sets

Page 13 Machine Learning Yearning-Draft Andrew Ng

5 Your development and test sets

Let’s return to our earlier cat pictures example: You run a mobile app, and users are

uploading pictures of many different things to your app. You want to automatically find the

cat pictures.

Your team gets a large training set by downloading pictures of cats (positive examples) and

non-cats (negative examples) off of different websites. They split the dataset 70%/30% into

training and test sets. Using this data, they build a cat detector that works well on the

training and test sets.

But when you deploy this classifier into the mobile app, you find that the performance is

really poor!

What happened?

You figure out that the pictures users are uploading have a different look than the website

images that make up your training set: Users are uploading pictures taken with mobile

phones, which tend to be lower resolution, blurrier, and poorly lit. Since your training/test

sets were made of website images, your algorithm did not generalize well to the actual

distribution you care about: mobile phone pictures.

Before the modern era of big data, it was a common rule in machine learning to use a

random 70%/30% split to form your training and test sets. This practice can work, but it’s a

bad idea in more and more applications where the training distribution (website images in

Page 14 Machine Learning Yearning-Draft Andrew Ng

our example above) is different from the distribution you ultimately care about (mobile

phone images).

We usually define:

• Training set — Which you run your learning algorithm on.

• Dev (development) set — Which you use to tune parameters, select features, and

make other decisions regarding the learning algorithm. Sometimes also called the

hold-out cross validation set.

• Test set — which you use to evaluate the performance of the algorithm, but not to make

any decisions regarding what learning algorithm or parameters to use.

Once you define a dev set (development set) and test set, your team will try a lot of ideas,

such as different learning algorithm parameters, to see what works best. The dev and test

sets allow your team to quickly see how well your algorithm is doing.

In other words, the purpose of the dev and test sets are to direct your team toward

the most important changes to make to the machine learning system.

So, you should do the following:

Choose dev and test sets to reflect data you expect to get in the future

and want to do well on.

In other words, your test set should not simply be 30% of the available data, especially if you

expect your future data (mobile phone images) to be different in nature from your training

set (website images).

If you have not yet launched your mobile app, you might not have any users yet, and thus

might not be able to get data that accurately reflects what you have to do well on in the

future. But you might still try to approximate this. For example, ask your friends to take

mobile phone pictures of cats and send them to you. Once your app is launched, you can

update your dev/test sets using actual user data.

If you really don’t have any way of getting data that approximates what you expect to get in

the future, perhaps you can start by using website images. But you should be aware of the

risk of this leading to a system that doesn’t generalize well.

It requires judgment to decide how much to invest in developing great dev and test sets. But

don’t assume your training distribution is the same as your test distribution. Try to pick test

Page 15 Machine Learning Yearning-Draft Andrew Ng

examples that reflect what you ultimately want to perform well on, rather than whatever data

you happen to have for training.

Page 16 Machine Learning Yearning-Draft Andrew Ng

6 Your dev and test sets should come from the

same distribution

You have your cat app image data segmented into four regions, based on your largest

markets: (i) US, (ii) China, (iii) India, and (iv) Other. To come up with a dev set and a test

set, say we put US and India in the dev set; China and Other in the test set. In other words,

we can randomly assign two of these segments to the dev set, and the other two to the test

set, right?

Once you define the dev and test sets, your team will be focused on improving dev set

performance. Thus, the dev set should reflect the task you want to improve on the most: To

do well on all four geographies, and not only two.

There is a second problem with having different dev and test set distributions: There is a

chance that your team will build something that works well on the dev set, only to find that it

does poorly on the test set. I’ve seen this result in much frustration and wasted effort. Avoid

letting this happen to you.

As an example, suppose your team develops a system that works well on the dev set but not

the test set. If your dev and test sets had come from the same distribution, then you would

have a very clear diagnosis of what went wrong: You have overfit the dev set. The obvious

cure is to get more dev set data.

But if the dev and test sets come from different distributions, then your options are less

clear. Several things could have gone wrong:

1. You had overfit to the dev set.

2. The test set is harder than the dev set. So your algorithm might be doing as well as could

be expected, and no further significant improvement is possible.

Page 17 Machine Learning Yearning-Draft Andrew Ng

3. The test set is not necessarily harder, but just different, from the dev set. So what works

well on the dev set just does not work well on the test set. In this case, a lot of your work

to improve dev set performance might be wasted effort.

Working on machine learning applications is hard enough. Having mismatched dev and test

sets introduces additional uncertainty about whether improving on the dev set distribution

also improves test set performance. Having mismatched dev and test sets makes it harder to

figure out what is and isn’t working, and thus makes it harder to prioritize what to work on.

If you are working on a 3rd party benchmark problem, their creator might have specified dev

and test sets that come from different distributions. Luck, rather than skill, will have a

greater impact on your performance on such benchmarks compared to if the dev and test

sets come from the same distribution. It is an important research problem to develop

learning algorithms that are trained on one distribution and generalize well to another. But if

your goal is to make progress on a specific machine learning application rather than make

research progress, I recommend trying to choose dev and test sets that are drawn from the

same distribution. This will make your team more efficient.

Page 18 Machine Learning Yearning-Draft Andrew Ng

7 How large do the dev/test sets need to be?

The dev set should be large enough to detect differences between algorithms that you are

trying out. For example, if classifier A has an accuracy of 90.0% and classifier B has an

accuracy of 90.1%, then a dev set of 100 examples would not be able to detect this 0.1%

difference. Compared to other machine learning problems I’ve seen, a 100 example dev set is

small. Dev sets with sizes from 1,000 to 10,000 examples are common. With 10,000

examples, you will have a good chance of detecting an improvement of 0.1%.
2

For mature and important applications—for example, advertising, web search, and product

recommendations—I have also seen teams that are highly motivated to eke out even a 0.01%

improvement, since it has a direct impact on the company’s profits. In this case, the dev set

could be much larger than 10,000, in order to detect even smaller improvements.

How about the size of the test set? It should be large enough to give high confidence in the

overall performance of your system. One popular heuristic had been to use 30% of your data

for your test set. This works well when you have a modest number of examples—say 100 to

10,000 examples. But in the era of big data where we now have machine learning problems

with sometimes more than a billion examples, the fraction of data allocated to dev/test sets

has been shrinking, even as the absolute number of examples in the dev/test sets has been

growing. There is no need to have excessively large dev/test sets beyond what is needed to

evaluate the performance of your algorithms.

2 In theory, one could also test if a change to an algorithm makes a statistically significant difference

on the dev set. In practice, most teams don’t bother with this (unless they are publishing academic

research papers), and I usually do not find statistical significance tests useful for measuring interim

progress.

Page 19 Machine Learning Yearning-Draft Andrew Ng

8 Establish a single-number evaluation metric

for your team to optimize

Classification accuracy is an example of a single-number evaluation metric: You run

your classifier on the dev set (or test set), and get back a single number about what fraction

of examples it classified correctly. According to this metric, if classifier A obtains 97%

accuracy, and classifier B obtains 90% accuracy, then we judge classifier A to be superior.

In contrast, Precision and Recall is not a single-number evaluation metric: It gives two
3

numbers for assessing your classifier. Having multiple-number evaluation metrics makes it

harder to compare algorithms. Suppose your algorithms perform as follows:

Classifier Precision Recall

A 95% 90%

B 98% 85%

Here, neither classifier is obviously superior, so it doesn’t immediately guide you toward

picking one.

Classifier Precision Recall F1 score

A 95% 90% 92.4%

During development, your team will try a lot of ideas about algorithm architecture, model

parameters, choice of features, etc. Having a single-number evaluation metric such as

accuracy allows you to sort all your models according to their performance on this metric,

and quickly decide what is working best.

If you really care about both Precision and Recall, I recommend using one of the standard

ways to combine them into a single number. For example, one could take the average of

precision and recall, to end up with a single number. Alternatively, you can compute the “F1

3 The Precision of a cat classifier is the fraction of images in the dev (or test) set it labeled as cats that

really are cats. Its Recall is the percentage of all cat images in the dev (or test) set that it correctly

labeled as a cat. There is often a tradeoff between having high precision and high recall.

Page 20 Machine Learning Yearning-Draft Andrew Ng

score,” which is a modified way of computing their average, and works better than simply

taking the mean.

4

Classifier Precision Recall F1 score

A 95% 90% 92.4%

B 98% 85% 91.0%

Having a single-number evaluation metric speeds up your ability to make a decision when

you are selecting among a large number of classifiers. It gives a clear preference ranking

among all of them, and therefore a clear direction for progress.

As a final example, suppose you are separately tracking the accuracy of your cat classifier in

four key markets: (i) US, (ii) China, (iii) India, and (iv) Other. This gives four metrics. By

taking an average or weighted average of these four numbers, you end up with a single

number metric. Taking an average or weighted average is one of the most common ways to

combine multiple metrics into one.

4 If you want to learn more about the F1 score, see https://en.wikipedia.org/wiki/F1_score. It is the

“harmonic mean” between Precision and Recall, and is calculated as 2/((1/Precision)+(1/Recall)).

Page 21 Machine Learning Yearning-Draft Andrew Ng

https://en.wikipedia.org/wiki/F1_score

9 Optimizing and satisficing metrics

Here’s another way to combine multiple evaluation metrics.

Suppose you care about both the accuracy and the running time of a learning algorithm. You

need to choose from these three classifiers:

Classifier Accuracy Running time

A 90% 80ms

B 92% 95ms

C 95% 1,500ms

It seems unnatural to derive a single metric by putting accuracy and running time into a

single formula, such as:

Accuracy - 0.5*RunningTime

Here’s what you can do instead: First, define what is an “acceptable” running time. Lets say

anything that runs in 100ms is acceptable. Then, maximize accuracy, subject to your

classifier meeting the running time criteria. Here, running time is a “satisficing

metric”—your classifier just has to be “good enough” on this metric, in the sense that it

should take at most 100ms. Accuracy is the “optimizing metric.”

If you are trading off N different criteria, such as binary file size of the model (which is

important for mobile apps, since users don’t want to download large apps), running time,

and accuracy, you might consider setting N-1 of the criteria as “satisficing” metrics. I.e., you

simply require that they meet a certain value. Then define the final one as the “optimizing”

metric. For example, set a threshold for what is acceptable for binary file size and running

time, and try to optimize accuracy given those constraints.

As a final example, suppose you are building a hardware device that uses a microphone to

listen for the user saying a particular “wakeword,” that then causes the system to wake up.

Examples include Amazon Echo listening for “Alexa”; Apple Siri listening for “Hey Siri”;

Android listening for “Okay Google”; and Baidu apps listening for “Hello Baidu.” You care

about both the false positive rate—the frequency with which the system wakes up even when

no one said the wakeword—as well as the false negative rate—how often it fails to wake up

when someone says the wakeword. One reasonable goal for the performance of this system is

Page 22 Machine Learning Yearning-Draft Andrew Ng

to minimize the false negative rate (optimizing metric), subject to there being no more than

one false positive every 24 hours of operation (satisficing metric).

Once your team is aligned on the evaluation metric to optimize, they will be able to make

faster progress.

Page 23 Machine Learning Yearning-Draft Andrew Ng

10 Having a dev set and metric speeds up

iterations

It is very difficult to know in advance what approach will work best for a new problem. Even

experienced machine learning researchers will usually try out many dozens of ideas before

they discover something satisfactory. When building a machine learning system, I will often:

1. Start off with some idea on how to build the system.

2. Implement the idea in code.

3. Carry out an experiment which tells me how well the idea worked. (Usually my first few

ideas don’t work!) Based on these learnings, go back to generate more ideas, and keep on

iterating.

This is an iterative process. The faster you can go round this loop, the faster you will make

progress. This is why having dev/test sets and a metric are important: Each time you try an

idea, measuring your idea’s performance on the dev set lets you quickly decide if you’re

heading in the right direction.

In contrast, suppose you don’t have a specific dev set and metric. So each time your team

develops a new cat classifier, you have to incorporate it into your app, and play with the app

for a few hours to get a sense of whether the new classifier is an improvement. This would be

incredibly slow! Also, if your team improves the classifier’s accuracy from 95.0% to 95.1%,

you might not be able to detect that 0.1% improvement from playing with the app. Yet a lot

of progress in your system will be made by gradually accumulating dozens of these 0.1%

improvements. Having a dev set and metric allows you to very quickly detect which ideas are

successfully giving you small (or large) improvements, and therefore lets you quickly decide

what ideas to keep refining, and which ones to discard.

Page 24 Machine Learning Yearning-Draft Andrew Ng

11 When to change dev/test sets and metrics

When starting out on a new project, I try to quickly choose dev/test sets, since this gives the

team a well-defined target to aim for.

I typically ask my teams to come up with an initial dev/test set and an initial metric in less

than one week—rarely longer. It is better to come up with something imperfect and get going

quickly, rather than overthink this. But this one week timeline does not apply to mature

applications. For example, anti-spam is a mature deep learning application. I have seen

teams working on already-mature systems spend months to acquire even better dev/test

sets.

If you later realize that your initial dev/test set or metric missed the mark, by all means

change them quickly. For example, if your dev set + metric ranks classifier A above classifier

B, but your team thinks that classifier B is actually superior for your product, then this might

be a sign that you need to change your dev/test sets or your evaluation metric.

There are three main possible causes of the dev set/metric incorrectly rating classifier A

higher:

1. The actual distribution you need to do well on is different from the dev/test sets.

Suppose your initial dev/test set had mainly pictures of adult cats. You ship your cat app,

and find that users are uploading a lot more kitten images than expected. So, the dev/test set

distribution is not representative of the actual distribution you need to do well on. In this

case, update your dev/test sets to be more representative.

Page 25 Machine Learning Yearning-Draft Andrew Ng

2. You have overfit to the dev set.

The process of repeatedly evaluating ideas on the dev set causes your algorithm to gradually

“overfit” to the dev set. When you are done developing, you will evaluate your system on the

test set. If you find that your dev set performance is much better than your test set

performance, it is a sign that you have overfit to the dev set. In this case, get a fresh dev set.

If you need to track your team’s progress, you can also evaluate your system regularly—say

once per week or once per month—on the test set. But do not use the test set to make any

decisions regarding the algorithm, including whether to roll back to the previous week’s

system. If you do so, you will start to overfit to the test set, and can no longer count on it to

give a completely unbiased estimate of your system’s performance (which you would need if

you’re publishing research papers, or perhaps using this metric to make important business

decisions).

3. The metric is measuring something other than what the project needs to optimize.

Suppose that for your cat application, your metric is classification accuracy. This metric

currently ranks classifier A as superior to classifier B. But suppose you try out both

algorithms, and find classifier A is allowing occasional pornographic images to slip through.

Even though classifier A is more accurate, the bad impression left by the occasional

pornographic image means its performance is unacceptable. What do you do?

Here, the metric is failing to identify the fact that Algorithm B is in fact better than

Algorithm A for your product. So, you can no longer trust the metric to pick the best

algorithm. It is time to change evaluation metrics. For example, you can change the metric to

heavily penalize letting through pornographic images. I would strongly recommend picking

a new metric and using the new metric to explicitly define a new goal for the team, rather

than proceeding for too long without a trusted metric and reverting to manually choosing

among classifiers.

It is quite common to change dev/test sets or evaluation metrics during a project. Having an

initial dev/test set and metric helps you iterate quickly. If you ever find that the dev/test sets

or metric are no longer pointing your team in the right direction, it’s not a big deal! Just

change them and make sure your team knows about the new direction.

Page 26 Machine Learning Yearning-Draft Andrew Ng

12 Takeaways: Setting up development and

test sets

• Choose dev and test sets from a distribution that reflects what data you expect to get in

the future and want to do well on. This may not be the same as your training data’s

distribution.

• Choose dev and test sets from the same distribution if possible.

• Choose a single-number evaluation metric for your team to optimize. If there are multiple

goals that you care about, consider combining them into a single formula (such as

averaging multiple error metrics) or defining satisficing and optimizing metrics.

• Machine learning is a highly iterative process: You may try many dozens of ideas before

finding one that you’re satisfied with.

• Having dev/test sets and a single-number evaluation metric helps you quickly evaluate

algorithms, and therefore iterate faster.

• When starting out on a brand new application, try to establish dev/test sets and a metric

quickly, say in less than a week. It might be okay to take longer on mature applications.

• The old heuristic of a 70%/30% train/test split does not apply for problems where you

have a lot of data; the dev and test sets can be much less than 30% of the data.

• Your dev set should be large enough to detect meaningful changes in the accuracy of your

algorithm, but not necessarily much larger. Your test set should be big enough to give you

a confident estimate of the final performance of your system.

• If your dev set and metric are no longer pointing your team in the right direction, quickly

change them: (i) If you had overfit the dev set, get more dev set data. (ii) If the actual

distribution you care about is different from the dev/test set distribution, get new

dev/test set data. (iii) If your metric is no longer measuring what is most important to

you, change the metric.

Page 27 Machine Learning Yearning-Draft Andrew Ng

Basic Error

Analysis

Page 28 Machine Learning Yearning-Draft Andrew Ng

13 Build your first system quickly, then iterate

You want to build a new email anti-spam system. Your team has several ideas:

• Collect a huge training set of spam email. For example, set up a “honeypot”: deliberately

send fake email addresses to known spammers, so that you can automatically harvest the

spam messages they send to those addresses.

• Develop features for understanding the text content of the email.

• Develop features for understanding the email envelope/header features to show what set

of internet servers the message went through.

• and more.

Even though I have worked extensively on anti-spam, I would still have a hard time picking

one of these directions. It is even harder if you are not an expert in the application area.

So don’t start off trying to design and build the perfect system. Instead, build and train a

basic system quickly—perhaps in just a few days. Even if the basic system is far from the
5

“best” system you can build, it is valuable to examine how the basic system functions: you

will quickly find clues that show you the most promising directions in which to invest your

time. These next few chapters will show you how to read these clues.

5 This advice is meant for readers wanting to build AI applications, rather than those whose goal is to

publish academic papers. I will later return to the topic of doing research.

Page 29 Machine Learning Yearning-Draft Andrew Ng

14 Error analysis: Look at dev set examples to

evaluate ideas

When you play with your cat app, you notice several examples where it mistakes dogs for

cats. Some dogs do look like cats!

A team member proposes incorporating 3rd party software that will make the system do

better on dog images. These changes will take a month, and the team member is

enthusiastic. Should you ask them to go ahead?

Before investing a month on this task, I recommend that you first estimate how much it will

actually improve the system’s accuracy. Then you can more rationally decide if this is worth

the month of development time, or if you’re better off using that time on other tasks.

In detail, here’s what you can do:

1. Gather a sample of 100 dev set examples that your system misclassified. I.e., examples

that your system made an error on.

2. Look at these examples manually, and count what fraction of them are dog images.

The process of looking at misclassified examples is called error analysis. In this example, if

you find that only 5% of the misclassified images are dogs, then no matter how much you

improve your algorithm’s performance on dog images, you won’t get rid of more than 5% of

your errors. In other words, 5% is a “ceiling” (meaning maximum possible amount) for how

much the proposed project could help. Thus, if your overall system is currently 90% accurate

(10% error), this improvement is likely to result in at best 90.5% accuracy (or 9.5% error,

which is 5% less error than the original 10% error).

Page 30 Machine Learning Yearning-Draft Andrew Ng

In contrast, if you find that 50% of the mistakes are dogs, then you can be more confident

that the proposed project will have a big impact. It could boost accuracy from 90% to 95% (a

50% relative reduction in error, from 10% down to 5%).

This simple counting procedure of error analysis gives you a quick way to estimate the

possible value of incorporating the 3rd party software for dog images. It provides a

quantitative basis on which to decide whether to make this investment.

Error analysis can often help you figure out how promising different directions are. I’ve seen

many engineers reluctant to carry out error analysis. It often feels more exciting to just jump

in and implement some idea, rather than question if the idea is worth the time investment.

This is a common mistake: It might result in your team spending a month only to realize

afterward that it resulted in little benefit.

Manually examining 100 examples does not take long. Even if you take one minute per

image, you’d be done in under two hours. These two hours could save you a month of wasted

effort.

Error Analysis refers to the process of examining dev set examples that your algorithm

misclassified, so that you can understand the underlying causes of the errors. This can help

you prioritize projects—as in this example—and inspire new directions, which we will discuss

next. The next few chapters will also present best practices for carrying out error analyses.

Page 31 Machine Learning Yearning-Draft Andrew Ng

15 Evaluating multiple ideas in parallel during

error analysis

Your team has several ideas for improving the cat detector:

• Fix the problem of your algorithm recognizing dogs as cats.

• Fix the problem of your algorithm recognizing great cats (lions, panthers, etc.) as house

cats (pets).

• Improve the system’s performance on blurry images.

• …

You can efficiently evaluate all of these ideas in parallel. I usually create a spreadsheet and

fill it out while looking through ~100 misclassified dev set images. I also jot down comments

that might help me remember specific examples. To illustrate this process, let’s look at a

spreadsheet you might produce with a small dev set of four examples:

Image Dog Great cat Blurry Comments

1 ✔ Unusual pitbull color

2 ✔

3 ✔ ✔ Lion; picture taken at
zoo on rainy day

4 ✔ Panther behind tree

% of total 25% 50% 50%

Image #3 above has both the Great Cat and the Blurry columns checked. Furthermore,

because it is possible for one example to be associated with multiple categories, the

percentages at the bottom may not add up to 100%.

Although you may first formulate the categories (Dog, Great cat, Blurry) then categorize the

examples by hand, in practice, once you start looking through examples, you will probably be

inspired to propose new error categories. For example, say you go through a dozen images

and realize a lot of mistakes occur with Instagram-filtered pictures. You can go back and add

a new “Instagram” column to the spreadsheet. Manually looking at examples that the

algorithm misclassified and asking how/whether you as a human could have labeled the

Page 32 Machine Learning Yearning-Draft Andrew Ng

picture correctly will often inspire you to come up with new categories of errors and

solutions.

The most helpful error categories will be ones that you have an idea for improving. For

example, the Instagram category will be most helpful to add if you have an idea to “undo”

Instagram filters and recover the original image. But you don’t have to restrict yourself only

to error categories you know how to improve; the goal of this process is to build your

intuition about the most promising areas to focus on.

Error analysis is an iterative process. Don’t worry if you start off with no categories in mind.

After looking at a couple of images, you might come up with a few ideas for error categories.

After manually categorizing some images, you might think of new categories and re-examine

the images in light of the new categories, and so on.

Suppose you finish carrying out error analysis on 100 misclassified dev set examples and get

the following:

Image Dog Great cat Blurry Comments

1 ✔ Usual pitbull color

2 ✔

3 ✔ ✔ Lion; picture taken
at zoo on rainy day

4 ✔ Panther behind tree

… … … … ...

% of total 8% 43% 61%

You now know that working on a project to address the Dog mistakes can eliminate 8% of

the errors at most. Working on Great Cat or Blurry image errors could help eliminate more

errors. Therefore, you might pick one of the two latter categories to focus on. If your team

has enough people to pursue multiple directions in parallel, you can also ask some engineers

to work on Great Cats and others to work on Blurry images.

Error analysis does not produce a rigid mathematical formula that tells you what the highest

priority task should be. You also have to take into account how much progress you expect to

make on different categories and the amount of work needed to tackle each one.

Page 33 Machine Learning Yearning-Draft Andrew Ng

16 Cleaning up mislabeled dev and test set

examples

During error analysis, you might notice that some examples in your dev set are mislabeled.

When I say “mislabeled” here, I mean that the pictures were already mislabeled by a human

labeler even before the algorithm encountered it. I.e., the class label in an example (x,y) has

an incorrect value for y. For example, perhaps some pictures that are not cats are mislabeled

as containing a cat, and vice versa. If you suspect the fraction of mislabeled images is

significant, add a category to keep track of the fraction of examples mislabeled:

Image Dog Great cat Blurry Mislabeled Comments

…

98 ✔ Labeler missed cat
in background

99 ✔

100 ✔ Drawing of a cat;
not a real cat.

% of total 8% 43% 61% 6%

Should you correct the labels in your dev set? Remember that the goal of the dev set is to

help you quickly evaluate algorithms so that you can tell if Algorithm A or B is better. If the

fraction of the dev set that is mislabeled impedes your ability to make these judgments, then

it is worth spending time to fix the mislabeled dev set labels.

For example, suppose your classifier’s performance is:

• Overall accuracy on dev set.………………. 90% (10% overall error.)

• Errors due to mislabeled examples……. 0.6% (6% of dev set errors.)

• Errors due to other causes………………… 9.4% (94% of dev set errors)

Here, the 0.6% inaccuracy due to mislabeling might not be significant enough relative to the

9.4% of errors you could be improving. There is no harm in manually fixing the mislabeled

images in the dev set, but it is not crucial to do so: It might be fine not knowing whether your

system has 10% or 9.4% overall error.

Suppose you keep improving the cat classifier and reach the following performance:

Page 34 Machine Learning Yearning-Draft Andrew Ng

• Overall accuracy on dev set.………………. 98.0% (2.0% overall error.)

• Errors due to mislabeled examples……. 0.6%. (30% of dev set errors.)

• Errors due to other causes………………… 1.4% (70% of dev set errors)

30% of your errors are due to the mislabeled dev set images, adding significant error to your

estimates of accuracy. It is now worthwhile to improve the quality of the labels in the dev set.

Tackling the mislabeled examples will help you figure out if a classifier’s error is closer to

1.4% or 2%—a significant relative difference.

It is not uncommon to start off tolerating some mislabeled dev/test set examples, only later

to change your mind as your system improves so that the fraction of mislabeled examples

grows relative to the total set of errors.

The last chapter explained how you can improve error categories such as Dog, Great Cat and

Blurry through algorithmic improvements. You have learned in this chapter that you can

work on the Mislabeled category as well—through improving the data’s labels.

Whatever process you apply to fixing dev set labels, remember to apply it to the test set

labels too so that your dev and test sets continue to be drawn from the same distribution.

Fixing your dev and test sets together would prevent the problem we discussed in Chapter 6,

where your team optimizes for dev set performance only to realize later that they are being

judged on a different criterion based on a different test set.

If you decide to improve the label quality, consider double-checking both the labels of

examples that your system misclassified as well as labels of examples it correctly classified. It

is possible that both the original label and your learning algorithm were wrong on an

example. If you fix only the labels of examples that your system had misclassified, you might

introduce bias into your evaluation. If you have 1,000 dev set examples, and if your classifier

has 98.0% accuracy, it is easier to examine the 20 examples it misclassified than to examine

all 980 examples classified correctly. Because it is easier in practice to check only the

misclassified examples, bias does creep into some dev sets. This bias is acceptable if you are

interested only in developing a product or application, but it would be a problem if you plan

to use the result in an academic research paper or need a completely unbiased measure of

test set accuracy.

Page 35 Machine Learning Yearning-Draft Andrew Ng

17 If you have a large dev set, split it into two

subsets, only one of which you look at

Suppose you have a large dev set of 5,000 examples in which you have a 20% error rate.

Thus, your algorithm is misclassifying ~1,000 dev images. It takes a long time to manually

examine 1,000 images, so we might decide not to use all of them in the error analysis.

In this case, I would explicitly split the dev set into two subsets, one of which you look at, and

one of which you don’t. You will more rapidly overfit the portion that you are manually

looking at. You can use the portion you are not manually looking at to tune parameters.

Let’s continue our example above, in which the algorithm is misclassifying 1,000 out of

5,000 dev set examples. Suppose we want to manually examine about 100 errors for error

analysis (10% of the errors). You should randomly select 10% of the dev set and place that

into what we’ll call an Eyeball dev set to remind ourselves that we are looking at it with our

eyes. (For a project on speech recognition, in which you would be listening to audio clips,

perhaps you would call this set an Ear dev set instead). The Eyeball dev set therefore has 500

examples, of which we would expect our algorithm to misclassify about 100.

The second subset of the dev set, called the Blackbox dev set, will have the remaining

4500 examples. You can use the Blackbox dev set to evaluate classifiers automatically by

measuring their error rates. You can also use it to select among algorithms or tune

hyperparameters. However, you should avoid looking at it with your eyes. We use the term

“Blackbox” because we will only use this subset of the data to obtain “Blackbox” evaluations

of classifiers.

Page 36 Machine Learning Yearning-Draft Andrew Ng

Why do we explicitly separate the dev set into Eyeball and Blackbox dev sets? Since you will

gain intuition about the examples in the Eyeball dev set, you will start to overfit the Eyeball

dev set faster. If you see the performance on the Eyeball dev set improving much more

rapidly than the performance on the Blackbox dev set, you have overfit the Eyeball dev set.

In this case, you might need to discard it and find a new Eyeball dev set by moving more

examples from the Blackbox dev set into the Eyeball dev set or by acquiring new labeled

data.

Explicitly splitting your dev set into Eyeball and Blackbox dev sets allows you to tell when

your manual error analysis process is causing you to overfit the Eyeball portion of your data.

Page 37 Machine Learning Yearning-Draft Andrew Ng

18 How big should the Eyeball and Blackbox

dev sets be?

Your Eyeball dev set should be large enough to give you a sense of your algorithm’s major

error categories. If you are working on a task that humans do well (such as recognizing cats

in images), here are some rough guidelines:

• An eyeball dev set in which your classifier makes 10 mistakes would be considered very

small. With just 10 errors, it’s hard to accurately estimate the impact of different error

categories. But if you have very little data and cannot afford to put more into the Eyeball

dev set, it’s better than nothing and will help with project prioritization.

• If your classifier makes ~20 mistakes on eyeball dev examples, you would start to get a

rough sense of the major error sources.

• With ~50 mistakes, you would get a good sense of the major error sources.

• With ~100 mistakes, you would get a very good sense of the major sources of errors. I’ve

seen people manually analyze even more errors—sometimes as many as 500. There is no

harm in this as long as you have enough data.

Say your classifier has a 5% error rate. To make sure you have ~100 mislabeled examples in

the Eyeball dev set, the Eyeball dev set would have to have about 2,000 examples (since

0.05*2,000 = 100). The lower your classifier’s error rate, the larger your Eyeball dev set

needs to be in order to get a large enough set of errors to analyze.

If you are working on a task that even humans cannot do well, then the exercise of examining

an Eyeball dev set will not be as helpful because it is harder to figure out why the algorithm

didn’t classify an example correctly. In this case, you might omit having an Eyeball dev set.

We discuss guidelines for such problems in a later chapter.

Page 38 Machine Learning Yearning-Draft Andrew Ng

How about the Blackbox dev set? We previously said that dev sets of around 1,000-10,000

examples are common. To refine that statement, a Blackbox dev set of 1,000-10,000

examples will often give you enough data to tune hyperparameters and select among models,

though there is little harm in having even more data. A Blackbox dev set of 100 would be

small but still useful.

If you have a small dev set, then you might not have enough data to split into Eyeball and

Blackbox dev sets that are both large enough to serve their purposes. Instead, your entire dev

set might have to be used as the Eyeball dev set—i.e., you would manually examine all the

dev set data.

Between the Eyeball and Blackbox dev sets, I consider the Eyeball dev set more important

(assuming that you are working on a problem that humans can solve well and that examining

the examples helps you gain insight). If you only have an Eyeball dev set, you can perform

error analyses, model selection and hyperparameter tuning all on that set. The downside of

having only an Eyeball dev set is that the risk of overfitting the dev set is greater.

If you have plentiful access to data, then the size of the Eyeball dev set would be determined

mainly by how many examples you have time to manually analyze. For example, I’ve rarely

seen anyone manually analyze more than 1,000 errors.

Page 39 Machine Learning Yearning-Draft Andrew Ng

19 Takeaways: Basic error analysis

• When you start a new project, especially if it is in an area in which you are not an expert,

it is hard to correctly guess the most promising directions.

• So don’t start off trying to design and build the perfect system. Instead build and train a

basic system as quickly as possible—perhaps in a few days. Then use error analysis to

help you identify the most promising directions and iteratively improve your algorithm

from there.

• Carry out error analysis by manually examining ~100 dev set examples the algorithm

misclassifies and counting the major categories of errors. Use this information to

prioritize what types of errors to work on fixing.

• Consider splitting the dev set into an Eyeball dev set, which you will manually examine,

and a Blackbox dev set, which you will not manually examine. If performance on the

Eyeball dev set is much better than the Blackbox dev set, you have overfit the Eyeball dev

set and should consider acquiring more data for it.

• The Eyeball dev set should be big enough so that your algorithm misclassifies enough

examples for you to analyze. A Blackbox dev set of 1,000-10,000 examples is sufficient

for many applications.

• If your dev set is not big enough to split this way, just use an Eyeball dev set for manual

error analysis, model selection, and hyperparameter tuning.

Page 40 Machine Learning Yearning-Draft Andrew Ng

