
5 First-Order Methods for Nonsmooth

Convex Large-Scale Optimization, I:

General Purpose Methods

Anatoli Juditsky Anatoli.Juditsky@imag.fr

Laboratoire Jean Kuntzmann , Université J. Fourier
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We discuss several state-of-the-art computationally cheap, as opposed to the

polynomial time interior-point algorithms, first-order methods for minimiz-

ing convex objectives over simple large-scale feasible sets. Our emphasis is

on the general situation of a nonsmooth convex objective represented by de-

terministic/stochastic first-order oracle and on the methods which, under

favorable circumstances, exhibit a (nearly) dimension-independent conver-

gence rate.

5.1 Introduction

At present, almost all of convex programming is within the grasp of polyno-

mial time interior-point methods (IPMs) capable of solving convex programs

to high accuracy at a low iteration count. However, the iteration cost of all

known polynomial methods grows nonlinearly with a problem’s design di-

mension n (number of decision variables), something like n3. As a result, as

the design dimension grows, polynomial time methods eventually become

impractical—roughly speaking, a single iteration lasts forever. What “even-
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tually” means in fact depends on a problem’s structure. For instance, typi-

cal linear programming programs of decision-making origin have extremely

sparse constraint matrices, and IPMs are able to solve programs of this type

with tens and hundreds of thousands variables and constraints in reasonable

time. In contrast to this, linear programming programs arising in machine

learning and signal processing often have dense constraint matrices. Such

programs with “just” few thousand variables and constraints can become

very difficult for an IPM. At the present level of our knowledge, the meth-

ods of choice when solving convex programs which, because of their size,

are beyond the practical grasp of IPMs, are the first-order methods (FOMs)

with computationally cheap iterations. In this chapter, we present several

state-of-the-art FOMs for large-scale convex optimization, focusing on the

most general nonsmooth unstructured case, where the convex objective f to

be minimized can be nonsmooth and is represented by a black box, a routine

able to compute the values and subgradients of f .

5.1.1 First-Order Methods: Limits of Performance

We start by explaining what can and cannot be expected from FOMs,

restricting ourselves for the time being to convex programs of the form

Opt(f) = min
x∈X

f(x), (5.1)

where X is a compact convex subset of Rn, and f is known to belong to a

given family F of convex and (at least) Lipschitz continuous functions on X.

Formally, an FOM is an algorithm B which knows in advance what X and

F are, but does not know exactly what f ∈ F is. It is restricted to learning

f via subsequent calls to a first-order oracle—a routine which, given a point

x ∈ X on input, returns on output a value f(x) and a (sub)gradient f ′(x)

of f at x (informally speaking, this setting implicitly assumes that X is

simple (like box, or ball, or standard simplex), while f can be complicated).

Specifically, as applied to a particular objective f ∈ F and given on input

a required accuracy ε > 0, the method B, after generating a finite sequence

of search points xt ∈ X, t = 1, 2, ..., where the first-order oracle is called,

terminates and outputs an approximate solution x̂ ∈ X which should be ε-

optimal: f(x̂)−Opt(f) ≤ ε. In other words, the method itself is a collection

of rules for generating subsequent search points, identifying the terminal

step, and building the approximate solution.

These rules, in principle, can be arbitrary, with the only limitation of

being nonanticipating, meaning that the output of a rule is uniquely defined

by X and the first-order information on f accumulated before the rule
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is applied. As a result, for a given B and X, x1 is independent of f ,

x2 depends solely on f(x1), f ′(x1), and so on. Similarly, the decision to

terminate after a particular number t of steps, as well as the resulting

approximate solution x̂, are uniquely defined by the first-order information

f(x1), f ′(x1), ..., f(xt), f
′(xt) accumulated in the course of these t steps.

Performance limits of FOMs are given by information-based complexity

theory, which says what, for given X,F, ε, may be the minimal number of

steps of an FOM solving all problems (5.1) with f ∈ F within accuracy ε.

Here are several instructive examples (see Nemirovsky and Yudin, 1983).

(a) Let X ⊂ {x ∈ Rn : ‖x‖p ≤ R}, where p ∈ {1, 2}, and let F = Fp comprise

all convex functions f which are Lipschitz continuous, with a given constant

L, w.r.t. ‖·‖p. When X = {x ∈ Rn : ‖x‖p ≤ R}, the number N of steps of any

FOM able to solve every problem from the outlined family within accuracy

ε is at least O(1) min[n,L2R2/ε2]. 1 When p = 2, this lower complexity

bound remains true when F is restricted to being the family of all functions

of the type f(x) = max
1≤i≤n

[εiLxi + ai] with εi = ±1. Moreover, the bound

is nearly achievable: whenever X ⊂ {x ∈ Rn : ‖x‖p ≤ R}, there exist quite

transparent (and simple to implement when X is simple) FOMs able to solve

all problems (5.1) with f ∈ Fp within accuracy ε in O(1)(ln(n))2/p−1L2R2/ε2

steps.

It should be stressed that the outlined nearly dimension-independent perfor-

mance of FOMs depends heavily on the assumption p ∈ {1, 2}. 2 With p set

to +∞ (i.e., when minimizing convex functions that are Lipschitz continu-

ous with constant L w.r.t. ‖ · ‖∞ over the box X = {x ∈ Rn : ‖x‖∞ ≤ R}),
the lower and upper complexity bounds are O(1)n ln(LR/ε), provided that

LR/ε ≥ 2; these bounds depend heavily on the problem’s dimension.

(b) Let X = {x ∈ Rn : ‖x‖2 ≤ R}, and let F comprise all differentiable

convex functions, Lipschitz continuous with constant L w.r.t. ‖·‖2, gradient.

Then the number N of steps of any FOM able to solve every problem from

the outlined family within accuracy ε is at least O(1) min[n,
√
LR2/ε]. This

lower complexity bound remains true when F is restricted to be the family of

convex quadratic forms 1
2x

TAx+ bTx with positive semidefinite symmetric

matrices A of spectral norm (maximal singular value) not exceeding L.

Here again the lower complexity bound is nearly achievable. Whenever

X ⊂ {x ∈ Rn : ‖x‖2 ≤ R}, there exists a simple implementation when X is

simple (although by far not transparent) FOM: Nesterov’s optimal algorithm

for smooth convex minimization (Nesterov, 1983, 2005), which allows one to

1. From now on, all O(1)’s are appropriate positive absolute constants.
2. In fact, it can be relaxed to 1 ≤ p ≤ 2.
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solve within accuracy ε all problems (5.1) with f ∈ F in O(1)
√
LR2/ε steps.

(c) Let X be as in (b), and let F comprise all functions of the form

f(x) = ‖Ax − b‖2, where the spectral norm of A (which is no longer

positive semidefinite) does not exceed a given L. Let us slightly extend

the power of the first-order oracle and assume that at a step of an FOM

we observe b (but not A) and are allowed to carry out O(1) matrix-vector

multiplications involving A and AT . In this case, the number of steps of any

method capable to solve all problems in question within accuracy ε is at

least O(1) min[n,LR/ε], and there exists a method (specifically, Nesterov’s

optimal algorithm as applied to the quadratic form ‖Ax − b‖22), which

achieves the desired accuracy in O(1)LR/ε steps.

The outlined results bring us both bad and good news on FOMs as applied

to large-scale convex programs. The bad news is that unless the number of

steps of the method exceeds the problem’s design dimension n (which is of

no interest when n is really large), and without imposing severe additional

restrictions on the objectives to be minimized, an FOM can exhibit only a

sublinear rate of convergence: specifically denoting by t the number of steps,

the rate O(1)(ln(n))1/p−1/2LR/t1/2 in the case of (a) (better than nothing,

but really slow), O(1)LR2/t2 in the case of (b) (much better, but simple

X along with smooth f is a rare commodity), and O(1)LR/t in the case of

(c) (in-between (a) and (b)). As a consequence, FOMs are poorly suited for

building high-accuracy solutions to large-scale convex problems.

The good news is that for problems with favorable geometry (e.g., those in

(a)-(c)), good FOMs exhibit a dimension-independent, or nearly so, rate of

convergence, which is of paramount importance in large-scale applications.

Another bit of good news (not declared explicitly in the above examples)

is that when X is simple, typical FOMs have cheap iterations—modulo

computations hidden in the oracle, an iteration costs just O(dimX) a.o.

The bottom line is that FOMs are well suited for finding medium-accuracy

solutions to large-scale convex problems, at least when the latter possess

favorable geometry.

Another conclusion of the presented results is that the performance limits

of FOMs depend heavily on the size R of the feasible domain and on the

Lipschitz constant L (of f in the case of (a), and of f ′ in the case of (b)).

This is in a sharp contrast to IPMs, where the complexity bounds depend

logarithmically on the magnitudes of an optimal solution and of the data

(the analogies of R and L, respectively), which, practically speaking, allows

one to handle problems with unbounded domains (one may impose an upper

bound of 106 or 10100 on the variables) and not to bother much about how
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the data are scaled.3 Strong dependence of the complexity of FOMs on L

and R implies a number of important consequences. In particular:

• Boundedness of X is of paramount importance, at least theoretically. In

this respect, unconstrained settings, as in Lasso: min
x
{λ‖x‖1+‖Ax−b‖22} are

less preferable than their bounded domain counterparts, as in min{‖Ax −
b‖2 : ‖x‖1 ≤ R}4 in full accordance with common sense—however difficult

it is to find a needle in a haystack, a small haystack in this respect is better

than a large one!

• For a given problem (5.1), the size R of the feasible domain and the

Lipschitz constant L of the objective depend on the norm ‖ · ‖ used to

quantify these quantities: R = R‖·‖, L = L‖·‖. When ‖ ·‖ varies, the product

L‖·‖R‖·‖ (this product is all that matters) changes,5 and this phenomenon

should be taken into account when choosing an FOM for a particular

problem.

5.1.2 What Is Ahead

Literature on FOMs, which has always been huge, is now growing explosively—

partly due to rapidly increasing demand for large-scale optimization, and

partly due to endogenous reasons stemming primarily from discovering ways

(Nesterov, 2005) to accelerate FOMs by exploiting problems’ structure (for

more details on the latter subject, see Chapter 6). Even a brief overview

of this literature in a single chapter would be completely unrealistic. Our

primary selection criteria were (a) to focus on techniques for large-scale nons-

mooth convex programs (these are the problems arising in most applications

known to us), (b) to restrict ourselves to FOMs possessing state-of-the-art

(in some cases—even provably optimal) nonasymptotic efficiency estimates,

and (c) the possibility for self-contained presentation of the methods, given

space limitations. Last, but not least, we preferred to focus on the situa-

tions of which we have first-hand (or nearly so) knowledge. As a result, our

presentation of FOMs is definitely incomplete. As for citation policy, we

restrict ourselves to referring to works directly related to what we are pre-

3. In IPMs, scaling of the data affects stability of the methods w.r.t. rounding errors, but
this is another story.
4. We believe that the desire to end up with unconstrained problems stems from the
common belief that the unconstrained convex minimization is simpler than the constrained
one. To the best of our understanding, this belief is misleading, and the actual distinction is
between optimization over simple and over sophisticated domains; what is simple depends
on the method in question.
5. For example, the ratio [L‖·‖2R‖·‖2 ]/L‖·‖1R‖·‖1 can be as small as 1/

√
n and as large as√

n
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senting, with no attempt to give even a nearly exhaustive list of references

to FOM literature. We apologize in advance for potential omissions even on

this reduced list.

In this chapter, we focus on the simplest general-purpose FOMs, mirror

descent (MD) methods aimed at solving nonsmooth convex minimization

problems, specifically, general-type problems (5.1) (Section 5.2), problems

(5.1) with strongly convex objectives (Section 5.4), convex problems with

functional constraints minx∈X {f0(x) : fi(x) ≤ 0, 1 ≤ i ≤ m} (Section 5.3),

and stochastic versions of problems (5.1), where the first-order oracle is

replaced with its stochastic counterpart, thus providing unbiased random

estimates of the subgradients of the objective rather than the subgradients

themselves (Section 5.5). Finally, Section 5.6 presents extensions of the

mirror descent scheme from problems of convex minimization to the convex-

concave saddle-point problems.

As we have already said, this chapter is devoted to general-purpose FOMs,

meaning that the methods in question are fully black-box-oriented—they

do not assume any a priori knowledge of the structure of the objective

(and the functional constraints, if any) aside from convexity and Lipschitz

continuity. By itself, this generality is redundant: convex programs arising in

applications always possess a lot of known in advance structure, and utilizing

a priori knowledge of this structure can accelerate the solution process

dramatically. Acceleration of FOMs by utilizing a problems’ structure is

the subject of Chapter 6.

5.2 Mirror Descent Algorithm: Minimizing over a Simple Set

5.2.1 Problem of Interest

We focus primarily on solving an optimization problem of the form

Opt = min
x∈X

f(x), (5.2)

where X ⊂ E is a closed convex set in a finite-dimensional Euclidean space

E, and f : X→ R is a Lipschitz continuous convex function represented by

a first-order oracle. This oracle is a routine which, given a point x ∈ X on

input, returns the value f(x) and a subgradient f ′(x) of f at x. We always

assume that f ′(x) is bounded on X. We also assume that (5.2) is solvable.

5.2.2 Mirror Descent setup

We set up the MD method with two entities:
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a norm ‖ · ‖ on the space E embedding X, and the conjugate norm ‖ · ‖∗
on E∗: ‖ξ‖∗ = max

x
{〈ξ, x〉 : ‖x‖ ≤ 1};

a distance-generating function (d.-g.f. for short) for X compatible with the

norm ‖ · ‖, that is, a continuous convex function ω(x) : X→ R such that

—ω(x) admits a selection ω′(x) of a subgradient which is continuous on

the set Xo = {x ∈ X : ∂ω(x) 6= ∅};
—ω(·) is strongly convex, with modulus 1, w.r.t. ‖ · ‖:

∀(x, x′ ∈ Xo) : 〈ω′(x)− ω′(x′), x− x′〉 ≥ ‖x− y‖2. (5.3)

For x ∈ Xo, u ∈ X, let

Vx(u) = ω(u)− ω(x)− 〈ω′(x), u− x〉. (5.4)

Denote xc = argminu∈Xω(u) (the existence of a minimizer is given by

continuity and strong convexity of ω on X and by closedness of X, and

its uniqueness by strong convexity of ω). When X is bounded, we define

ω(·)-diameter Ω = maxu∈X Vxc(u) ≤ maxX ω(u) − minX ω(u) of X. Given

x ∈ Xo, we define the prox-mapping Proxx(ξ) : E → Xo as

Proxx(ξ) = argminu∈X {〈ξ, u〉+ Vx(u)} . (5.5)

From now on we make the

Simplicity Assumption. X and ω are simple and fit each other. Specifi-

cally, given x ∈ Xo and ξ ∈ E, it is easy to compute Proxx(ξ).

5.2.3 Basic Mirror Descent algorithm

The MD algorithm associated with the outlined setup, as applied to problem

(5.2), is the recurrence

(a) x1 = argminx∈X ω(x)

(b) xt+1 = Proxxt(γtf
′(xt)), t = 1, 2, ...

(c) xt =
[∑t

τ=1 γτ
]−1∑t

τ=1 γτxτ

(d) x̂t = argminx∈{x1,...,xt} f(x)

(5.6)

Here, xt are subsequent search points, and xt (or x̂t—the error bounds that

follow work for both these choices) are subsequent approximate solutions

generated by the algorithm. Note that xt ∈ Xo and xt, x̂t ∈ X for all t.

The convergence properties of MD stem from the following simple obser-

vation:

Proposition 5.1. Suppose that f is Lipschitz continuous on X with L :=
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supx∈X ‖f ′(x)‖∗ <∞. Let f t = max[f(xt), f(x̂t)]. Then

(i) for all u ∈ X, t ≥ 1 one has

t∑
τ=1

γτ 〈f ′(xτ ), xτ − u〉 ≤ Vx1
(u) + 1

2

∑t
τ=1 γ

2
τ‖f ′(xτ )‖2∗

≤ Vx1
(u) + L2

2

∑t
τ=1 γ

2
τ .

(5.7)

As a result, for all t ≥ 1,

f t −Opt ≤ εt :=
Vx1

(x∗) + L2

2

∑t
τ=1 γ

2
τ∑t

τ=1 γτ
, (5.8)

where x∗ is an optimal solution to (5.2). In particular, in the divergent

series case γt → 0,
∑t

τ=1 γτ → +∞ as t → ∞, the algorithm converges:

f t −Opt→ 0 as t→∞. Moreover, with the stepsizes

γt = γ/[‖f ′(xt)‖∗
√
t]

for all t, one has

f t −Opt ≤ O(1)

[
Vx1

(x∗)

γ
+

ln(t+ 1)γ

2

]
Lt−1/2. (5.9)

(ii) Let X be bounded so that the ω(·)-diameter Ω of X is finite. Then, for

every number N of steps, the N -step MD algorithm with constant stepsizes,

γt =

√
2Ω

L
√
N
, 1 ≤ t ≤ N, (5.10)

ensures that

f
N

= minu∈X
1
N

∑N
τ=1[f(xτ ) + 〈f ′(xτ ), u− xτ 〉] ≤ Opt,

fN −Opt ≤ fN − fN ≤
√

2ΩL√
N
.

(5.11)

In other words, the quality of approximate solutions (xN or x̂N ) can be

certified by the easy-to-compute online lower bound f
N

on Opt, and the

certified level of nonoptimality of the solutions can only be better than the

one given by the worst-case upper bound in the right-hand side of (5.11).

Proof. From the definition of the prox-mapping,

xτ+1 = argmin
z∈X

{
〈γτf ′(xτ )− ω′(xτ ), z〉+ ω(z)

}
,

whence, by optimality conditions,

〈γτf ′(xτ )− ω′(xτ ) + ω′(xτ+1), u− xτ+1〉 ≥ 0 ∀u ∈ X.
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When rearranging terms, this inequality can be rewritten as

γτ 〈f ′(xτ ), xτ − u〉 ≤ [ω(u)− ω(xτ )− 〈ω′(xτ ), u− xτ 〉]
−[ω(u)− ω(xτ+1)− 〈ω′(xτ+1), u− xτ+1〉]
+γτ 〈f ′(xτ ), xτ − xτ+1〉
−[ω(xτ+1)− ω(xτ )− 〈ω′(xτ ), xτ+1 − xτ 〉]

= Vxτ (u)− Vxτ+1
(u) + [γτ 〈f ′(xτ ), xτ − xτ+1〉 − Vxτ (xτ+1)]︸ ︷︷ ︸

δτ

. (5.12)

From the strong convexity of Vxτ it follows that

δτ ≤ γτ 〈f ′(xτ ), xτ − xτ+1〉 − 1
2‖xτ − xτ+1‖2

≤ γτ‖f ′(xτ )‖∗‖xτ − xτ+1‖ − 1
2‖xτ − xτ+1‖2

≤ max
s

[γτ‖f ′(xτ )‖∗s− 1
2s

2] = γ2
τ

2 ‖f
′(xτ )‖2∗,

and we get

γτ 〈f ′(xτ ), xτ − u〉 ≤ Vxτ (u)− Vxτ+1
(u) + γ2

τ‖f ′(xτ )‖2∗/2. (5.13)

Summing these inequalities over τ = 1, ..., t and taking into account

that Vx(u) ≥ 0, we arrive at (5.7). With u = x∗, (5.7), when tak-

ing into account that 〈f ′(xτ ), xτ − x∗〉 ≥ f(xτ ) − Opt and setting f t =

[
∑t

τ=1 γτ ]−1
∑t

τ=1 γτf(xτ ) results in

f t −Opt ≤
Vx1

(x∗) + L2
[∑t

τ=1γ
2
τ

]
/2∑t

τ=1γτ
.

Since, clearly, f t = max[f(xt), f(x̂t)] ≤ f t, we have arrived at (5.8). This

inequality straightforwardly implies the remaining results of (i).

To prove (ii), note that by the definition of Ω and due to x1 = argminX ω,

(5.7) combines with (5.10) to imply that

fN−f
N

= max
u∈X

[
fN − 1

N

N∑
τ=1

[f(xτ ) + 〈f ′(xτ ), u− xτ 〉]

]
≤
√

2ΩL√
N

. (5.14)

Since f is convex, the function 1
N

∑N
τ=1[f(xτ ) + 〈f ′(xτ ), u − xτ 〉] underes-

timates f(u) everywhere on X, that is, f
N
≤ Opt. And, as we have seen,

fN ≥ fN , therefore (ii) follows from (5.14).
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5.3 Problems with Functional Constraints

The MD algorithm can be extended easily from the case of problem (5.2) to

the case of problem

Opt = min
x∈X
{f0(x) : fi(x) ≤ 0, 1 ≤ i ≤ m} , (5.15)

where fi, 0 ≤ fi ≤ m, are Lipschitz continuous convex functions on X given

by the first-order oracle which, given x ∈ X on input, returns the values

fi(x) and subgradients f ′i(x) of fi at x, with selections of the subgradients

f ′i(·) bounded on X. Consider the N -step algorithm:

1. Initialization: Set x1 = argminX ω.

2. Step t, 1 ≤ t ≤ N : Given xt ∈ X, call the first-order oracle (xt being the

input) and check whether

fi(xt) ≤ γ‖f ′i(xt)‖∗, i = 1, ...,m. (5.16)

If it is the case (productive step), set i(t) = 0; otherwise (nonproductive

step) choose i(t) ∈ {1, ...,m} such that fi(t)(x) > γ‖f ′i(t)(xt)‖∗. Set

γt = γ/‖f ′i(t)(xt)‖∗, xt+1 = Proxxt(γtf
′
i(t)(xt)).

When t < N , loop to step t+ 1.

3. Termination: AfterN steps are executed, output, as approximate solution

x̂N , the best (with the smallest value of f0) of the points xt associated

with productive steps t; if there were no productive steps, claim (5.15) is

infeasible.

Proposition 5.2. Let X be bounded. Given integer N ≥ 1, set γ =√
2Ω/
√
N . Then

(i) If (5.15) is feasible, x̂N is well defined.

(ii) Whenever x̂N is well defined, one has

max
[
f0(x̂N )−Opt, f1(x̂N ), ..., fm(x̂N )

]
≤ γL =

√
2ΩL√
N
,

L = max0≤i≤m supx∈X ‖f ′i(x)‖∗.
(5.17)

Proof. By construction, when x̂N is well defined, it is some xt with produc-

tive t, whence fi(x̂
N ) ≤ γL for 1 ≤ i ≤ m by (5.16). It remains to verify that

when (5.15) is feasible, x̂N is well defined and f0(x̂N ) ≤ Opt + γL. Assume

that it is not the case, whence at every productive step t (if any) we have

f0(xt)−Opt > γ‖f ′0(xt)‖∗. Let x∗ be an optimal solution to (5.15). Exactly

the same reasoning as in the proof of Proposition 5.1 yields the following
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analogy of (5.7) (with u = x∗):∑N

t=1
γt〈f ′i(t)(xt), xt − x∗〉 ≤ Ω +

1

2

∑N

t=1
γ2
t ‖f ′i(t)(xt)‖

2
∗ = 2Ω. (5.18)

When t is nonproductive, we have γt〈f ′i(t)(xt), xt − x∗〉 ≥ γtfi(t)(xt) > γ2,

the concluding inequality being given by the definition of i(t) and γt.

When t is productive, we have γt〈f ′i(t)(xt), xt − x∗〉 = γt〈f ′0(xt), xt − x∗〉 ≥
γt(f0(xt)−Opt) > γ2, the concluding inequality being given by the definition

of γt and our assumption that f0(xt) − Opt > γ‖f ′0(xt)‖∗ at all productive

steps t. The bottom line is that the left-hand side in (5.18) is > Nγ2 = 2Ω,

which contradicts (5.18).

5.4 Minimizing Strongly Convex Functions

The MD algorithm can be modified to obtain the rate O(1/t) in the case

where the objective f in (5.2) is strongly convex. The strong convexity of f

with modulus κ > 0 means that

∀(x, x′ ∈ X) 〈f ′(x)− f ′(x′), x− x′〉 ≥ κ‖x− x′‖2. (5.19)

Further, let ω be the d.-g.f. for the entire E (not just for X, which may be

unbounded in this case), compatible with ‖ · ‖. W.l.o.g. let 0 = argminE ω,

and let

Ω = max
‖u‖≤1

ω(u)− ω(0)

be the variation of ω on the unit ball of ‖ ·‖. Now, let ωR,z(u) = ω
(
u−z
R

)
and

V R,z
x (u) = ωR,z(u) − ωR,z(x) − 〈(ωR,z(x))′, u − x〉. Given z ∈ X and R > 0

we define the prox-mapping

ProxR,zx (ξ) = argmin
u∈X

[〈ξ, u〉+ V R,z
x (u)]

and the recurrence (cf. (5.6))

xt+1 = ProxR,zxt (γtf
′(xt)), t = 1, 2, ...

xt(R, z) =
[∑t

τ=1 γτ
]−1∑t

τ=1 γτxτ .
(5.20)

We start with the following analogue of Proposition 5.1.

Proposition 5.3. Let f be strongly convex on X with modulus κ > 0 and

Lipschitz continuous on X with L := supx∈X ‖f ′(x)‖∗ < ∞. Given R > 0,

t ≥ 1, suppose that ‖x1 − x∗‖ ≤ R, where x∗ is the minimizer of f on X,
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and let the stepsizes γτ satisfy

γτ =

√
2Ω

RL
√
t
, 1 ≤ τ ≤ t. (5.21)

Then, after t iterations (5.20) one has

f(xt(R, x1))−Opt ≤ 1

t

t∑
τ=1

〈f ′(xτ ), xτ − x∗〉 ≤
LR
√

2Ω√
t

, (5.22)

‖xt(R, x1)− x∗‖2 ≤ 1

tκ

t∑
τ=1

〈f ′(xτ ), xτ − x∗〉 ≤
LR
√

2Ω

κ
√
t

. (5.23)

Proof. Observe that the modulus of strong convexity of the function ωR,x1(·)
w.r.t. the norm ‖ · ‖R = ‖ · ‖/R is 1, and the conjugate of the latter norm is

R‖ · ‖∗. Following the steps of the proof of Proposition 5.1, with ‖ · ‖R and

ωR,x1(·) in the roles of ‖ · ‖, respectively, we come to the analogue of (5.7)

as follows:

∀u ∈ X :
t∑

τ=1

γτ 〈f ′(xτ ), xτ−u〉 ≤ V R,x1
x1

(u)+
R2L2

2

t∑
τ=1

γ2
τ ≤ Ω+

R2L2

2

t∑
τ=1

γ2
τ .

Setting u = x∗ (so that V R,x1(x∗) ≤ Ω due to ‖x1 − x∗‖ ≤ R), and

substituting the value (5.21) of γτ , we come to (5.22). Further, from the

strong convexity of f it follows that 〈f ′(xτ ), xτ − x∗〉 ≥ κ‖xτ − x∗‖2, which

combines with the definition of xt(R, x1) to imply the first inequality in

(5.23) (recall that γτ is independent of τ , so that xt(R, x1) = 1
t

∑t
τ=1 xτ ).

The second inequality in (5.23) follows from (5.22).

Proposition 5.21 states that the smaller R is (i.e., the closer the initial

guess x1 is to x∗), the better the accuracy of the approximate solution

xt(R, x1) will be in terms of f and in terms of the distance to x∗. When

the upper bound on this distance, as given by (5.22), becomes small, we

can restart the MD using xt(·) as the improved initial point, compute a

new approximate solution, and so on. The algorithm below is a simple

implementation of this idea.

Suppose that x1 ∈ X and R0 ≥ ‖x∗ − x1‖ are given. The algorithm is as

follows:

1. Initialization: Set y0 = x1.

2. Stage k = 1, 2, ...: Set Nk = Ceil(2k+2 L2Ω
κ2R2

0
), where Ceil(t) is the smallest

integer ≥ t, and compute yk = xNk(Rk−1, yk−1) according to (5.20), with

γt = γk :=
√

2Ω
LRk−1

√
Nk

, 1 ≤ t ≤ Nk. Set R2
k = 2−kR2

0 and pass to stage k + 1.



5.4 Minimizing Strongly Convex Functions 13

For the search points x1, ..., xNk of the kth stage of the method, we define

δk =
1

Nk

Nk∑
τ=1

〈f ′(xτ ), xτ − x∗〉.

Let k∗ be the smallest integer such that k ≥ 1 and 2k+2 L2Ω
κ2R2

0
> k, and let

Mk =
∑k

j=1Nj , k = 1, 2, .... Mk is the total number of prox-steps carried

out at the first k stages.

Proposition 5.4. Setting y0 = x1, the points yk, k = 0, 1, ..., generated by

the above algorithm satisfy the following relations:

‖yk − x∗‖2 ≤ R2
k = 2−kR2

0, (Ik)

k = 0, 1, ...,

f(yk)−Opt ≤ δk ≤ κR2
k = κ2−kR2

0, (Jk)

k = 1, 2, .... As a result,

(i) When 1 ≤ k < k∗, one has Mk ≤ 5k and

f(yk)−Opt ≤ κ2−kR2
0; (5.24)

(ii) When k ≥ k∗, one has

f(yk)−Opt ≤ 16L2Ω

κMk
. (5.25)

The proposition says that when the approximate solution yk is far from

x∗, the method converges linearly; when approaching x∗, it slows down and

switches to the rate O(1/t).

Proof. We prove (Ik), (Jk) by induction in k. (I0) is valid due to y0 = x1

and the origin of R0. Assume that for some m ≥ 1 relations (Ik) and (Jk)

are valid for 1 ≤ k ≤ m−1, and prove that then (Im), (Jm) are valid as well.

Applying Proposition 5.3 with R = Rm−1, x1 = ym−1 (so that ‖x∗−x1‖ ≤ R
by (Im−1)) and t = Nm, we get

(a) : f(ym)−Opt ≤ δm ≤
LRm−1

√
2Ω√

Nm
, (b) : ‖ym−x∗‖2 ≤ LRm−1

√
2Ω

κ
√
Nm

.

Since R2
m−1 = 21−mR2

0 by (Im−1) and Nm ≥ 2m+2 L2Ω
κ2R2

0
, (b) implies (Im) and

(a) implies (Jm). Induction is completed.

Now prove that Mk ≤ 5k for 1 ≤ k < k∗. For such a k and for 1 ≤ j ≤ k we

have Nj = 1 when 2j+2 L2Ω
κ2R2

0
< 1; let it be so for j < j∗; and Nj ≤ 2j+3 L2Ω

κ2R2
0

for j∗ ≤ j ≤ k. It follows that when j∗ > k, we have Mk = k. When j∗ ≤ k,
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we have M :=
∑k

j=j∗
Nj ≤ 2k+4 L2Ω

κ2R2
0
≤ 4k (the concluding inequality is due

to k < k∗), whence Mk = j∗ − 1 + M ≤ 5k, as claimed. Invoking (Jk), we

arrive at (i).

To prove (ii), let k ≥ k∗, whence Nk ≥ k + 1. We have

2k+3 L
2Ω

κ2R2
0

>

k∑
j=1

2j+2 L
2Ω

κ2R2
0

≥
k∑
j=1

(Nj − 1) = Mk − k ≥Mk/2,

where the concluding ≥ stems from the fact that Nk ≥ k+ 1, and therefore

Mk ≥
∑k−1

j=1 Nj + Nk ≥ (k − 1) + (k + 1) = 2k. Thus Mk ≤ 2k+4 L2Ω
κ2R2

0
, that

is, 2−k ≤ 16L2Ω
Mkκ2R2

0
, and the right-hand side of (Jk) is ≤ 16L2Ω

Mkκ
.

5.5 Mirror Descent Stochastic Approximation

The MD algorithm can be extended to the case when the objective f in (5.2)

is given by the stochastic oracle—a routine which at tth call, the query point

being xt ∈ X, returns a vector G(xt, ξt), where ξ1, ξ2, ... are independent,

identically distributed oracle noises. We assume that for all x ∈ X it holds

that

E
{
‖G(x, ξ)‖2∗

}
≤ L2 <∞& ‖g(x)−f ′(x)‖∗ ≤ µ, g(x) = E{G(x, ξ)}. (5.26)

In (5.6), replacing the subgradients f ′(xt) with their stochastic estimates

G(xt, ξt), we arrive at robust mirror descent stochastic approximation

(RMDSA). The convergence properties of this procedure are presented in

the following counterpart of Proposition 5.1:

Proposition 5.5. Let X be bounded. Given an integer N ≥ 1, consider

N -step RMDSA with the stepsizes

γt =
√

2Ω/[L
√
N ], 1 ≤ t ≤ N. (5.27)

Then

E
{
f(xN )−Opt

}
≤
√

2ΩL/
√
N + 2

√
2Ωµ. (5.28)

Proof. Let ξt = [ξ1; ...; ξt], so that xt is a deterministic function of ξt−1.

Exactly the same reasoning as in the proof of Proposition 5.1 results in the

following analogy of (5.7):∑N

τ=1
γτ 〈G(xτ , ξτ ), xτ − x∗〉 ≤ Ω + 1

2

∑N

τ=1
γ2
τ‖G(xτ , ξτ )‖2∗. (5.29)
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Observe that xτ is a deterministic function of ξt−1, so that

Eξτ{〈G(xτ , ξτ ), xτ − x∗〉} = 〈g(xτ ), xτ − x∗〉 ≥ 〈f ′(xτ ), xτ − x∗〉 − µD,

where D = maxx,x′∈X ‖x − x′‖ is the ‖ · ‖-diameter of X. Now, taking

expectations of both sides of (5.29), we get

E

{∑N

τ=1
γτ 〈f ′(xτ ), xτ − x∗〉

}
≤ Ω +

L2

2

∑N

τ=1
γ2
τ + µD

∑N

τ=1
γτ .

In the same way as in the proof of Proposition 5.1 we conclude that the

left-hand side in this inequality is ≥ [
∑N

τ=1γτ ]E{f(xN )−Opt}, so that

E{f(xN )−Opt} ≤
Ω + L2

2

∑N
τ=1γ

2
τ∑N

τ=1γτ
+ µD. (5.30)

Observe that when x ∈ X, we have ω(x)−ω(x1)−〈ω′(x1), x−x1〉 ≥ 1
2‖x−x1‖2

by the strong convexity of ω, and ω(x)− ω(x1)− 〈ω′(x1), x− x1〉 ≤ ω(x)−
ω(x1) ≤ Ω (since x1 = argminX ω, and thus 〈ω′(x1), x − x1〉 ≥ 0). Thus,

‖x− x1‖ ≤
√

2Ω for every x ∈ X, whence D := maxx,x′∈X ‖x− x′‖ ≤ 2
√

2Ω.

This relation combines with (5.30) and (5.27) to imply (5.28).

5.6 Mirror Descent for Convex-Concave Saddle-Point Problems

Now we shall demonstrate that the MD scheme can be naturally extended

from problems of convex minimization to the convex-concave saddle-point

problems.

5.6.1 Preliminaries

Convex-concave Saddle-Point Problem. A convex-concave saddle-point

(c.-c.s.p.) problem reads

SadVal = inf
x∈X

sup
y∈Y

φ(x, y), (5.31)

where X ⊂ Ex, Y ⊂ Ey are nonempty closed convex sets in the respective

Euclidean spaces Ex and Ey. The cost function φ(x, y) is continuous on

Z = X× Y ∈ E = Ex ×Ey and convex in the variable x ∈ X and concave in

the variable y ∈ Y; the quantity SadVal is called the saddle-point value of φ

on Z. By definition, (precise) solutions to (5.31) are saddle points of φ on

Z, that is, points (x∗, y∗) ∈ Z such that φ(x, y∗) ≥ φ(x∗, y∗) ≥ φ(x∗, y) for

all (x, y) ∈ Z. The data of problem (5.31) give rise to a primal-dual pair of
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convex optimization problems

Opt(P ) = min
x∈X

φ(x), φ(x) = supy∈Y φ(x, y) (P )

Opt(D) = max
y∈Y

φ(y), φ(y) = inf
x∈X

φ(x, y). (D)

φ possesses saddle-points on Z if and only if problems (P ) and (D) are

solvable with equal optimal values. Whenever saddle-points exist, they

are exactly the pairs (x∗, y∗) comprising optimal solutions x∗, y∗ to the

respective problems (P ) and (D), and for every such pair (x∗, y∗) we have

φ(x∗, y∗) = φ(x∗) = Opt(P ) = SadVal := inf
x∈X

supy∈Y φ(x, y)

= supy∈Y inf
x∈X

φ(x, y) = Opt(D) = φ(y∗).

From now on, we assume that (5.31) is solvable.

Remark 5.1. With our basic assumptions on φ (continuity and convexity-

concavity on X× Y) and on X,Y (nonemptiness, convexity and closedness),

(5.31) definitely is solvable either if X and Y are bounded, or if both X and

all level sets {y ∈ Y : φ(y) ≥ a}, a ∈ R, of φ are bounded; these are the only

situations we are about to consider in this chapter and in Chapter 6.

Saddle-Point Accuracy Measure. A natural way to quantify the accuracy

of a candidate solution z = (x, y) ∈ Z to the c.-c.s.p. problem (5.31) is given

by the gap

εsad(z) = supη∈Y φ(x, η)− inf
ξ∈X

φ(ξ, y) = φ(x)− φ(y)

=
[
φ(x)−Opt(P )

]
+
[
Opt(D)− φ(y)

] (5.32)

where the concluding equality is given by the fact that, by our standing

assumption, φ has a saddle point and thus Opt(P ) = Opt(D). We see that

εsad(x, y) is the sum of nonoptimalities, in terms of the respective objectives:

of x as an approximate solution to (P ) and of y as an approximate solution

to (D).

Monotone Operator Associated with (5.31). Let ∂xφ(x, y) be the set of

all subgradients w.r.t. X of (the convex function) φ(·, y), taken at a point

x ∈ X, and let ∂y[−φ(x, y)] be the set of all subgradients w.r.t. Y (of the

convex function) −φ(x, ·), taken at a point y ∈ Y. We can associate with φ

the point-to-set operator

Φ(x, y) = {Φx(x, y) = ∂xφ(x, y)} × {Φy(x, y) = ∂y[−φ(x, y)]}.
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The domain Dom Φ := {(x, y) : Φ(x, y) 6= ∅} of this operator comprises all

pairs (x, y) ∈ Z for which the corresponding subdifferentials are nonempty;

it definitely contains the relative interior rint Z = rint X× rint Y of Z, and

the values of Φ in its domain are direct products of nonempty closed convex

sets in Ex and Ey. It is well known (and easily seen) that Φ is monotone:

∀(z, z′ ∈ Dom Φ, F ∈ Φ(z), F ′ ∈ Φ(z′)) : 〈F − F ′, z − z′〉 ≥ 0,

and the saddle points of φ are exactly the points z∗ such that 0 ∈ Φ(z∗). An

equivalent characterization of saddle points, more convenient in our context,

is as follows: z∗ is a saddle point of φ if and only if for some (and then for

every) selection F (·) of Φ (i.e., a vector field F (z) : rint Z → E such that

F (z) ∈ Φ(z) for every z ∈ rint Z) one has

〈F (z), z − z∗〉 ≥ 0∀z ∈ rint Z. (5.33)

5.6.2 Saddle-Point Mirror Descent

Here we assume that Z is bounded and φ is Lipschitz continuous on Z

(whence, in particular, the domain of the associated monotone operator Φ

is the entire Z).

The setup of the MP algorithm involves a norm ‖ · ‖ on the embedding

space E = Ex ×Ey of Z and a d.-g.f. ω(·) for Z compatible with this norm.

For z ∈ Zo, u ∈ Z let (cf. (5.4))

Vz(u) = ω(u)− ω(z)− 〈ω′(z), u− z〉,

and let zc = argminu∈Zω(u). We assume that given z ∈ Zo and ξ ∈ E, it is

easy to compute the prox-mapping

Proxz(ξ) = argmin
u∈Z

[〈ξ, u〉+ Vz(u)]

(
= argmin

u∈Z

[
〈ξ − ω′(z), u〉+ ω(u)

])
.

We denote, by Ω = maxu∈ZVzc(u) ≤ maxZω(·)−minZω(·), the ω(·)-diameter

of Z (cf. Section 5.2.2).

Let a first-order oracle for φ be available, so that for every z = (x, y) ∈
Z we can compute a vector F (z) ∈ Φ(z = (x, y)) := {∂xφ(x, y)} ×
{∂y[−φ(x, y)]}. The saddle-point MD algorithm is given by the recurrence

(a) : z1 = zc,

(b) : zτ+1 = Proxzτ (γτF (zτ )),

(c) : zτ = [
∑τ

s=1 γs]
−1∑τ

s=1 γsws,

(5.34)

where γτ > 0 are the stepsizes. Note that zτ , ωτ ∈ Zo, whence zt ∈ Z.
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The convergence properties of the algorithm are given by the following.

Proposition 5.6. Suppose that F (·) is bounded on Z, and L is such that

‖F (z)‖∗ ≤ L for all z ∈ Z.

(i) For every t ≥ 1 it holds that

εsad(zt) ≤
[∑t

τ=1
γτ

]−1
[
Ω +

L2

2

∑t

τ=1
γ2
τ

]
. (5.35)

(ii) As a consequence, the N -step MD algorithm with constant stepsizes

γτ = γ/L
√
N, τ = 1, ..., N satisfies

εsad(zN ) ≤ L√
N

[
Ω

γ
+
Lγ

2

]
.

In particular, the N -step MD algorithm with constant stepsizes γτ =

L−1
√

2Ω
N , τ = 1, ..., N satisfies

εsad(zN ) ≤ L
√

2Ω

N
.

Proof. By the definition zτ+1 = Proxzτ (γτF (zτ )) we get

∀u ∈ Z, γτ 〈F (zτ ), zτ − u〉 ≤ Vzτ (u)− Vzτ+1
(u) + γ2

τ‖F (zτ )‖2∗/2.

(It suffices to repeat the derivation of (5.13) in the proof of Proposition 5.1

with f ′(xτ ), xτ , and xτ+1 substituted, respectively, with F (zτ ), zτ , and

zτ+1.) When summing for i = 1, ..., t we get, for all u ∈ Z:

t∑
τ=1

γτ 〈F (zτ ), zτ − u〉 ≤ Vz1(u) +

t∑
τ=1

γ2
τ‖F (zτ )‖2∗/2 ≤ Ω +

L2

2

t∑
τ=1

γ2
τ .(5.36)

Let zτ = (xτ , yτ ), zt = (xt, yt), and λτ =
[∑t

s=1 γs
]−1

γτ . Note that∑t
s=1 λs = 1, and for

t∑
τ=1

λτ 〈F (zτ ), zτ−u〉 =

t∑
τ=1

λτ [〈∇xφ(xτ , yτ ), xτ − x〉+ 〈∇yφ(xτ , yτ ), y − yτ 〉]

we have∑t
τ=1 λτ [〈∇xφ(xτ , yτ ), xτ − x〉+ 〈∇yφ(xτ , yτ ), y − yτ 〉]

≥
∑t

τ=1 λτ [[φ(xτ , yτ )− φ(x, yτ )] + [φ(xτ , y)− φ(xτ , yτ )]] (a)

=
∑t

τ=1 λτ [φ(xτ , y)− φ(x, yτ )]

≥ φ(
∑t

τ=1 λτxτ , y)− φ(x,
∑t

τ=1 λτyτ ) = φ(xt, y)− φ(x, yt) (b)

(5.37)

(inequalities in (a) and (b) are due to the convexity-concavity of φ). Thus
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(5.36) results in

φ(xt, y)− φ(x, yt) ≤
Ω + L2

2

∑t
τ=1 γ

2
τ∑t

τ=1 γτ
∀(x, y) ∈ Z.

Taking the supremum in (x, y) ∈ Z, we arrive at (5.35).

5.7 Setting up a Mirror Descent Method

An advantage of the mirror descent scheme is that its degrees of freedom

(the norm ‖ · ‖ and the d.-g.f. ω(·)) allow one to adjust the method, to some

extent, to the geometry of the problem under consideration. This is the issue

we are focusing on in this section. For the sake of definiteness, we restrict

ourselves to the minimization problem (5.2); the saddle-point case (5.31) is

completely similar, with Z in the role of X.

5.7.1 Building blocks

The basic MD setups are as follows:

1. Euclidean setup: ‖ · ‖ = ‖ · ‖2, ω(x) = 1
2x

Tx.

2. `1-setup: For this setup, E = Rn, n > 1, and ‖ · ‖ = ‖ · ‖1. As for ω(·),
there could be several choices, depending on what X is:

(a) When X is unbounded, seemingly the only good choice is ω(x) =

C ln(n)‖x‖2p(n) with p(n) = 1 + 1
2 ln(n) , where an absolute constant C is

chosen in a way which ensures (5.3) (one can take C = e).

(b) When X is bounded, assuming w.l.o.g. that X ⊂ Bn,1 := {x ∈ Rn :

‖x‖1 ≤ 1}, one can set ω(x) = C ln(n)
∑n

i=1|xi|p(n) with the same as

above value of p(n) and C = 2e.

(c) When X is a part of the simplex S+
n = {x ∈ Rn+ :

∑n
i=1xi ≤ 1} (or

the flat simplex Sn = {x ∈ Rn+ :
∑n

i=1xi = 1}) intersecting int Rn+, a

good choice of ω(x) is the entropy

ω(x) = Ent(x) :=
∑n

i=1
xi ln(xi). (5.38)

3. Matrix setup: This is the matrix analogy of the `1-setup. Here the

embedding space E of X is the space Sν of block-diagonal symmetric

matrices with fixed block-diagonal structure ν = [ν1; ...; νk] (k diagonal

blocks of row sizes ν1, ..., νk). Sν is equipped with the Frobenius inner

product 〈X,Y 〉 = Tr(XY ) and the trace norm |X|1 = ‖λ(X)‖1, where

λ(X) is the vector of eigenvalues (taken with their multiplicities in the



20 First-Order Methods for Nonsmooth Convex Large-Scale Optimization, I

nonascending order) of a symmetric matrix X. The d.-g.f.s are the matrix

analogies of those for the `1-setup. Specifically,

(a) When X is unbounded, we set ω(X) = C ln(|ν|)‖λ(X)‖2p(|ν|), where

|ν| =
∑k

`=1ν` is the total row size of matrices from Sν , and C is

an appropriate absolute constant which ensures (5.3) (one can take

C = 2e).

(b) When X is bounded, assuming w.l.o.g. that X ⊂ Bν,1 = {X ∈ Sν :

|X|1 ≤ 1}, we can take ω(X) = 4e ln(|ν|)
∑|ν|

i=1|λi(X)|p(|ν|).
(c) When X is a part of the spectahedron Σ+

ν = {X ∈ Sν : X �
0, Tr(X) ≤ 1} (or the flat spectahedron Σν = {X ∈ Sν : X �
0, Tr(X) = 1}) intersecting the interior {X � 0} of the positive

semidefinite cone Sν+ = {X ∈ Sν : X � 0}, one can take ω(X) as

the matrix entropy: ω(X) = 2Ent(λ(X)) = 2
∑|ν|

i=1λi(X) ln(λi(X)).

Note that the `1-setup can be viewed as a particular case of the matrix setup,

corresponding to the case when the block-diagonal matrices in question are

diagonal, and we identify a diagonal matrix with the vector of its diagonal

entries.

With the outlined setups, the simplicity assumption holds, provided that

X is simple enough. Specifically:

Within the Euclidean setup, Proxx(ξ) is the metric projection of the vector

x − ξ onto X (that is, the point of X which is the closest to x − ξ in `2-

norm). Examples of sets X ⊂ Rn for which metric projection is easy include

‖ · ‖p-balls and intersections of ‖ · ‖p-balls centered at the origin with the

nonnegative orthant Rn+.

Within the `1-setup, computing the prox-mapping is reasonably easy

—in the case of 2a, when X is the entire Rn or Rn+,

—in the case of 2b, when X is Bn,1 or Bn,1 ∩ Rn+,

—in the case of 2c, when X is the entire S+
n or Sn.

With the indicated sets X, in the cases of 2a and 2b computing the prox-

mapping requires solving auxiliary one- or two-dimensional convex problems,

which can be done within machine accuracy by, e.g., the ellipsoid algorithm

in O(n) operations (cf. Nemirovsky and Yudin, 1983, Chapter 2). In the case

of 2c, the prox-mappings are given by the explicit formulas

X = S+
n ⇒ Proxx(ξ) =

{
[x1eξ1−1; ...;xneξn−1],

∑
ie
ηi−1 ≤ 1[∑

ixie
ξi
]−1[

x1eη1 ; ...; xneηn
]
, otherwise

X = Sn ⇒ Proxx(ξ) =
[∑

ixie
ξi
]−1[

x1eη1 ; ...; xneηn
]
.

(5.39)
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Within the matrix setup, computing the prox-mapping is relatively easy

—in the case of 3a, when X is the entire Sν or the positive semidefinite cone

Sν+ = {X ∈ Sν : X � 0},
—in the case of 3b, when X is the entire Bν,1 or the intersection of Bν,1 with

Sν+,

—in the case of 3c, when X is the entire spectahedron Σ+
ν or Σν .

Indeed, in the cases, outlined above, computing W = ProxX(Ξ) reduces to

computing the eigenvalue decomposition of the matrix X (which allows one

to get ω′(X)), and subsequent eigenvalue decomposition of the matrix H =

Ξ−ω′(X): H = U Diag{h}UT (here Diag(A) stands for the diagonal matrix

with the same diagonal as A). It is easily seen that in the cases in question,

W = U Diag{w}UT , w = argmin
z: Diag{z}∈X

{〈Diag{h},Diag{z}〉+ ω(Diag{z})},

and the latter problem is exactly the one arising in the `1-setup.

Illustration: Euclidean setup vs. `1-setup. To illustrate the ability of the

MD scheme to adjust, to some extent, the method to the problem’s geometry,

consider problem (5.2) when X is the unit ‖ · ‖p-ball in Rn, where p = 1 or

p = 2, and compare the respective performances of the Euclidean and the

`1-setups. (To make optimization over the unit Euclidean ball Bn,2 available

for the `1-setup, we pass from min‖x‖2≤1 f(x) to the equivalent problem

min
‖u‖2≤n−1/2

f(n1/2u) and use the setup from Section 5.7.1, item 2b.) The ratio

of the corresponding efficiency estimates (the right-hand sides in (5.11))

within an absolute constant factor is

Θ :=
EffEst(Eucl)

EffEst(`1)
= 1

n1−1/p
√

ln(n)︸ ︷︷ ︸
A

· supx∈X ‖f ′(x)‖2
supx∈X ‖f ′(x)‖1∞︸ ︷︷ ︸

B

.

Note that Θ� 1 means that the MD with the Euclidean setup significantly

outperforms the MD with the `1-setup, while Θ � 1 means exactly the

opposite. Now, A is ≤ 1 and thus is always in favor of the Euclidean setup,

and is as small as 1/
√
n ln(n) when X is the Euclidean ball (p = 2). The

factor B is in favor of the `1-setup—it is ≥ 1 and ≤
√
n, and can well be of

the order of
√
n (look what happens when all entries in f ′(x) are of the same

order of magnitude). Which one of the factors overweights depends on f ;

however, a reasonable choice can be made independently of the fine structure

of f . Specifically, when X is the Euclidean ball, the factor A = 1/
√
n lnn is so

small that the product AB definitely is ≤ 1, that is, the situation is in favor

of the Euclidean setup. In contrast to this, when X is the `1-ball (p = 1),

A is nearly constant—just O(1/
√

ln(n)), since B can be as large as
√
n,

the situation is definitely in favor of the `1-setup—it can be outperformed
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by the Euclidean setup only marginally (by the factor ≤
√

lnn), and it has

a reasonable chance to outperform its adversary quite significantly, by the

factor O(
√
n/ ln(n)). Thus, there are all reasons to select the Euclidean

setup when p = 2 and the `1-setup when p = 1.6

5.7.2 Favorable Geometry Case

Consider the case when the domain X of (5.2) is bounded and, moreover, is

a subset of the direct product X+ of standard blocks:

X+ = X1 × ...× XK ∈ E1 × ...× EK , (5.40)

where for every ` = 1, ...,K the pair (X`, E` ⊃ X`) is

either a ball block, that is, E` = Rn` and X` is either the unit Euclidean

ball Bn`,2 = {x ∈ Rn` : ‖x‖2 ≤ 1} in E`, or the intersection of this ball with

Rn`+ ;

or a spectahedron block, that is, E` = Sν
`

is the space of block-diagonal

symmetric matrices with block-diagonal structure ν`, and X` is either the

unit trace-norm ball {X ∈ Sν
`

: |X|1 ≤ 1}, or the intersection of this ball

with Sν
`

+ , or the spectahedron Σ+
ν` = {X ∈ Sν

`

+ : Tr(X) ≤ 1}, or the flat

spectahedron Σν` = {X ∈ Sν
`

+ : Tr(X) = 1}.

Note that according to our convention of identifying vectors with diagonals

of diagonal matrices, we allow for some of X` to be the unit `1-balls, or their

nonnegative parts, or simplexes—they are nothing but spectahedron blocks

with purely diagonal structure ν`.

We equip the embedding spaces E` of blocks with the natural inner

products (the standard inner products when E` = Rn` and the Frobenius

inner product when E` = Sν
`

) and norms ‖ · ‖(`) (the standard Euclidean

norm when E` = Rn` and the trace-norm when E` = Sν
`

), and the standard

6. In fact, with this recommendation we get theoretically unimprovable, in terms of the
information-based complexity theory, methods for large-scale nonsmooth convex optimiza-
tion on Euclidean and `1-balls (for details, see Nemirovsky and Yudin, 1983; Ben-Tal
et al., 2001). Numerical experiments reported in Ben-Tal et al. (2001) and Nemirovski
et al. (2009) seem to fully support the advantages of the `1-setup when minimizing over
large-scale simplexes.
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blocks X` with d.-g.f.’s

ω`(x
`) =



1
2 [x`]Tx`, X` is a ball block

4e ln(|ν`|)
∑

i|λi(X`)|p(|ν`|),
X` is the unit | · |1 ball Bν`,1 in

E` = Sν
`

, or Bν`,1 ∩ Sν
`

+

2Ent(λ(X`)),
X` is the spectahedron (Σ+

ν` or

Σν`) in E` = Sν
`

(5.41)

(cf. Section 5.7.1). Finally, the embedding space E = E1 × ... × EK of X+

(and thus of X ⊂ X+) is equipped with the direct product type Euclidean

structure induced by the inner products on E1, ..., EK and with the norm

‖(x1, ..., xK)‖ =

√∑K

`=1
α`‖x`‖2(`) (5.42)

where α` > 0 are construction parameters. X+ is equipped with the d.-g.f.

ω(x1, ..., xK) =
∑K

`=1
α`ω`(x

`) (5.43)

which, it is easy to see, is compatible with the norm ‖ · ‖.
Assuming from now on that X intersects the relative interior rint X+, the

restriction of ω(·) onto X is a d.-g.f. for X compatible with the norm ‖ · ‖
on the space E embedding X, and we can solve (5.2) by the MD algorithm

associated with ‖ · ‖ and ω(·). Let us optimize the efficiency estimate of

this algorithm over the parameters α` of our construction. For the sake of

definiteness, consider the case where f is represented by a deterministic first-

order oracle (the tuning of the MD setup in the case of the stochastic oracle

is being completely similar). To this end, assume that we have at our disposal

upper bounds L` < ∞, 1 ≤ ` ≤ K, on the quantities ‖f ′x`(x
1, ..., xK)‖(`),∗,

x = (x1, ..., xK) ∈ X. Here f ′x`(x) is the projection of f ′(x) onto E` and

‖ · ‖(`),∗ is the norm on E` conjugate to ‖ · ‖(`) (that is, ‖ · ‖(`),∗ is the

standard Euclidean norm ‖ · ‖2 on E` when E` = Rn` , and ‖ · ‖(`),∗ is the

standard matrix norm (maximal singular value) when E` = Sν
`

). The norm

‖ · ‖∗ conjugate to the norm ‖ · ‖ on E is

‖(ξ1, ..., ξK)‖∗ =
√∑K

`=1α
−1
` ‖ξ`‖2(`),∗

⇒ (∀x ∈ X) : ‖f ′(x)‖∗ ≤ L :=
√∑K

`=1α
−1
` L2

` .
(5.44)

The quantity we need to minimize in order to get as efficient an MD method

as possible within our framework is
√

ΩL (see, e.g., (5.11)). We clearly have

Ω ≤ Ω[X+] ≤
∑K

`=1α`Ω`[X`], where Ω`[X`] is the variation (maximum minus
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minimum) of ω` on X`. These variations are upper-bounded by the quantities

Ω` =

{
1
2 for ball blocks X`

4e ln(|ν`|) for spectahedron blocks X`
. (5.45)

Assuming that we have Kb ball blocks X1, ...,XKb and Ks spectahedron

blocks XKb+1, ...,XK=Kb+Ks , we get

ΩL ≤ Ω[X+]L ≤
[

1

2

∑Kb

`=1
α` + 4e

∑Kb+Ks

`=Kb+1
α` ln(|ν`|)

]√∑K

`=1
α−1
` L2

` .

When optimizing the right-hand side bound in α1, ..., αL, we get

α` =
L`√

Ω`

∑K
i=1Li

√
Ωi

, Ω[X+] = 1, L = L :=
∑K

`=1
L`
√

Ω`. (5.46)

The efficiency estimate (5.11) associated with our optimized setup reads as

follows

fN −Opt ≤ O(1)LN−1/2

= O(1)[max1≤`≤K L`]
[
Kb +

∑Kb+Ks
`=Kb+1

√
ln(|ν`|)

]
N−1/2.

(5.47)

If we consider max1≤`≤K L`, Kb, and Ks as given constants, the rate of

convergence of the MD algorithm is O(1/
√
N), N being the number of steps,

with the factor hidden in O(·) completely independent of the dimensions of

the ball blocks and nearly independent of the sizes of the spectahedron

blocks. In other words, when the total number K of standard blocks in

X+ is O(1), the MD algorithm exhibits a nearly dimension-independent

O(N−1/2) rate of convergence, which is good news when solving large-scale

problems. Needless to say, the rate of convergence is not the only entity

of interest; what matters is the arithmetic cost of an iteration. The latter,

modulo the computational effort for obtaining the first-order information on

f , is dominated by the computational complexity of the prox-mapping. This

complexity—let us denote it C—depends on exactly what X is. As it was

explained in Section 5.7.1, in the case of X = X+, C is O(
∑Kb

`=1 dimX`)

plus the complexity of the eigenvalue decomposition of a matrix from

Sν
1 × ... × Sν

Ks
. In particular, when all spectahedron blocks are `1 balls

and simplexes, C is just linear in the dimension of X+. Further, when X is

cut off X+ by O(1) linear inequalities, C is essentially the same as when

X = X+. Indeed, here computing the prox-mapping for X reduces to solving

the problem

min
z∈X+

{
〈a, z〉+ ω(z) : z ∈ X+, Az ≤ b

}
, dim b = k = O(1),
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or, which is the same, by duality, to solving the problem

max
λ∈Rk+

f∗(λ), f∗(λ) =

[
−bTλ+ min

z∈X+

[
〈a+ATλ, z〉+ ω(z)

]]
.

We are in the situation of O(1) λ-variables, and thus the latter problem can

be solved to machine precision in O(1) steps of a simple first-order algorithm

like the ellipsoid method. The first order information for f∗ required by this

method costs the computation of a single prox-mapping for X+, so that

computing the prox-mapping for X+ is, for all practical purposes, more

costly by just an absolute constant factor than computing this mapping

for X+.

When X is a sophisticated subset of X+, computing the prox-mapping for

X may become more involved, and the outlined setup could become difficult

to implement. One of the potential remedies is to rewrite the problem (5.2)

in the form of (5.15) with X extended to X+, with f in the role of f0 and

the constraints which cut X off X+ in the role of the functional constraints

f1(x) ≤ 0,..., fm(x) ≤ 0 of (5.15).

5.8 Notes and Remarks

1. The research of the second author was partly supported by ONR grant

N000140811104 and NSF grants DMI-0619977 and DMS-0914785.

2. The very first mirror descent method, subgradient descent, originates

from Shor (1967) and Polyak (1967); SD is merely the MD algorithm with

Euclidean setup: xt+1 = argminu∈X ‖(xt − γtf ′(xt)) − u‖2. Non-Euclidean

extensions (i.e., the general MD scheme) originated with Nemirovskii (1979)

and Nemirovsky and Yudin (1983); the form of this scheme used in our

presentation is due to Beck and Teboulle (2003). An ingenious version of

the method, which also allows one to recover dual solutions is proposed by

Nesterov (2009). The construction presented in Section 5.3 originated with

Nemirovsky and Yudin (1983), for a more recent version, see Beck et al.

(2010).

3. The practical performance of FOMs of the type we have considered

can be improved significantly by passing to their bundle versions, explicitly

utilizing both the latest and the past first-order information (in MD, only the

latest first-order information is used explicitly, while the past information is

loosely summarized in the current iterate). The Euclidean bundle methods

originate from Lemaréchal (1978) and are the subject of numerous papers

(see, e.g., Lemaréchal et al., 1981; Mifflin, 1982; Kiwiel, 1983, 1995, 1997;

Schramm and Zowe, 1992; Lemaréchal et al., 1995; Kiwiel et al., 1999, and
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references therein). For an MD version of the bundle scheme, see Ben-Tal

and Nemirovski (2005).

4. Classical stochastic approximation (the Euclidean setup version of the

algorithm from Proposition 5.5 without averaging: xt = xt) originated with

Robbins and Monro (1951) and assumes the objective f to be smooth and

strongly convex; there is a huge related literature (see Nevelson and Has-

minskii, 1976; Benveniste et al., 1987, and references therein). The averag-

ing of the trajectory which allows one to extend the method to the case

of nonsmooth convex minimization and plays the crucial role in FOMs for

saddle-point problems and variational inequalities, was introduced, in the

Euclidean setup, in Bruck (1977) and Nemirovskii and Yudin (1978). For

more results on “classical” and robust stochastic approximation, see, for

instance, Nemirovsky and Yudin (1983); Polyak (1991); Polyak and Judit-

sky (1992); Nemirovski and Rubinstein (2002); Kushner and Yin (2003);

Nemirovski et al. (2009) and references therein.

5. The extensions of the MD scheme from convex minimization to convex-

concave saddle-point problems and variational inequalities with monotone

operators originated from Nemirovskii (1981) and Nemirovsky and Yudin

(1983). For a comprehensive presentation, see Ben-Tal and Nemirovski

(2005).
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