
6 First-Order Methods for Nonsmooth

Convex Large-Scale Optimization, II:

Utilizing Problem’s Structure

Anatoli Juditsky Anatoli.Juditsky@imag.fr

Laboratoire Jean Kuntzmann , Université J. Fourier

B. P. 53 38041 Grenoble Cedex, France

Arkadi Nemirovski nemirovs@isye.gatech.edu

School of Industrial and Systems Engineering, Georgia Institute of Technology

765 Ferst Drive NW, Atlanta Georgia 30332, USA

We present several state-of-the-art first-order methods for well-structured

large-scale nonsmooth convex programs. In contrast to their black-box-

oriented prototypes considered in Chapter 5, the methods in question utilize

the problem structure in order to convert the original nonsmooth minimiza-

tion problem into a saddle-point problem with a smooth convex-concave cost

function. This reformulation allows us to accelerate the solution process

significantly. As in Chapter 5, our emphasis is on methods which, under

favorable circumstances, exhibit a (nearly) dimension-independent conver-

gence rate. Along with investigating the general well-structured situation, we

outline possibilities to further accelerate first-order methods by randomiza-

tion.

6.1 Introduction

The major drawback of the first-order methods (FOMs) considered in Chap-

ter 5 is their slow convergence: as the number of steps t grows, the inaccuracy

decreases as slowly as O(1/
√
t). As explained in Chapter 5, Section 5.1, this

rate of convergence is unimprovable in the unstructured large-scale case;

30 First Order Methods for Nonsmooth Convex Large-Scale Optimization, II

however, convex problems usually have a lot of structure (otherwise, how

could we know that the problem is convex?), and “good” algorithms should

utilize this structure rather than be completely black-box-oriented. For ex-

ample, by utilizing a problem’s structure, we usually can represent it as

a linear/conic quadratic/semidefinite program (which usually is easy), and

thus make the problem amenable to polynomial time interior-point meth-

ods for LP/CQP/SDP. Unfortunately, these algorithms, aimed at generat-

ing high accuracy solutions, can become prohibitively time-consuming in the

large-scale case. A much cheaper way to exploit a problem’s structure when

looking for medium-accuracy solutions was proposed by Nesterov (2005a);

his main observation (although simple in the hindsight, it led to a real break-

through) is that typical problems of nonsmooth convex minimization can be

reformulated (and this is where a problem’s structure is used!) as smooth

(often just bilinear) convex-concave saddle-point problems, and the latter

can be solved by appropriate black-box-oriented FOMs with O(1/t) rate of

convergence. More often than not, this simple observation allows for dra-

matic acceleration of the solution process, compared to the case where a

problem’s structure is ignored while constantly staying within the scope of

computationally cheap FOMs.

In Nesterov’s seminal paper (Nesterov, 2005a) the saddle-point reformula-

tion of the (convex) problem of interest, minx∈X f(x), is used to construct a

computationally cheap smooth convex approximation f̃ of f , which further

is minimized, at the rate O(1/t2), by Nesterov’s method for smooth convex

minimization (Nesterov, 1983, 2005a). Since the smoothness parameters of

f̃ deteriorate as f̃ approaches f , the accuracy to which the problem of in-

terest can be solved in t iterations turns out to be O(1/t); from discussion

in Section 5.1 (see item (c)), this is the best we can get in the large-scale

case when solving a simple-looking problem such as min‖x‖2≤R ‖Ax−b‖2. In

what follows, we use as a “workhorse” the mirror prox (MP) saddle-point

algorithm of Nemirovski (2004), which converges at the same rate O(1/t) as

Nesterov’s smoothing, but is different from the latter algorithm. One of the

reasons motivating this choice is a transparent structure of the MP algorithm

(in this respect, it is just a simple-looking modification of the saddle-point

mirror descent algorithm from Chapter 5, Section 5.6). Another reason is

that, compared to smoothing, MP is better suited for accelerating by ran-

domization (to be considered in Section 6.5).

The main body of this chapter is organized as follows. In Section 6.2,

we present instructive examples of saddle-point reformulations of well-

structured nonsmooth convex minimization problems, along with a kind

of simple algorithmic calculus of convex functions admitting bilinear saddle-

point representation. Our major workhorse — the mirror prox algorithm

6.2 Saddle-Point Reformulations of Convex Minimization Problems 31

with the rate of convergence O(1/t) for solving smooth convex-concave

saddle-point problems — is presented in Section 6.3. In Section 6.4 we con-

sider two special cases where the MP algorithm can be further accelerated.

Another acceleration option is considered in Section 6.5, where we focus on

bilinear saddle-point problems. We show that in this case, the MP algorithm,

under favorable circumstances (e.g., when applied to saddle-point reformu-

lations of `1 minimization problems min
‖x‖1≤R

‖Ax − b‖p, p ∈ {2,∞}), can

be accelerated by randomization — by passing from the precise first-order

saddle-point oracle, which can be too time-consuming in the large-scale case,

to a computationally much cheaper stochastic counterpart of this oracle.

The terminology and notation we use in this chapter follow those intro-

duced in Sections 5.2.2, 5.6.1, and 5.7 of Chapter 5.

6.2 Saddle-Point Reformulations of Convex Minimization Problems

6.2.1 Saddle-Point Representations of Convex Functions

Let X ⊂ E be a nonempty closed convex set in Euclidean space Ex, let

f(x) : X→ R be a convex function, and let φ(x, y) be a continuous convex-

concave function on Z = X × Y, where Y ⊂ Ey is a closed convex set, such

that

∀x ∈ X : f(x) = φ(x) := sup
y∈Y

φ(x, y). (6.1)

In this chapter, we refer to such a pair φ,Y as a saddle-point representation

of f . Given such a representation, we can reduce the problem

min
x∈X

f(x) (6.2)

of minimizing f over X (cf. (5.2)) to the convex-concave saddle-point (c.-

c.s.p.) problem

SadVal = inf
x∈X

sup
y∈Y

φ(x, y), (6.3)

(cf. (5.31)). Namely, assuming that φ has a saddle-point on X × Y, (6.2) is

solvable and, invoking (5.32), we get, for all (x, y) ∈ X× Y:

f(x)−minXf = φ(x)−Opt(P) = φ(x)− SadVal

≤ φ(x)− φ(y) = εsad(x, y).
(6.4)

32 First Order Methods for Nonsmooth Convex Large-Scale Optimization, II

That is, the x-component of an ε-solution to (6.3) (i.e., a point (x, y) ∈ X×Y
with εsad(x, y) ≤ ε) is an ε-solution to (6.2): f(x)−minX f ≤ ε.

The potential benefits of saddle-point representations stem from the fact

that in many important cases a nonsmooth, but well-structured, convex

function f admits an explicit saddle-point representation involving smooth

function φ and simple Y; as a result, the saddle-point reformulation (6.3)

of the problem (6.2) associated with f can be much better suited for

processing by FOMs than problem (6.2) as it is. Let us consider some

examples (where Sn, S+
n , Σν , Σ+

ν are the standard flat and full-dimensional

simplexes/spectahedrons, see Chapter 5, Section 5.7.1):

1. f(x) := max1≤`≤L f`(x) = maxy∈SL

[
φ(x, y) :=

∑L
`=1 y`f`(x)

]
; when all

f` are smooth, so is φ.

2. f(x) := ‖Ax − b‖p = max‖y‖q≤1

[
φ(x, y) := yT (Ax− b)

]
, q = p

p−1 . With

the same φ(x, y) = yT (Ax − b), and with the coordinate wise inter-

pretation of [u]+ = max[u, 0] for vectors u, we have f(x) := ‖[Ax −
b]+‖p = max‖y‖q≤1,y≥0 φ(x, y) and f(x) := mins‖[Ax − b − sc]+‖p =

max‖y‖q≤1,y≥0,cT y=0 φ(x, y). In particular,

(a) Let A(·) be an affine mapping. The problem

Opt = minξ∈Ξ [f(ξ) := ‖A(ξ)‖p] (6.5)

with Ξ = {ξ ∈ Rn : ‖ξ‖1 ≤ 1} (cf. Lasso and Dantzig selector) reduces

to the bilinear saddle-point problem

minx∈S+
2n

max‖y‖q≤1y
TA(Jx) [J = [I,−I], q =

p

p− 1
] (6.6)

on the product of the standard simplex and the unit ‖·‖q-ball. When Ξ =

{ξ ∈ Rm×n : ‖ξ‖n ≤ 1}, with ‖ · ‖n being the nuclear norm (cf. nuclear

norm minimization) representing Ξ as the image of the spectahedron

Σ+
m+n under the linear mapping x =

[
u v

vT w

]
7→ Jx := 2v, (6.5)

reduces to the bilinear saddle-point problem

minx∈Σ+
m+n

max‖y‖q≤1y
TA(Jx); (6.7)

(b) the SVM-type problem

min
w∈Rn,‖w‖≤R,

s∈R

∥∥∥[1−Diag{η}(MTw + s1)
]
+

∥∥∥
p
, 1 = [1; ...; 1]

6.2 Saddle-Point Reformulations of Convex Minimization Problems 33

reduces to the bilinear saddle-point problem

min
‖x‖≤1

max
‖y‖q≤1,

y≥0, ηT y=0

φ(x, y) :=
∑
j

yj − yT Diag{η}RMTx

 , (6.8)

where x = w/R.

3. Let A(x) = A0 +
∑n

i=1 xiAi with A0, ..., An ∈ Sν , and let Sk(A) be the

sum of the k largest eigenvalues of a symmetric matrix A. Then f(x) :=

Sk(A(x)) = max
y∈Σν ,y�k−1I

[φ(x, y) := k〈y,A(x)〉].

In the above examples, except for the first one, φ is as simple as it could

be — it is just bilinear. The number of examples of this type can easily

be increased due to the observation that the family of convex functions f

admitting explicit bilinear saddle-point representations (b.s.p.r.’s),

f(x) = max
y∈Y

[〈y,Ax+ a〉+ 〈b, x〉+ c] (6.9)

with nonempty compact convex sets Y (with unbounded Y, f typically would

be poorly defined) admits a simple calculus. Namely, it is closed w.r.t.

taking the basic convexity-preserving operations: (a) affine substitution of

the argument x ← Pξ + p, (b) multiplication by nonnegative reals, (c)

summation, (d) direct summation {fi(xi)}ki=1 7→ f(x1, ..., xk) =
∑k

i=1 fi(x
i),

and (e) taking the maximum. Here (a) and (b) are evident, and (c) is nearly

so: if

fi(x) = max
yi∈Yi

[
〈yi,Aix+ ai〉+ 〈bi, x〉+ ci

]
, i = 1, ..., k, (6.10)

with nonempty convex compact Yi, then

∑k

i=1
fi(x) = maxy=(y1,...,yk)∈Y1×...×Yk

[〈y,Ax+a〉+〈b,x〉+c︷ ︸︸ ︷∑k

i=1
[〈yi,Aix+ ai〉+ 〈bi, x〉+ ci]

]
.

(d) is an immediate consequence of (a) and (c). To verify (e), let fi be given

by (6.10), let Ei be the embedding space of Yi, and let Ui = {(ui, λi) =

(λiy
i, λi) : yi ∈ Yi, λi ≥ 0} ⊂ E+

i = Ei × R. Since Yi are convex and

compact, the sets Ui are closed convex cones. Now let

U = {y = ((u1, λ1), ..., (uk, λk)) ∈ U1 × ...× Uk :
∑

i
λi = 1}.

This set clearly is nonempty, convex, and closed; it is immediately seen that

34 First Order Methods for Nonsmooth Convex Large-Scale Optimization, II

it is bounded as well. We have

max
1≤i≤k

fi(x) = max
λ≥0:

∑
i λi=1

k∑
i=1

λifi(x) = max
λ,y1,...,yk

{∑k
i=1

[
〈

ui︷︸︸︷
λiy

i ,Aix+ ai〉

+〈λibi, x〉+ λici
]

: λ ≥ 0,
∑

i λi = 1, yi ∈ Yi, 1 ≤ i ≤ k
}

= max
u={(ui,λi):1≤i≤k}∈U

[∑k
i=1[〈ui,Aix+ ai〉+ 〈λibi, x〉+ λici]

]
,

and we end up with a b.s.p.r. of maxi fi.

6.3 Mirror-Prox Algorithm

We are about to present the basic MP algorithm for the problem (6.3).

6.3.1 Assumptions and Setup

Here we assume that

A. The closed and convex sets X, Y are bounded.

B. The convex-concave function φ(x, y) : Z = X × Y → R possesses a

Lipschitz continuous gradient ∇φ(x, y) = (∇xφ(x, y),∇yφ(x, y)).

We set F (x, y) = (Fx(x, y) := ∇xφ(x, y), Fy(x, y) := −∇yφ(x, y)), thus get-

ting a Lipschitz continuous selection for the monotone operator associated

with (6.3) (see Section 5.6.1).

The setup for the MP algorithm is given by a norm ‖ ·‖ on the embedding

space E = Ex × Ey of Z and by a d.-g.f. ω(·) for Z compatible with this

norm (cf. Section 5.2.2). For z ∈ Zo and w ∈ Z, let

Vz(w) = ω(w)− ω(z)− 〈ω′(z), w − z〉, (6.11)

(cf. the definition (5.4)) and let zc = argminw∈Zω(w). Further, we assume

that given z ∈ Zo and ξ ∈ E, it is easy to compute the prox-mapping

Proxz(ξ) = argmin
w∈Z

[〈ξ, w〉+ Vz(w)]

(
= argmin

w∈Z

[
〈ξ − ω′(z), w〉+ ω(w)

])
,

and set

Ω = maxw∈ZVzc(w) ≤ maxZω(·)−minZω(·) (6.12)

(cf. Chapter 5, Section 5.2.2). We also assume that we have at our disposal

an upper bound L on the Lipschitz constant of F from the norm ‖ · ‖ to the

6.3 Mirror-Prox Algorithm 35

conjugate norm ‖ · ‖∗:

∀(z, z′ ∈ Z) : ‖F (z)− F (z′)‖∗ ≤ L‖z − z′‖. (6.13)

6.3.2 The Algorithm

The MP algorithm is given by the recurrence

(a) : z1 = zc,

(b) : wτ = Proxzτ (γτF (zτ)), zτ+1 = Proxzτ (γτF (wτ)),

(c) : zτ = [
∑τ

s=1 γs]
−1∑τ

s=1 γsws,

(6.14)

where γτ > 0 are the stepsizes. Note that zτ , ωτ ∈ Zo, whence zτ ∈ Z. Let

δτ = γτ 〈F (wτ), wτ − zτ+1〉 − Vzτ (zτ+1) (6.15)

(cf. (5.4)). The convergence properties of the algorithm are given by the

following

Proposition 6.1. Under assumptions A and B:

(i) For every t ≥ 1 it holds (for notation, see (6.12) and (6.15)) that

εsad(zt) ≤
[∑t

τ=1
γτ

]−1 [
Ω +

∑t

τ=1
δτ

]
. (6.16)

(ii) If the stepsizes satisfy the conditions γτ ≥ L−1 and δτ ≤ 0 for all τ

(which certainly is so when γτ ≡ L−1), we have

∀t ≥ 1 : εsad(zt) ≤ Ω
[∑t

τ=1
γτ

]−1

≤ ΩL/t. (6.17)

Proof. 10. We start with the following basic observation:

Lemma 6.2. Given z ∈ Zo, ξ, η ∈ E, let w = Proxz(ξ) and z+ = Proxz(η).

Then for all u ∈ Z it holds that

〈η, w − u〉 ≤ Vz(u)− Vz+(u) + 〈η, w − z+〉 − Vz(z+) (a)

≤ Vz(u)− Vz+(u) + 〈η − ξ, w − z+〉 − Vz(w)− Vw(z+) (b)

≤ Vz(u)− Vz+(u) +
[

1
2‖η − ξ‖∗‖w − z+‖ − 1

2‖z − w‖
2 − 1

2‖z+ − w‖2
]

(c)

≤ Vz(u)− Vz+(u) + 1
2 [‖η − ξ‖2∗ − ‖w − z‖2] (d)

(6.18)

Proof. By the definition of z+ = Proxz(η) we have 〈η − ω′(z) + ω′(z+), u−
z+〉 ≥ 0; we obtain (6.18.a) by rearranging terms and taking into account

the definition of Vv(u), (cf. the derivation of (5.12)). By the definition of

w = Proxz(ξ) we have 〈ξ−ω′(z) +ω′(w), z+−w〉 ≥ 0, whence 〈η, w− z+〉 ≤

36 First Order Methods for Nonsmooth Convex Large-Scale Optimization, II

〈η − ξ, w − z+〉 + 〈ω′(w) − ω′(z), z+ − w〉; replacing the third term in the

right-hand side of (a) with this upper bound and rearranging terms, we get

(b). (c) follows from (b) due to the strong convexity of ω, implying that

Vv(u) ≥ 1
2‖u− v‖

2, and (d) is an immediate consequence of (c).

20. Applying Lemma 6.2 to z = zτ , ξ = γτF (zτ) (which results in w = wτ)

and to η = γτF (wτ) (which results in z+ = zτ+1), we obtain, due to (6.18.d):

(a) γτ 〈F (wτ), wτ − u〉 ≤ Vzτ (u)− Vzτ+1
(u) + δτ ∀u ∈ Z,

(b) δτ ≤ 1
2

[
γ2
τ‖F (wτ)− F (zτ)‖2∗ − ‖wτ − zτ‖2

] (6.19)

Summing (6.19.a) over τ = 1, ..., t, taking into account that Vz1(u) =

Vzc(u) ≤ Ω by (6.12) and setting, for a given t, λτ = γτ/
∑t

τ=1 γτ , we

get λτ ≥ 0,
∑t

τ=1 λτ = 1, and

∀u ∈ Z :
t∑

τ=1

λτ 〈F (wτ), wτ − u〉 ≤ A :=
Ω +

∑t
τ=1δτ∑t

τ=1γτ
. (6.20)

On the other hand, setting wτ = (xτ , yτ), zt = (xt, yt), u = (x, y), and using

(5.37), we have

t∑
τ=1

λτ 〈F (wτ), wτ − u〉 ≥ φ(xt, y)− φ(x, yt),

so that (6.20) results in φ(xt, y)−φ(x, yt) ≤ A for all (x, y) ∈ Z. Taking the

supremum in (x, y) ∈ Z, we arrive at (6.16); (i) is proved. To prove (ii), note

that with γt ≤ L−1, (6.19.b) implies that δτ ≤ 0, see (6.13).

6.3.3 Setting up the MP Algorithm

Let us restrict ourselves to the favorable geometry case defined completely

similarly to Chapter 5, Section 5.7.2, but with Z in the role of X. Specifically,

we assume that Z = X×Y is a subset of the direct product Z+ of K standard

blocks Z` (Kb ball blocks and Ks = K −Kb spectahedron blocks) and that

Z intersects rint Z+. We assume that the representation Z+ = Z1× ...×ZK
is coherent with the representation Z = X×Y, meaning that X is a subset of

the direct product of some of the blocks Z`, while Y is a subset of the

direct product of the remaining blocks. We equip the embedding space

E = E1 × ... × EK of Z ⊂ Z+ with the norm ‖ · ‖ and a d.-g.f. ω(·)
according to (5.42) and (5.43) (where, for notational consistency, we should

replace x` with z` and X` with Z`). Our current goal is to optimize the

efficiency estimate of the associated MP algorithm over the coefficients α` in

(5.42), (5.43). To this end assume that we have at our disposal upper bounds

6.3 Mirror-Prox Algorithm 37

Lµν = Lνµ on the partial Lipschitz constants of the (Lipschitz continuous

by assumption B) vector field F (z = (x, y)) = (∇xφ(x, y),−∇yφ(x, y)), so

that for 1 ≤ µ ≤ K and all u, v ∈ Z, we have

‖Fµ(u)− Fµ(v)‖(µ),∗ ≤
K∑
ν=1

Lµν‖uν − vν‖(ν),

where the decomposition F (z = (z1, ..., zK)) = (F1(z), ..., FK(z)) is induced

by the representation E = E1 × ...× EK .

Let Ω` be defined by (5.46) with Z` in the role of X`. The choice

α` =

∑K
ν=1 L`ν

√
Ων√

Ω`

∑
µ,νLµν

√
ΩµΩν

(cf. Nemirovski, 2004) results in

Ω ≤ 1 and L ≤ L :=
∑

µ,ν
Lµν

√
ΩµΩν ,

so that the bound (6.17) is

εsad(zt) ≤ L/t, L =
∑

µ,ν
Lµν

√
ΩµΩν . (6.21)

As far as complexity of a step and dependence of the efficiency estimate

on a problem’s dimension are concerned, the present situation is identical

to that of MD (studied in Chapter 5, Section 5.7). In particular, all our

considerations in the discussion at the end of Section 5.7.2 remain valid

here.

6.3.3.1 Illustration I

As simple and instructive illustrations, consider problems (6.8) and (6.5).

1. Consider problem (6.8), and assume, in full accordance with the SVM

origin of the problem, that ‖w‖ = ‖w‖r with r ∈ {1, 2}, p ∈ {2,∞}, and

that η is a ±1 vector which has both positive and negative entries. When

p = 2, (6.8) is a bilinear saddle-point problem on the product of the unit

‖ · ‖r-ball and a simple part of ‖ · ‖2-ball. Combining (6.21) with what was

said in Section 5.7.2, we arrive at the efficiency estimate

εsad(xt, yt) ≤ O(1)(ln(dimw))1−r/2R‖M‖2,r∗t−1, r∗ = r/(r − 1),

where ‖M‖2,2 is the spectral norm of M , and ‖M‖2,∞ is the maximum of

the Euclidean norms of the rows in M . When p = 1, the situation becomes

worse: (6.8) is now a bilinear saddle-point problem on the product of the unit

‖·‖r-ball and a simple subset of the unit box {y : ‖y‖∞ ≤ 1}, or, which is the

38 First Order Methods for Nonsmooth Convex Large-Scale Optimization, II

same, a simple subset of the Euclidean ball of the radius ρ =
√

dim η centered

at the origin. Substituting y = ρu, we end up with a bilinear saddle-point

problem on the direct product of the unit ‖ · ‖r ball and a simple subset of

the unit Euclidean ball, the matrix of the bilinear part of the cost function

being ρRDiag{η}MT . As a result, we arrive at the dimension-dependent

efficiency estimate

εsad(xt, yt) ≤ O(1)(ln(dimw))1−r/2√dim ηR‖M‖2,r∗t−1, r∗ = r/(r − 1).

Note that in all cases the computational effort at a step of the MP is dom-

inated by the necessity to compute O(1) matrix-vector products involving

matrices M and MT .

2. Now consider problem (6.5), and let p ∈ {2,∞}.
2.1. Let us start with the case of Ξ = {ξ ∈ Rn : ‖ξ‖1 ≤ 1}, so that

A(Jx) = A0 + Ax, where A is an m × 2n matrix. Here (6.6) is a bilinear

saddle-point problem on the direct product of the standard simplex S+
2n in

R2n and the unit ‖ · ‖q-ball in Rm. Combining (6.21) with derivations in

Section 5.7.2, the efficiency estimate of MP is

εsad(xt, yt) ≤ O(1)
√

ln(n)(ln(m))
1

2
− 1

p [max1≤j≤dimx‖Aj‖p] t−1, (6.22)

where Aj are columns of A. The complexity of a step is dominated by the

necessity to compute O(1) matrix-vector products involving A and AT .

2.2. The next case, inspired by K. Scheinberg, is the one where Ξ =

{(ξ1, ..., ξk) ∈ Rd1 × ... × Rdk :
∑

j ‖ξj‖2 ≤ 1}, so that problem (6.5) is of

the form arising in block Lasso (p = 2) or block Dantzig selector (p = ∞).

Setting X = Ξ, let us equip the embedding space Ex = Rd1 × ... × Rdk of

X with the norm ‖x‖x =
∑k

i=1 ‖xi[x]‖2, where xi[x] ∈ Rdi are the blocks of

x ∈ Ex, it is easily seen that the function

ωx(x) = 1
pγ

∑k
i=1 ‖xi[x]‖p2 : X→ R,

p =

{
2, k ≤ 2

1 + 1/ ln(k), k ≥ 3
, γ =


1, k = 1

1/2, k = 2

1/(e ln(k)), k > 2

is a d.-g.f. for X compatible with the norm ‖ · ‖, and that the ωx(·) diameter

Ωx of X does not exceed O(1) ln(k + 1). Note that in the case of k = 1

(where X = Ξ is the unit ‖ · ‖2-ball), ‖ · ‖x = ‖ · ‖2, ωx(·) are exactly as in

the Euclidean MD setup, and in the case of d1 = ... = dk = 1 (where X = Ξ

is the unit `1 ball), ‖ · ‖x = ‖ · ‖1 and ωx(·) is, basically, the d.-g.f. from

item 2b of Section 5.7.1. Applying the results of Section 6.3.3, the efficiency

6.3 Mirror-Prox Algorithm 39

estimate of MP is

εsad(zt) ≤ O(1)(ln(k + 1))
1

2 (ln(m))
1

2
− 1

pπ(A)t−1, (6.23)

where π(A) is the norm of the linear mapping x 7→ Ax induced by the norms

‖x‖x =
∑k

i=1 ‖xi[x]‖2 and ‖ · ‖p in the argument and the image spaces.

Note that the prox-mapping is easy to compute in this setup. The only

nonevident part of this claim is that it is easy to minimize over X a function

of the form ωx(x) + 〈a, x〉 or, which is the same, a function of the form

g(x) = 1
p

∑k
i=1 ‖xi[x]‖p2 +〈b, x〉. Here is the verification: setting βi = ‖xi[b]‖2,

1 ≤ i ≤ k, it is easily seen that at a minimizer x∗ of g(·) over X the

blocks xi[x∗] are nonpositive multiples of xi[b], thus, all we need is to find

σ∗i = ‖xi[x∗]‖2, 1 ≤ i ≤ k. Clearly, σ∗ = [σ∗1; ...;σ∗k] is nothing but

argmin
σ

{
1

p

∑k

i=1
σpi −

∑k

i=1
βiσi : σ ≥ 0,

∑
i

σi ≤ 1

}
.

After βi are computed, the resulting “nearly separable” convex problem

clearly can be solved within machine accuracy in O(k) a.o. As a result,

the arithmetic cost of a step of MP in our situation is dominated by O(1)

computations of matrix-vector products involving A and AT .

Note that slightly modifying the above d.-g.f. for the unit ball X of ‖ · ‖x,

we get a d.-g.f. compatible with ‖ · ‖x on the entire Ex, namely, the function

ω̂x(x) =
k(p−1)(2−p)/p

2γ

[∑k

i=1
‖xi[x]‖p2

] 2

p

,

with the same as above p, γ.1 The associated prox-mapping is a “closed

form” one. Indeed, here again the blocks xi[x∗] of the minimizer, over the

entire Ex, of g(x) = 1
2

(∑k
i=1 ‖xi[x]‖p2

) 2

p − 〈b, x〉 are nonpositive multiples

of the blocks xi[b]; thus, all we need is to find σ∗ = [‖x1[x∗]‖2; ...;xk[x∗]].

Setting β = [‖x1[b]‖2; ...; ‖xk[b]‖2], we have

σ∗ = argmin
σ∈Rk

{
1

2
‖σ‖2p − 〈β, σ〉 : σ ≥ 0

}
= ∇

(
1

2
‖β‖2 p

p−1

)
.

2.3. Finally, consider the case when Ξ is the unit nuclear-norm ball, so that

A(Jx) = a0 + [Tr(A1x); ...; Tr(Akx)] with Ai ∈ Sm+n, and (6.7) is a bilinear

saddle-point problem on the direct product of the spectahedron Σ+
m+n and

the unit ‖ · ‖q-ball in Rk. Applying the results of Section 6.3.3, the efficiency

1. Note that in the “extreme” cases (a): k = 1 and (b): d1 = ... = dk = 1, our d.-g.f.
recovers the Euclidean d.-g.f. and the d.-g.f. similar to the one in item 2a of Section 5.7.1.

40 First Order Methods for Nonsmooth Convex Large-Scale Optimization, II

estimate of MP is

εsad(xt, yt) ≤ O(1)
√

ln(m+ n)(ln(k))
1

2
− 1

p

[
max
‖ζ‖2≤1

‖[ζTA1ζ; ...; ζTAkζ]‖p
]
t−1.

The complexity of a step is dominated by O(1) computations of the values of

A and of matrices of the form
∑k

i=1 yiAi, plus computing a single eigenvalue

decomposition of a matrix from Sm+n.

In all cases, the approximate solution (xt, yt) to the saddle-point reformu-

lation of (6.5) straightforwardly induces a feasible solution ξt to the problem

of interest (6.5) such that f(ξt)−Opt ≤ εsad(xt, yt).

6.4 Accelerating the Mirror-Prox Algorithm

In what follows, we present two modifications of the MP algorithm.

6.4.1 Splitting

6.4.1.1 Situation and Assumptions

Consider the c.-c.s.p. problem (6.3) and assume that both X and Y are

bounded. Assume also that we are given norms ‖ · ‖x, ‖ · ‖y on the corre-

sponding embedding spaces Ex, Ey, along with d.-g.f.’s ωx(·) for X and ωy(·)
for Y which are compatible with the respective norms.

We already know that if the convex-concave cost function φ is smooth

(i.e., possesses a Lipschitz continuous gradient), the problem can be solved

at the rate O(1/t). We are about to demonstrate that the same holds true

when, roughly speaking, φ can be represented as a sum of a “simple” part

and a smooth parts. Specifically, let us assume the following:

C.1. The monotone operator Φ associated with (6.3) (see Section 5.6.1)

admits splitting: we can point out a Lipschitz continuous on Z vector

field G(z) = (Gx(z), Gy(z)) : Z → E = Ex × Ey, and a point-to-set

monotone operator H with the same domain as Φ such that the sets

H(z), z ∈ Dom H, are convex and nonempty, the graph of H (the set

{(z, h) : z ∈ Dom H, h ∈ H(z)}) is closed, and

∀z ∈ Dom H : H(z) +G(z) ⊂ Φ(z). (6.24)

C.2. H is simple, specifically, it is easy to find a weak solution to the

variational inequality associated with Z and a monotone operator of the

form Ψ(x, y) = αH(x, y) + [αxω
′
x(x) + e;αyω

′
y(y) + f] (where α, αx, αy are

6.4 Accelerating the Mirror-Prox Algorithm 41

positive), that is, it is easy to find a point ẑ ∈ Z satisfying

∀(z ∈ rint Z, F ∈ Ψ(z)) : 〈F, z − ẑ〉 ≥ 0. (6.25)

It is easily seen that in the case of C.1, (6.25) has a unique solution ẑ = (x̂, ŷ)

which belongs to Dom Φ ∩ Zo and in fact is a strong solution: there exists

ζ ∈ H(ẑ) such that

∀z ∈ Z : 〈αζ + [αzω
′
x(x̂) + e;αyω

′
y(ŷ) + f], z − ẑ〉 ≥ 0. (6.26)

We assume that when solving (6.25), we get both ẑ and ζ.

We intend to demonstrate that under assumptions C.1 and C.2 we can

solve (6.3) as if there were no H-component at all.

6.4.2 Algorithm MPa

6.4.2.1 Preliminaries

Recall that the mapping G(x, y) = (Gx(x, y), Gy(x, y)) : Z → E defined

in C.1 is Lipschitz continuous. We assume that we have at our disposal

nonnegative constants Lxx, Lyy, Lxy such that

∀(z = (x, y) ∈ Z, z′ = (x′, y′) ∈ Z) :
‖Gx(x′, y)−Gx(x, y)‖x,∗ ≤ Lxx‖x′ − x‖x,
‖Gy(x, y′)−Gy(x, y)‖y,∗ ≤ Lyy‖y′ − y‖y
‖Gx(x, y′)−Gx(x, y)‖x,∗ ≤ Lxy‖y′ − y‖y,
‖Gy(x′, y)−Gy(x, y)‖y,∗ ≤ Lxy‖x′ − x‖x

(6.27)

where ‖·‖x,∗ and ‖·‖y,∗ are the norms conjugate to ‖·‖x and ‖·‖y, respectively.

We set

Ωx = maxXωx(·)−minXωx(·), Ωy = maxYωy(·)−minYωy(·),
L = LxxΩx + LxyΩy + 2Lxy

√
ΩxΩy,

α = [LxxΩx + Lxy
√

ΩxΩy]/L, β = [LyyΩy + Lxy
√

ΩxΩy]/L,

ω(x, y) = α
Ωx
ωx(x) + β

Ωy
ωy(y) : Z→ R,

‖(x, y)‖ =
√

α
Ωx
‖x‖2x + β

Ωy
‖y‖2y

(6.28)

so that the conjugate norm is ‖(x, y)‖∗ =
√

Ωx
α ‖x‖2x,∗ + Ωy

β ‖y‖2y,∗ (cf. Section

6.3.3). Observe that ω(·) is a d.-g.f. on Z compatible with the norm ‖ · ‖. It

is easily seen that Ω := 1 ≥ maxz∈Z ω(z)−minz∈Z ω(z) and

∀(z, z′ ∈ Z) : ‖G(z)−G(z′)‖∗ ≤ L‖z − z′‖. (6.29)

42 First Order Methods for Nonsmooth Convex Large-Scale Optimization, II

6.4.2.2 Algorithm MPa

Our new version, MPa, of the MP algorithm is as follows:

1. Initialization: Set z1 = argminZ ω(·).
2. Step τ = 1, 2, ...: Given zτ ∈ Zo and a stepsize γτ > 0, we find wτ that

satisfies

(∀u ∈ rint Z, F ∈ H(u)) : 〈γτ (F +G(zτ)) +ω′(u)−ω′(zτ), u−wτ 〉 ≥ 0

and find ζτ ∈ H(wτ) such that

∀(u ∈ Z) : 〈γτ (ζτ +G(zτ)) + ω′(wτ)− ω′(zτ), u− wτ 〉 ≥ 0; (6.30)

by assumption C.2, computation of ωτ and ζτ is easy. Next, we compute

zτ+1 = Proxzτ (γτ (ζτ +G(wτ)))

:= argminz∈Z [〈γτ (ζτ +G(wτ)), z〉+ Vzτ (z)] ,
(6.31)

where V·(·) is defined in (6.11). We set

zτ =
[∑τ

s=1
γs

]−1∑τ

s=1
γsws

and loop to step τ + 1.

Let

δτ = 〈γτ (ζτ +G(wτ)), wτ − zτ+1〉 − Vzτ (zτ+1)

(cf. (6.27)). The convergence properties of the algorithm are given by

Proposition 6.3. Under assumptions C.1 and C.2, algorithm MPa ensures

that

(i) For every t ≥ 1 it holds that

εsad(zt) ≤
[∑t

τ=1
γτ

]−1 [
1 +

∑t

τ=1
δτ

]
. (6.32)

(ii) If the stepsizes satisfy the condition γτ ≥ L−1, δτ ≤ 0 for all τ (which

certainly is so when γτ ≡ L−1), we have

∀t ≥ 1 : εsad(zt) ≤
[∑t

τ=1
γτ

]−1

≤ L/t. (6.33)

Proof. Relation (6.30) exactly expresses the fact that wτ = Proxzτ (γτ (ζτ +

6.4 Accelerating the Mirror-Prox Algorithm 43

G(zτ))). With this in mind, Lemma 6.2 implies that

(a) γτ 〈ζτ +G(wτ), wτ − u〉 ≤ Vzτ (u)− Vzτ+1
(u) + δτ ∀u ∈ Z,

(b) δτ ≤ 1
2

[
γ2
τ‖G(wτ)−G(zτ)‖2∗ − ‖wτ − zτ‖2

] (6.34)

(cf. (6.19)). It remains to repeat word by word the reasoning in items 20–30

of the proof of Proposition 6.1, keeping in mind (6.29) and the fact that, by

the origin of ζτ and in view of (6.24), we have ζτ +G(wτ) ∈ Φ(wτ).

6.4.2.3 Illustration II

Consider a problem of the Dantzig selector type

Opt = min‖x‖1≤1‖AT (Ax− b)‖∞ [A : m× n,m ≤ n] (6.35)

(cf. (6.5)) along with its saddle-point reformulation:

Opt = min‖x‖1≤1max‖y‖1≤1y
T [Bx− c], B = ATA, c = AT b. (6.36)

As already mentioned, the efficiency estimate for the basic MP as applied to

this problem is εsad(zt) ≤ O(1)
√

ln(n)‖B‖1,∞t−1, where ‖B‖1,∞ is the max-

imum of magnitudes of entries in B. Now, in typical large-scale compressed

sensing applications, columns Ai of A are of nearly unit ‖ · ‖2-norm and are

nearly orthogonal: the mutual incoherence µ(A) = maxi 6=j |ATi Aj |/ATi Ai is

� 1. In other words, the diagonal entries in B are of order 1, and the

magnitudes of off-diagonal entries do not exceed µ � 1. For example,

for a typical randomly selected A, µ is as small as O(
√

ln(n)/m). Now,

the monotone operator associated with (6.36) admits an affine selection

F (x, y) = (BT y, c−Bx) and can be split as

F (x, y) =

H(x,y)︷ ︸︸ ︷
(Dy,−Dx) +

G(x,y)︷ ︸︸ ︷
(B̂T y, c− B̂x),

where D is the diagonal matrix with the same diagonal as in B, and

B̂ = B−D. Now, the domains X = Y associated with (6.36) are unit `1-balls

in the respective embedding spaces Ex = Ey = Rn. Equipping Ex = Ey with

the norm ‖·‖1, and the unit ‖·‖1 ball X = Y in Rn with the d.-g.f. presented

in item 2b of Chapter 5, Section 5.7.1, we clearly satisfy C.1 and, on a closest

inspection, satisfy C.2 as well. As a result, we can solve the problem by MPa,

the efficiency estimate being εsad(zt) ≤ O(1) ln(n)‖B̂‖1,∞t−1, which is much

better than the estimate εsad(zt) ≤ O(1) ln(n)‖B‖1,∞t−1 for the plain MP

(recall that we are dealing with the case of µ := ‖B̂‖1,∞ � ‖B‖1,∞ = O(1)).

To see that C.2 indeed takes place, note that in our situation, finding a

44 First Order Methods for Nonsmooth Convex Large-Scale Optimization, II

solution ẑ to (6.25) reduces to solving the c.-c.s.p. problem (where α >

0, β > 0, p ∈ (1, 2))

min
‖x‖1≤1

max
‖y‖1≤1

[
α
∑
i

|xi|p − β
∑
i

|yi|p +
∑
i

[aixi + biyi + cixiyi]

]
. (6.37)

By duality, this is equivalent to solving the c.-c.s.p. problem

supµ≥0 infν≥0

[
f(µ, ν) := ν − µ

+
∑

i minximaxyi [α|xi|p + µ|xi| − β|yi|p − ν|yi|+ aixi + biyi + cixiyi]
]
.

The function f(µ, ν) is convex-concave; computing first-order informa-

tion on f reduces to solving n simple two-dimensional c.-c.s.p. prob-

lems minxi maxyi [...] and, for all practical purposes, costs only O(n)

operations. Then we can solve the (two-dimensional) c.-c.s.p. problem

maxµ≥0minν≥0f(µ, ν) by a polynomial-time first-order algorithm, such as

the saddle-point version of the Ellipsoid method (see, e.g., Nemirovski et al.,

2010). Thus, solving (6.37) within machine accuracy takes just O(n) opera-

tions.

6.4.3 The Strongly Concave Case

6.4.3.1 Situation and Assumptions

Our current goal is to demonstrate that in the situation of the previous

section, assuming that φ is strongly concave, we can improve the rate of

convergence from O(1/t) to O(1/t2). Let us consider the c.-c.s.p. problem

(6.3) and assume that X is bounded (while Y can be unbounded), and that

we are given norms ‖ · ‖x, ‖ · ‖y on the corresponding embedding spaces Ex,

Ey. We assume that we are also given a d.-g.f. ωx(·), compatible with ‖ · ‖x,

for X , and a d.-g.f. ωy(·) compatible with ‖ · ‖y, for the entire Ey (and not

just for Y). W.l.o.g. let 0 = argminEy ωy. We keep assumption C.1 intact

and replace assumption C.2 with its modification:

C.2′. It is easy to find a solution ẑ to the variational inequality (6.25)

associated with Z and a monotone operator of the form Ψ(x, y) = αH(x, y)+

[αxω
′
x(x)+e;αyω

′
y((y−ȳ)/R)+f] (where α, αx, αy, R are positive and ȳ ∈ Y).

As above, it is easily seen that ẑ = (x̂, ŷ) is in fact a strong solution to

the variational inequality: there exists ζ ∈ H(ẑ) such that

〈αζ + [αxω
′
x(x̂) + e;αyω

′
y((ŷ − ȳ)/R) + f], u− ẑ〉 ≥ 0 ∀u ∈ Z. (6.38)

We assume, as in the case of C.2, that when solving (6.25), we get both ẑ

and ζ.

6.4 Accelerating the Mirror-Prox Algorithm 45

Furthermore, there are two new assumptions:

C.3. The function φ is strongly concave with modulus κ > 0 w.r.t. ‖ · ‖y:

∀

(
x ∈ X, y ∈ rint Y, f ∈ ∂y[−φ(x, y)],

y′ ∈ rint Y, g ∈ ∂y[−φ(x, y′)]

)
: 〈f − g, y − y′〉 ≥ κ‖y − y′‖2y.

C.4. The Ex-component of G(x, y) is independent of x, that is, Lxx = 0

(see (6.27)).

Note that C.4 is automatically satisfied when G(·) = (∇xφ̃(·),−∇yφ̃(·))
comes from a bilinear component φ̃(x, y) = 〈a, x〉+ 〈b, y〉+ 〈y,Ax〉 of φ.

Observe that since X is bounded, the function φ(y) = minx∈X φ(x, y) is

well defined and continuous on Y; by C.3, this function is strongly concave

and thus has bounded level sets. By remark 5.1, φ possesses saddle points,

and since φ is strongly convex, the y-component of a saddle point is the

unique maximizer y∗ of φ on Y. We set

xc = argminXωx(·), Ωx = maxXωx(·)−minXωx(·),
Ωy = max‖y‖y≤1ωy(y)−minyωy(y) = max‖y‖y≤1ωy(y)− ωy(0).

6.4.3.2 Algorithm MPb

The idea we intend to implement is the same one we used in Section 5.4

when designing MD for strongly convex optimization: all other things being

equal, the efficiency estimate (5.28) is the better, the smaller the domain

Z (cf. the factor Ω in (6.17)). On the other hand, when applying MP to a

saddle-point problem with φ(x, y) which is strongly concave in y, we ensure

a qualified rate of convergence of yt to y∗, and thus eventually could replace

the original domain Z with a smaller one by reducing the y-component.

When it happens, we can run MP on this smaller domain, thus accelerating

the solution process. This, roughly speaking, is what is going on in the

algorithm MPb we are about to present.

Building Blocks. Let R > 0, ȳ ∈ Y and z̄ = (xc, ȳ) ∈ Z, so that z̄ ∈ Z.

Define the following entities:

ZR = {(x; y) ∈ Z : ‖y − ȳ‖y ≤ R},
LR = 2Lxy

√
ΩxΩyR+ LyyΩyR

2,

α = [Lxy
√

ΩxΩyR]/LR, β = [Lxy
√

ΩxΩyR+ LyyΩyR
2]/LR,

ωR,ȳ(x, y) = α
Ωx
ωx(x) + β

Ωy
ωy([y − ȳ]/R),

‖(x, y)‖ =
√

α
Ωx
‖x‖2x + β

ΩyR2 ‖y‖2y

(6.39)

46 First Order Methods for Nonsmooth Convex Large-Scale Optimization, II

with ‖(ξ, η)‖∗ =
√

Ωx
α ‖ξ‖2x,∗ + ΩyR2

β ‖η‖2y,∗. It is easily seen that ωR,ȳ is a

d.-g.f. for Z compatible with the norm ‖ · ‖, z̄ = argminZ ω
R,ȳ(·), and

(a) maxZRω
R,ȳ(·)−minZRω

R,ȳ(·) ≤ 1,

(b) ∀(z, z′ ∈ Z) : ‖G(z)−G(z′)‖∗ ≤ LR‖z − z′‖.
(6.40)

For u ∈ Z and z ∈ Zo we set V R,ȳ
z (u) = ωR,ȳ(u)−ωR,ȳ(z)−〈(ωR,ȳ(z))′, u−z〉

and define the prox-mapping

ProxR,ȳz (ξ) = argminu∈Z[〈ξ, u〉+ V R,ȳ
z (u)].

Let z1 = z̄ and γt > 0, t = 1, 2, Consider the following recurrence B (cf.

Section 6.4.1):

(a) Given zt ∈ Zo, we form the monotone operator Ψ(z) = γtH(z) +

(ωR,ȳ)′(z)− (ωR,ȳ)′(zt) + γtG(zt) and solve the variational inequality (6.25)

associated with Z and this operator; let the solution be denoted by wt.

Since the operator Ψ is of the form considered in C.2′, as a by-product of

our computation we get a vector ζt such that ∀u ∈ Z :

ζt ∈ H(wt) & 〈γt[ζt+G(zt)]+(ωR,ȳ)′(wt)− (ωR,ȳ)′(zt), u−wt〉 ≥ 0 (6.41)

(cf. (6.38)).

(b) Compute zt+1 = ProxR,ȳzt (γt(ζt +G(wt))) and

zt(R, ȳ) ≡ (xt(R, ȳ), yt(R, ȳ)) =
[∑t

τ=1
γτ
]−1
∑t

τ=1
γτwτ .

Let

Ft = ζt +G(wt), δt = 〈γtFt, wt − zt+1〉 − V R,ȳ
zt (zt+1).

Proposition 6.4. Let assumptions C.1 and C.2′-C.4 hold. Let the stepsizes

satisfy the conditions γτ ≥ L−1
R and δτ ≤ 0 for all τ (which certainly is so

when γτ = L−1
R for all τ).

(i) Assume that ‖ȳ−y∗‖y ≤ R. Then for xt = xt(R, ȳ), yt = yt(R, ȳ) it holds

that

(a) φ̃R(xt)− φ(yt) ≤
[∑t

τ=1γτ
]−1∑t

τ=1γτ 〈Fτ , wτ − z∗〉
≤

[∑t
τ=1γτ

]−1 ≤ LR
t ,

(b) ‖yt − y∗‖2y ≤ 2
κ [φ̃R(xt)− φ(yt)] ≤ 2LR

κt ,

(6.42)

where φ̃R(x) = maxy∈Y:‖y−ȳ‖y≤Rφ(x, y).

(ii) Further, if ‖ȳ − y∗‖y ≤ R/2 and t > 8LR
κR2 , then φ̃R(xt) = φ(xt) :=

6.4 Accelerating the Mirror-Prox Algorithm 47

max
y∈Y

φ(xt, y), and therefore

εsad(xt, yt) := φ(xt)− φ(yt) ≤ LR

t
. (6.43)

Proof. (i): Exactly the same argument as in the proof of Proposition 6.3,

with (6.40.b) in the role of (6.29), shows that

∀u ∈ Z :
t∑

τ=1

γτ 〈Fτ , zτ − u〉 ≤ V R,ȳ
z1 (u) +

t∑
τ=1

δτ

and that δτ ≤ 0, provided γτ = L−1
R . Thus, under the premise of Proposi-

tion 6.4 we have

t∑
τ=1

γτ 〈Fτ , zτ − u〉 ≤ V R,ȳ
z1 (u) ∀u ∈ Z.

When u = (x, y) ∈ ZR, the right-hand side of this inequality is ≤ 1 by

(6.40.a) and due to z1 = z̄. Using the same argument as in item 20 of the

proof of Proposition 6.1, we conclude that the left-hand side in the inequality

is ≥
[∑t

τ=1 γτ
] [
φ(xt, y)− φ(x, yt)

]
. Thus,

∀u ∈ ZR : φ(xt, y)− φ(x, yt) ≤
[∑t

τ=1
γτ

]−1 t∑
τ=1

γτ 〈Fτ , zτ − u〉.

Taking the supremum of the left hand side of this inequality over u ∈ ZR
and noting that γτ ≥ L−1

R , we arrive at (6.42.a). Further, ‖ȳ − y∗‖ ≤ R,

whence φ̃R(xt) ≥ φ(xt, y∗) ≥ φ(y∗). Since y∗ is the maximizer of the strongly

concave, modulus κ w.r.t. ‖ · ‖y, function φ(·) over Y, we have

‖yt − y∗‖2y ≤
2

κ
[φ(y∗)− φ(yt)] ≤ 2

κ
[φ̃R(xt)− φ(yt)],

which is the first inequality in (6.42.b); the second inequality in (6.42.b) is

given by (6.42.a). (i) is proved.

(ii): All we need to derive (ii) from (i) is to prove that under the

premise of (ii), the quantities φ(xt) := maxy∈Y φ(xt, y) and φ̃R(xt) :=

maxy∈Y,‖y−ȳ‖y≤R φ(xt, y) are equal to each other. Assume that this is not

the case, and let us lead this assumption to a contradiction. Looking at the

definitions of φ and φ̃R, we see that in the case in question the maximizer

ỹ of φ(xt, y) over YR = {y :∈ Y : ‖y − ȳ‖y ≤ R} satisfies ‖ȳ − ỹ‖y = R.

Since ‖ȳ − y∗‖y ≤ R/2, it follows that ‖y∗ − ỹ‖y ≥ R/2. Because y∗ ∈ YR,

ỹ = argmaxy∈YR φ(xt, y) and φ(xt, y) is strongly concave, modulus κ w.r.t.

‖ · ‖y, we get φ(xt, y∗) ≤ φ(xt, ỹ) − κ
2‖y∗ − ỹ‖

2
y ≤ φ(xt, ỹ) − κR2

8 , whence

48 First Order Methods for Nonsmooth Convex Large-Scale Optimization, II

φ̃R(xt) = φ(xt, ỹ) ≥ φ(xt, y∗) + κR2

8 . On the other hand, φ(xt, y∗) ≥ φ(y∗) ≥
φ(yt), and we arrive at φ̃R(xt) − φ(yt) ≥ κR2

8 . At the same time, (6.42.a)

says that φ̃R(xt)− φ(yt) ≤ LRt
−1 < κR2

8 , where the latter inequality is due

to t > 8LR
κR2 . We arrive at the desired contradiction.

Algorithm MPb. Let R0 > 0 and y0 ∈ Y such that

‖y0 − y∗‖ ≤ R0/2 (6.44)

are given, and let

Rk = 2−k/2R0,

Nk = Ceil
(

16κ−1
[
2
k+1

2 Lxy
√

ΩxΩyR
−1
0 + LyyΩy

])
,

Mk =

k∑
j=1

Nj , k = 1, 2, ...

Execution of MPb is split into stages k = 1, 2, At the beginning of stage

k, we have at our disposal yk−1 ∈ Y such that

‖yk−1 − y∗‖y ≤ Rk−1/2. (Ik−1)

At stage k, we compute (x̂k, ŷk) = zNk(Rk−1, y
k−1), which takes Nk steps of

the recurrence B (where R is set to Rk−1 and ȳ is set to yk−1). The stepsize

policy can be an arbitrary policy satisfying γτ ≥ L−1
Rk−1

and δτ ≤ 0, e.g.,

γτ ≡ L−1
Rk−1

; see Proposition 6.4. After (x̂k, ŷk) is built, we set yk = ŷk and

pass to stage k + 1.

Note that Mk is merely the total number of steps of B carried out in

course of the first k stages of MPb.

The convergence properties of MPb are given by the following statement

(which can be derived from Proposition 6.4 in exactly the same way that

Proposition 5.4 was derived from Proposition 5.3):

Proposition 6.5. Let assumptions C.1, C.2′–C.4 hold, and let R0 > 0

and y0 ∈ Y satisfy (6.44). Then algorithm MPb maintains relations (Ik−1)

and

εsad(x̂k, ŷk) ≤ κ2−(k+3)R2
0, (Jk)

k = 1, 2, Further, let k∗ be the smallest integer k such that k ≥ 1 and

2
k

2 ≥ kR0
Lxy
√

ΩxΩy
LyyΩy+κ . Then

— for 1 ≤ k < k∗, we have Mk ≤ O(1)kLyyΩy+κ
κ and εsad(x̂k, ŷk) ≤ κ2−kR2

0;

— for k ≥ k∗, we have Mk ≤ O(1)Nk and εsad(x̂k, ŷk) ≤ O(1)
L2
xyΩxΩy
κM2

k
.

6.4 Accelerating the Mirror-Prox Algorithm 49

Note that MPb behaves in the same way as the MD algorithm for

strongly convex objectives (cf. Chapter 5, Section 5.4). Specifically, when

the approximate solution yk is far from the optimal solution y∗, the method

converges linearly and switches to the sublinear rate (now it is O(1/t2))

when approaching y∗.

6.4.3.3 Illustration III

As an instructive application example for algorithm MPb, consider the

convex minimization problem

Opt = min
ξ∈Ξ

f(ξ), f(ξ) = f0(ξ) +
L∑̀
=1

1
2dist2(A`ξ − b`, U` + V`),

dist2(w,W) = minw′∈W ‖w − w′‖22
(6.45)

where

• Ξ ⊂ Eξ = Rnξ is a convex compact set with a nonempty interior, Eξ is

equipped with a norm ‖·‖ξ, and Ξ is equipped with a d.-g.f. ωξ(ξ) compatible

with ‖ · ‖ξ;
• f0(ξ) : Ξ → R is a simple continuous convex function, “simple” meaning

that it is easy to solve auxiliary problems

minξ∈Ξ

{
αf0(ξ) + aT ξ + βωξ(ξ)

]
[α, β > 0]

• U` ⊂ Rm` are convex compact sets such that computing metric projection

ProjU`(u) = argminu′∈U` ‖u− u
′‖2 onto U` is easy;

• V` ⊂ Rm` are polytopes given as V` = Conv{v`,1, ..., v`,n`}.
On a close inspection, problem (6.45) admits a saddle-point reformulation.

Specifically, recalling that Sk = {x ∈ Rk+ :
∑

i xi = 1} and setting

X = {x = [ξ;x1; ...;xL] ∈ Ξ× Sn1
× ...× SnL} ⊂ Ex = Rnξ+n1+...+nL ,

Y = Ey := Rm1

y1 × ...× RmL

yL ,

g(y = (y1, ..., yL)) =
∑
`

g`(y
`), g`(y

`) =
1

2
[y`]T y` + maxu`∈U`u

T
` y

`,

B` = [v`,1, ..., v`,n`],

A[ξ;x1; ...;xL]− b = [A1ξ −B1x
1; ...;ALξ −B`xL]− [b1; ...; bL],

φ(x, y) = f0(ξ) + yT [Ax− b]− g(y),

we get a continuous convex-concave function φ on X× Y such that

f(ξ) = minη=(x1,...,xL):(ξ,η)∈Xmaxy∈Yφ((ξ, η), y),

so that if a point (x = [ξ;x1; ...;xL], y = [y1; ...; yL]) ∈ X× Y is an ε-solution

50 First Order Methods for Nonsmooth Convex Large-Scale Optimization, II

to the c.-c.s.p. problem infx∈X supY φ(x, y), ξ is an ε-solution to the problem

of interest (6.45):

εsad(x, y) ≤ ε⇒ f(ξ)−Opt ≤ ε.

Now we apply algorithm MPb to the saddle-point problem inf
x∈X

supy∈Y φ(x, y).

The required setup is as follows:

1. Given positive α, α1, ..., αL (parameters of the construction), we equip

the embedding space Ex of X with the norm

‖[ξ;x1; ...;xL]‖x =

√
α‖ξ‖2 +

∑L

`=1
α`‖x`‖21,

and X itself with the d.-g.f.

ωx([ξ;x1; ...;xL]) = αωξ(ξ) +
∑L

`=1
α`Ent(x`), Ent(u) =

∑dimu

i=1
ui lnui,

which, it can immediately be seen, is compatible with ‖ · ‖x.

2. We equip Y = Ey = Rm1+...+mL
y with the standard Euclidean norm ‖y‖2

and the d.-g.f. ωy(y) = 1
2y

T y.

3. The monotone operator Φ associated with (φ, z) is

Φ(x, y) = {∂x[φ(x, y)+χX(x)]}×{∂y[−φ(x, y)]}, χQ(u) =

{
0, u ∈ Q
+∞, u 6∈ Q

.

We define its splitting, required by C.1, as

H(x, y) = {{∂ξ[f0(ξ) + χΞ(ξ)} × {0}...× {0}} × {∂y[
∑L

`=1g`(y
`)]},

G(x, y) = (∇x[yT [Ax− b]] = AT y,−∇y[yT [Ax− b]] = b−Ax).

With this setup, we satisfy C.1 and C.3-C.4 (C.3 is satisfied with κ = 1).

Let us verify that C.2′ is satisfied as well. Indeed, in our current situation,

finding a solution ẑ to (6.25) means solving the pair of convex optimization

problems

(a) min
[ξ;x1;...;xL]∈X

[
pαωξ(ξ) + qf0(ξ) + eT ξ

+
∑L

`=1

[
pα`Ent(x`) + eT` x

`
]]

(b) min
y=[y1;...;yL]

∑L
`=1

[
r
2 [y`]T y` + sg`(y

`) + fT` y
`
] (6.46)

where p, q, r, and s are positive. Due to the direct product structure of X,

(6.46.a) decomposes into the uncoupled problems minξ∈Ξ[pαωξ(ξ) + f0(ξ) +

eT ξ] and minx`∈S`

[
pα`Ent(x`) + eT` x

`
]
. We have explicitly assumed that

the first of these problems is easy; the remaining ones admit closed form

6.5 Accelerating First-Order Methods by Randomization 51

solutions (cf. (5.39)). (6.46.b) also is easy: a simple computation yields

y` = − 1
r+s [sProjU`(−s

−1f`) + f`], and it was assumed that it is easy to

project onto U`.

The bottom line is that we can solve (6.45) by algorithm MPb, the

resulting efficiency estimate being

f(ξ̂k)−Opt ≤ O(1)
L2
xyΩx

M2
k

, k ≥ k∗ = O(1) ln(R0Lxy
√

Ωx + 2)

(see Proposition 6.5 and take into account that we are in the situation of

κ = 1,Ωy = 1
2 , Lyy = 0). We can further use the parameters α, α1, ..., αL to

optimize the quantity L2
xyΩx. A rough optimization leads to the following:

let µ` be the norm of the linear mapping ξ → A`ξ induced by the norms

‖ · ‖ξ, ‖ · ‖2 in the argument and the image spaces, respectively, and let

ν` = max1≤j≤n`‖v`,j‖2. Choosing

α =
∑L

`=1
µ2
` , α` = ν2

` , 1 ≤ ` ≤ L

results in L2
xyΩx ≤ O(1)

[
Ωξ

∑
` µ

2
` +

∑
` ν

2
` ln(n` + 1)

]
, Ωξ = maxΞωξ(·) −

minΞωξ(·).

6.5 Accelerating First-Order Methods by Randomization

We have seen in Section 6.2.1 that many important well-structured convex

minimization programs reduce to just bilinear saddle-point problems

SadVal = min
x∈X⊂Ex

max
y∈Y⊂Ey

[φ(x, y) := 〈a, x〉+ 〈y,Ax− b〉] , (6.47)

the corresponding monotone operator admitting an affine selection

F (z = (x, y)) = (a+AT y, b−Ax) = (a, b) + Fz,

F(x, y) = (AT y,−Ax).
(6.48)

Computing the value of F requires two matrix-vector multiplications involv-

ing A and AT . When X,Y are simple and the problem is large-scale with

dense A (which is the case in many machine learning and signal processing

applications), these matrix-vector multiplications dominate the computa-

tional cost of an iteration of an FOM; as the sizes of A grow, these multipli-

cations can become prohibitively time consuming. The idea of what follows

is that matrix-vector multiplications is easy to randomize, and this random-

ization, under favorable circumstances, allows for dramatic acceleration of

FOMs in the extremely large-scale case.

52 First Order Methods for Nonsmooth Convex Large-Scale Optimization, II

6.5.1 Randomizing Matrix-Vector Multiplications

Let u ∈ Rn. Computing the image of u under a linear mapping u 7→
Bu =

∑n
j=1 ujbj : Rn → E are easy to randomize: treat the vector

[|u1|; ...; |un|]/‖u‖1 as a probability distribution on the set {b1, ..., bn}, draw

from this distribution a sample b and set ξu = ‖u‖1sign(u)b, thus getting

an unbiased (E{ξu} = Bu) random estimate of Bu. When bj are represented

by readily available arrays, the arithmetic cost of sampling from the distribu-

tion Pu of ξu, modulo the setup cost O(n) a.o. of computing the cumulative

distribution {‖u‖−1
1

∑j
i=1 |ui|}nj=1 is just O(ln(n)) a.o. to generate  plus

O(dimE) a.o. to compute ‖u‖1sign(u)b. Thus, the total cost of getting a

single realization of ξu is O(n) + dimE. For large n and dimE this is much

less than the cost O(n dimE), assuming bj are dense, of a straightforward

precise computation of Bu.

We can generate a number k of independent samples ξ` ∼ Pu, ` = 1, ..., k,

and take, as an unbiased estimate of Bu, the average ξ = 1
k

∑k
`=1 ξ

`, thus

reducing the estimate’s variability; with this approach, the setup cost is paid

only once.

6.5.2 Randomized Algorithm for Solving Bilinear Saddle-Point Problem

We are about to present a randomized version MPr of the mirror-prox

algorithm for solving the bilinear saddle-point problem (6.47).

6.5.2.1 Assumptions and Setup

1. As usual, we assume that X and Y are nonempty compact convex

subsets of Euclidean spaces Ex, Ey; these spaces are equipped with the

respective norms ‖ · ‖x, ‖ · ‖y, while X, Y are equipped with d.-g.f.’s ωx(·),
ωy(·) compatible with ‖ · ‖x, resp., ‖ · ‖y, and define Ωx, Ωy according

to (6.28). Further, we define ‖A‖x,y as the norm of the linear mapping

x 7→ Ax : Ex → Ey induced by the norms ‖ · ‖x, ‖ · ‖y on the argument

and the image spaces.

2. We assume that every point u ∈ X is associated with a probability

distribution Πu supported on X such that Eξ∼Πu{ξ} = u, for all u ∈ X.

Similarly, we assume that every point v ∈ Y is associated with a probability

distribution Pv on Ey with a bounded support and such that Eη∼Pv{η} = v

for all v ∈ Y. We refer to the case when Pv, for every v ∈ Y, is supported

on Y, as the inside case, as opposed to the general case, where support

of Pv, v ∈ Y, does not necessarily belong to Y. We will use Πx, Py to

randomize matrix-vector multiplications. Specifically, given two positive

6.5 Accelerating First-Order Methods by Randomization 53

integers kx, ky (parameters of our construction), and given u ∈ X, we

build a randomized estimate of Au as Aξu, where ξu = 1
kx

∑kx
i=1 ξi and

ξi are sampled, independently of each other, from Πu. Similarly, given

v ∈ Y, we estimate AT v by AT ηv, where ηv = 1
ky

∑ky
i=1 ηi, with ηi sampled

independently of each other from Pv. Note that ξv ∈ X, and in the inside

case ηu ∈ Y. Of course, a randomized estimation of Au, AT v makes sense

only when computing Aξ, ξ ∈ supp(Πu), AT η, η ∈ supp(Pv) is much easier

than computing Au, AT v for a general type u and v.

We introduce the quantities

σ2
x = sup

u∈X
E{‖A[ξu − u]‖2y,∗}, σ2

y = sup
v∈Y

E{AT [ηv − v]‖2x,∗},

Θ = 2
[
Ωxσ

2
y + Ωyσ

2
x

]
.

(6.49)

where ξu, ηv are the random vectors just defined, and, as always, ‖ · ‖x,∗,
‖ · ‖y,∗ are the norms conjugate to ‖ · ‖x and ‖ · ‖y.
3. The setup for the algorithm MPr is given by the norm ‖ · ‖ on E =

Ex × Ey ⊃ Z = X× Y, and the compatible with this norm d.-g.f. ω(·) for Z

which are given by

‖(x, y)‖ =

√
1

2Ωx
‖x‖2x +

1

2Ωy
‖y‖2y, ω(x, y) =

1

2Ωx
ωx(x) +

1

2Ωy
ωy(y),

so that

‖(ξ, η)‖∗ =
√

2Ωx‖ξ‖2x,∗ + 2Ωy‖η‖2y,∗. (6.50)

For z ∈ Zo, w ∈ Z let (cf. the definition (5.4))

Vz(w) = ω(w)− ω(z)− 〈ω′(z), w − z〉,

and let zc = argminw∈Zω(w). Further, we assume that given z ∈ Zo and

ξ ∈ E, it is easy to compute the prox-mapping

Proxz(ξ) = argmin
w∈Z

[〈ξ, w〉+ Vz(w)]

(
= argmin

w∈Z

[
〈ξ − ω′(z), w〉+ ω(w)

])
.

It can immediately be seen that

Ω[Z] = max
Z

ω(·)−min
Z
ω(·) = 1. (6.51)

and the affine monotone operator F (z) given by (6.48) satisfies the relation

∀z, z′ : ‖F (z)− F (z′)‖∗ ≤ L‖z − z′‖, L = 2‖A‖x,y
√

ΩxΩy. (6.52)

54 First Order Methods for Nonsmooth Convex Large-Scale Optimization, II

6.5.2.2 Algorithm

For simplicity, we present here the version of MPr where the number of

steps, N , is fixed in advance. Given N , we set

γ = min

[
1√
3L

,
1√

3ΘN

]
(6.53)

and run N steps of the following randomized recurrence:

1. Initialization: We set z1 = argminZ ω(·).
2. Step t = 1, 2, ..., N : Given zt = (xt, yt) ∈ Zo, we generate ξxt , ηyt as

explained above, set ζt = (ξxt , ηyt), and compute F (ζt) = (a+AT ηyt , b−Aξxt)
and

wt = (x̂t, ŷt) = Proxzt(γF (ζt)).

We next generate ξx̂t , ηŷt as explained above, set ζ̂t = (ξx̂t , ηŷt), and compute

F (ζ̂t) = (a+AT ηŷt , b−Aξx̂t) and zt+1 = Proxzt(γF (ζ̂t)).

3. Termination t = N : we output

zN = (xN , yN) =
1

N

N∑
t=1

(ξx̂t , ηŷt), and F (zN) =
1

N

N∑
t=1

F (ζ̂t)

(recall that F (·) is affine).

The efficiency estimate of algorithm MPr is given by the following

Proposition 6.6. For every N , the random approximate solution zN =

(xN , yN) generated by algorithm MPr possesses the following properties:

(i) In the inside case, zN ∈ Z and

E{εsad(zN)} ≤ εN := max

[
2
√

3Θ√
N

,
4
√

3‖A‖x,y
√

ΩxΩy

N

]
; (6.54)

(ii) In the general case, xN ∈ X and E{φ(xN)} −minX φ ≤ εN .

Observe that in the general case we do not control the error εsad(zN) of

the saddle-point solution. Yet the bound (ii) of Proposition 6.6 allows us to

control the accuracy f(xN) − minX f of the solution xN when the saddle-

point problem is used to minimize the convex function f = φ (cf. (6.4)).

Proof. Setting Ft = F (ζt), F̂t = F (ζ̂t), F
∗
t = F (zt), F̂

∗
t = F (wt), Vz(u) =

6.5 Accelerating First-Order Methods by Randomization 55

ω(u)− ω(z)− 〈ω′(z), u− z〉 and invoking Lemma 6.2, we get

∀u ∈ Z : γ〈F̂t, wt − u〉 ≤ Vzt(u)− Vzt+1
(u) + ∆t,

∆t = 1
2

[
γ2‖Ft − F̂t‖2∗ − ‖zt − wt‖2

]
,

whence, taking into account that Vz1(u) ≤ Ω[Z] = 1 (see (6.51)) and that

VzN+1
(u) ≥ 0,

∀u = (x, y) ∈ Z : γ
∑N

t=1
〈F̂t, ζ̂t − u〉 ≤ 1 +

αN︷ ︸︸ ︷∑N

t=1
∆t +

βN︷ ︸︸ ︷
γ
∑N

t=1
〈F̂t, ζ̂t − wt〉 .

Substituting the values of F̂t and taking expectations, the latter inequality

(where the right-hand side is independent of u) implies that

E

{
max

(x,y)∈Z
γN

[
φ(xN , y)− φ(x, yN)

]}
≤ 1 + E{αN}+ E{βN}, (6.55)

βN = γ

N∑
t=1

[
〈a, ξx̂t − x̂t〉+ 〈b, ηŷt − ŷt〉+ 〈Aξx̂t , ŷt〉 − 〈AT ηx̂t , x̂t〉

]
.

Now let Ewt{·} stand for the expectation conditional to the history of

the solution process up to the moment when wt is generated. We have

Ewt{ξx̂t} = x̂t and Ewt{ηŷt} = ŷt, so that E{βN} = 0. Further, we have

∆t ≤
1

2

[
3γ2

[
‖F̂ ∗t − F ∗t ‖2∗ + ‖F̂ ∗t − F̂t‖2∗ + ‖F ∗t − Ft‖2∗

]
− ‖zt − wt‖2

]
and, recalling the origin of F s, ‖F ∗t − F̂ ∗t ‖∗ ≤ L‖zt − wt‖ by (6.52). Since

3γ2 ≤ L2 by (6.53), we get

E{∆t} ≤
3γ2

2
E{‖F̂ ∗t − F̂t‖2∗ + ‖F ∗t − Ft‖2∗} ≤ 3γ2Θ,

where the concluding inequality is due to the definitions of Θ and of the

norm ‖ · ‖∗ (see (6.49) and (6.50), respectively). Thus, (6.55) implies that

E

{
max

(x,y)∈Z

[
φ(xN , y)− φ(x, yN)

]}
≤ 1/(Nγ) + 3Θγ ≤ εN , (6.56)

due to the definition of εN . Now, in the inside case we clearly have (xN , yN) ∈
Z, and therefore (6.56) implies (6.54). In the general case we have xN ∈ X.

In addition, let x∗ be the x-component of a saddle point of φ on Z. Replacing

in the left-hand side of (6.56) maximization over all pairs (x, y) from Z with

maximization only over the pair (x∗, y) with y ∈ Y (which can only decrease

56 First Order Methods for Nonsmooth Convex Large-Scale Optimization, II

the left-hand side), we get from (6.56) that

E{φ(xN)} ≤ εN + E{φ(x∗, y
N)} = εN + φ

(
x∗,E{yN}

)
. (6.57)

Observe that Ewt{ηŷt} = ŷt ∈ Y. We conclude that

E{yN} = E

{
1

N

N∑
t=1

ηŷt

}
= E

{
1

N

N∑
t=1

ŷt

}
∈ Y.

Thus, the right-hand side in (6.57) is ≤ εN + SadVal, and (ii) follows.

Remark 6.1. We stress here that MPr, along with the approximate solution

(xN , yN), returns the value F (xN , yN). This allows for easy computation,

not requiring matrix-vector multiplications, of φ(xN) and φ(yN).

6.5.2.3 Illustration IV: `1-Minimization

Consider problem (6.5) with Ξ = {ξ ∈ Rn : ‖ξ‖1 ≤ 1}. Representing Ξ as

the image of the standard simplex S2n = {x ∈ R2n
+ :

∑
i xi = 1} under the

mapping x 7→ Jnx, Jn = [In,−In], the problem reads

Opt = min
x∈S2n

‖Ax− b‖p [A ∈ Rm×2n]. (6.58)

We consider two cases: p = ∞ (uniform fit, as in the Dantzig selector) and

p = 2 (`2-fit, as in Lasso).

Uniform Fit. Here (6.58) can be converted into the bilinear saddle-point

problem

Opt = min
x∈S2n

max
y∈S2m

[
φ(x, y) := yTJTm[Ax− b]

]
. (6.59)

Setting ‖ · ‖x = ‖ · ‖1, ωx(x) = Ent(x), ‖ · ‖y = ‖ · ‖1, ωy(y) = Ent(y),

let us specify Πu, u ∈ S2n, and Pv, v ∈ S2m, according to the recipe from

Section 6.5.1, that is, the random vector ξu ∼ Πu with probability ui is the

ith basic orth, i = 1, ...,m, and similarly for ηv ∼ Pv. This is the inside case,

and when we set ‖A‖1,∞ = max
i,j
|Aij |, we get σ2

x = O(1)
‖A‖21,∞ ln(2m)

kx+ln(2m) , σ2
y =

6.5 Accelerating First-Order Methods by Randomization 57

O(1)
‖A‖21,∞ ln(2n)

ky+ln(2n) ,2 and

Ωx = ln(2n), Ωy = ln(2m), L = 2‖A‖1,∞
√

ln(2n) ln(2m),

Θ ≤ O(1)‖A‖21,∞
[

ln2(2m)
kx+ln(2m) + ln2(2n)

ky+ln(2n)

]
In this setting Proposition 6.6 reads:

Corollary 6.7. For all positive integers kx, ky, N one can find a ran-

dom feasible solution (xN , yN) to (6.59) along with the quantities φ(xN) =

‖AxN − b‖∞ ≥ Opt and a lower bound φ(yN) on Opt such that

Prob

{
φ(xN)− φ(yN) ≤ O(1)

‖A‖1,∞ ln(2mn)√
N
√

min[N, kx + ln(2m), ky + ln(2n)]

}
≥ 1

2

(6.60)

in N steps, the computational effort per step dominated by the necessity to

extract 2kx columns and 2ky rows from A , given their indexes.

Note that our computation yields, along with (xN , yN), the quantities

φ(xN) and φ(yN). Thus, when repeating the computation ` times and choos-

ing the best among the resulting x- and y-components of the solutions we

make the probability of the left-hand side event in (6.60) as large as 1−2−`.

For example, with kx = ky = 1, assuming δ = ε/‖A‖1,∞ ≤ 1, finding an

ε-solution to (6.59) with reliability ≥ 1− β costs O(1) ln2(2mn) ln(1/β)δ−2

steps of the outlined type, that is, O(1)(m + n) ln2(2mn) ln(1/β)δ−2 a.o.

For comparison, when δ stays fixed and m,n are large, the lowest known

(so far) cost of finding an ε-solution to problem (6.58) with unform fit is

O(1)
√

ln(m) ln(n)δ−1 steps, with the effort per step dominated by the ne-

cessity to compute O(1) matrix-vector multiplications involving A and AT

(this cost is achieved by Nesterov’s smoothing or with MP; see (6.22)). When

A is a general-type dense m×n matrix, the cost of the deterministic compu-

tation is O(1)mn
√

ln(m) ln(n)δ−1. We see that for fixed relative accuracy δ

and large m,n, randomization does accelerate the solution process, the gain

growing with m,n.

2. The bound for σ2
x and σ2

y is readily given by the following fact (see, e.g., Juditsky and
Nemirovski, 2008): when ξ1, ..., ξk ∈ Rn are independent zero mean random vectors with
E{‖ξi‖2∞} ≤ 1 for all i, one has E{‖ 1

k

∑k
i=1 ξi‖

2
∞} ≤ O(1) min[1, ln(n)/k]; this inequality

remains true when Rn is replaced with Sn, and ‖·‖∞ is replaced with the standard matrix
norm (largest singular value).

58 First Order Methods for Nonsmooth Convex Large-Scale Optimization, II

`2-fit. Here (6.58) can be converted into the bilinear saddle-point problem

Opt = min
x∈S2n

max
‖y‖2≤1

[
φ(x, y) := yT [Ax− b]

]
. (6.61)

In this case we keep ‖ · ‖x = ‖ · ‖1, ωx(x) = Ent(x), and set ‖ · ‖y = ‖ · ‖2,

ωy(y) = 1
2y

T y. We specify Πu, u ∈ S2n, exactly as in the case of uniform fit,

and define Pv, v ∈ Y = {y ∈ Rm : ‖y‖2 ≤ 1} as follows: ηv ∼ Pv takes values

sign(ui)‖u‖1ei, ei being basic orths, with probabilities |ui|/‖u‖1. Note that

we are not in the inside case anymore. Setting ‖A‖1,2 = max
1≤j≤2n

‖Aj‖2, Aj

being the columns of A, we get

Ωx = ln(2n),Ωy = 1
2 , L = ‖A‖1,2

√
2 ln(2n),

Θ ≤ O(1)
[

1
kx
‖A‖21,2 + ln2(2n)

ky+ln(2n) [‖A‖1,2 +
√
m‖A‖1,∞]2

]
.

Now Proposition 6.6 reads:

Corollary 6.8. For all positive integers kx, ky, N , one can find a random

feasible solution xN to (6.58) (where p = 2), along with the vector AxN ,

such that

Prob
{
‖AxN − b‖2 ≤ Opt

+ O(1)
‖A‖1,2

√
ln(2n)√
N

√
1
N + 1

kx ln(2n) + ln(2n)Γ2(A)
ky+ln(2n)

}
≥ 1

2 ,

Γ(A) =
√
m‖A‖1,∞/‖A‖1,2

(6.62)

in N steps, the computational effort per step dominated by the necessity to

extract 2kx columns and 2ky rows from A, given their indexes.

Here again, repeating the computation ` times and choosing the best

among the resulting solutions to (6.58), we make the probability of the left-

hand side event in (6.62) as large as 1−2−`. For instance, with kx = ky = 1,

assuming δ := ε/‖A‖1,2 ≤ 1, finding an ε-solution to (6.58) with reliability

≥ 1−β costs O(1) ln(2n) ln(1/β)Γ2(A)δ−2 steps of the outlined type, that is,

O(1)(m+n) ln(2n) ln(1/β)Γ2(A)δ−2 a.o. Assuming that a precise multiplica-

tion of a vector by A takes O(mn) a.o., the best known (so far) deterministic

counterpart of the above complexity bound is O(1)mn
√

ln(2n)δ−1 a.o. (cf.

(6.22)). Now the advantages of randomization when δ is fixed and m,n are

large are not as evident as in the case of uniform fit, since the complexity

bound for the randomized computation contains an extra factor Γ2(A) which

may be as large as O(m). Fortunately, we may “nearly kill” Γ(A) by ran-

domized preprocessing of the form [A, b] 7→ [Ā, b̄] = [UDA,UDb], where U is

a deterministic orthogonal matrix with entries of order O(1/
√
m), and D is

a random diagonal matrix with i.i.d. diagonal entries taking values ±1 with

6.6 Notes and Remarks 59

equal probabilities. This preprocessing converts (6.58) into an equivalent

problem, and it is easily seen that for every β � 1, for the transformed ma-

trix Ā with probability ≥ 1−β it holds that Γ(Ā) ≤ O(1)
√

ln(mnβ−1). This

implies that, modulo preprocessing’s cost, the complexity estimate of the

randomized computation reduces to O(1)(m+n) ln(n) ln(mn/β) ln(1/β)δ−2.

Choosing U as a cosine transform or Hadamard matrix, so that the cost of

computing Uu is O(m ln(m)) a.o., the cost of preprocessing does not exceed

O(mn ln(m)), which, for small δ, is a small fraction of the cost of deter-

ministic computation. Thus, there is a meaningful range of values of δ,m, n

where randomization is highly profitable. It should be added that in some

applications (e.g., in compressed sensing) typical values of Γ(A) are quite

moderate, and thus no preprocessing is needed.

6.6 Notes and Remarks

1. The research of the second author was partly supported by ONR grant

N000140811104, BSF grant 2008302, and NSF grants DMI-0619977 and

DMS-0914785.

2. The mirror-prox algorithm was proposed by Nemirovski (2004); its

modification able to handle the stochastic case, where the precise values

of the monotone operator associated with (6.3) are replaced by unbiased

random estimates of these values (cf. Chapter 5, Section 5.5) is devel-

oped by Juditsky et al. (2008). The MP combines two basic ideas: (a)

averaging of the search trajectory to get approximate solutions (this idea

goes back to Bruck (1977) and Nemirovskii and Yudin (1978)) and (b)

exploiting extragradient steps: instead of the usual gradient-type update

z 7→ z+ = Proxz(γF (z)) used in the saddle-point MP (Section 5.6), the

update z 7→ w = Proxz(γF (z)) 7→ z+ = Proxz(γF (w)) is used. This con-

struction goes back to Korpelevich (1983, 1976), see also Noor (2003) and

references therein. Note that a different implementation of the same ideas

is provided by Nesterov (2007b) in his dual extrapolation algorithm.

3. The material in Sections 6.4.1 and 6.4.3 is new; this being said, prob-

lem settings and complexity results considered in these sections (but not

the associated algorithms) are pretty close, although not fully identical,

to those covered by the excessive gap technique of Nesterov (2005b). For

example, the situation considered in illustration III can be treated equally

well via Nesterov’s technique, which perhaps is not the case for illustra-

tion II. It should be added that splitting like the one in Section 6.4.1, in

a slightly more general context of variational inequalities with monotone

60 First Order Methods for Nonsmooth Convex Large-Scale Optimization, II

operators, was considered by Tseng (2000), although without averaging and

thus without any efficiency estimate. These missing elements were added in

the recent papers of Monteiro and Svaiter (2010b,a) which in this respect

can be viewed as independently developed Euclidean case version of Section

6.4.1. For other schemes of accelerating FOMs via exploiting a problem’s

structure, see Nesterov (2007a), Beck and Teboulle (2009), Tseng (2008),

Goldfarb and Scheinberg (2010), and references therein.

4. The material of Section 6.5.1 originated with Juditsky et al. (2010),

where one can find various versions of MPr and (rather encouraging) results

of preliminary numerical experiments. Note that the “cheap randomized

matrix-vector multiplication” outlined in Section 6.5.1 admits extensions

which can be useful when solving semidefinite programs (see Juditsky et al.,

2010, Section 2.1.4).

Obviously, the idea of improving the numerical complexity of optimiza-

tion algorithms by utilizing random subsampling of problem data is not new.

For instance, such techniques have been applied to support vector machine

classification in Kumar et al. (2008), and to solving certain semidefinite

programs in Arora and Kale (2007) and d’Aspremont (2009). Furthermore,

as we have already mentioned, both MD and MP admit modifications (see

Nemirovski et al., 2009; Juditsky et al., 2008) capable to handle c.-c.s.p.

problems (not necessarily bilinear) in the situation where instead of the

precise values of the associated monotone operator, unbiased random esti-

mates of these values are used. A common drawback of these modifications

is that while we have at our disposal explicit nonasymptotical upper bounds

on the expected inaccuracy of random approximate solutions zN (which,

as in the basic MP, are averages of the search points wt) generated by the

algorithm, we do not know what the actual quality of zN is. In the case of a

bilinear problem (6.47) and with the randomized estimates of F (wt) defined

as F (ζ̂t), we get a new option: to define zN as the average of the points ζ̂t.

As a result, we do know F (zN) and thus can easily assess the quality of

zN (n.b. remark 6.1). To the best of our knowledge, this option has been

realized (implicitly) only once, namely, in the randomized sublinear-time

matrix game algorithm of Grigoriadis and Khachiyan (1995) (that ad hoc

algorithm is close, although not identical, to MPr as applied to problem

(6.59), which is equivalent to a matrix game).

On the other hand, the possibility to assess, in a computationally cheap

fashion, the quality of an approximate solution to (6.47) is crucial when solv-

ing parametric bilinear saddle-point problems. Specifically, many important

6.7 References 61

applications reduce to problems of the form

max

{
ρ : SadVal(ρ) := min

x∈X
max
y∈Y

φρ(x, y) ≤ 0

}
, (6.63)

where φρ(x, y) is a bilinear function affinely depending on ρ. For example, the

`1-minimization problem as it arises in sparsity-oriented signal processing is

Opt = minξ {‖ξ‖1 : ‖Aξ − b‖p ≤ δ}, which is nothing but

1

Opt
= max

{
ρ : SadVal(ρ) := min

‖x‖1≤1
max

‖y‖p/(p−1)≤1

[
yT [Ax− ρb]− ρδ

]
≤ 0

}
.

From the complexity viewpoint, the best known (to us) way to process (6.63)

is to solve the master problem max{ρ : SadVal(ρ) ≤ 0} by an appropriate

first-order root-finding routine, the (approximate) first-order information on

SadVal(·) being provided by a first-order saddle-point algorithm. The ability

of the MPr algorithm to provide accurate bounds of the value SadVal(·) of

the inner saddle-point problems makes it the method of choice when solving

extremely large parametric saddle-point problems (6.63). For more details

on this subject, see Juditsky et al. (2010).

6.7 References

S. Arora and S. Kale. A combinatorial primal-dual approach to semidefinite
programs. In: Proceedings of the 39th Annual ACM Symposium on the Theory
of Computations, pages 227–236, 2007.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

R. Bruck. On weak convergence of an ergodic iteration for the solution of variational
inequalities with monotone operators in Hilbert space. Journal of Mathematical
Analysis and Applications, 61(1):15–164, 1977.

A. d’Aspremont. Subsampling algorithms for semidefinite programming. Technical
report, arXiv:0803.1990v5,
http://arxiv.org/abs/0803.1990, November 2009.

D. Goldfarb and K. Scheinberg. Fast first order method for separable convex opti-
mization with line search. Technical report, Department of Industrial Engineering
and Operations Research, Columbia University, 2010.

M. D. Grigoriadis and L. G. Khachiyan. A sublinear-time randomized approxi-
mation algorithm for matrix games. Operations Research Letters, 18(2):53–58,
1995.

A. Juditsky and A. Nemirovski. Large deviations of vector-valued martin-
gales in 2-smooth normed spaces. Technical report, HAL: hal-00318071,
http://hal.archives-ouvertes.fr/hal-00318071/, 2008.

A. Juditsky, A. Nemirovski, and C. Tauvel. Solving variational inequalities
with stochastic mirror prox algorithm. Technical report, HAL: hal-00318043,

62 First Order Methods for Nonsmooth Convex Large-Scale Optimization, II

http://hal.archives-ouvertes.fr/hal-00318043/, 2008.

A. Juditsky, F. K. Karzan, and A. Nemirovski. `1-minimization via ran-
domized first order algorithms. Technical report, Optimization Online,
http://www.optimization-online.org/DB FILE/2010/05/2618.pdf, 2010.

G. M. Korpelevich. The extragradient method for finding saddle points and other
problems. Ekonomika i Matematicheskie Metody, 12:747–756, 1976. (in Russian).

G. M. Korpelevich. Extrapolation gradient methods and relation to modified
lagrangeans. Ekonomika i Matematicheskie Metody, 19:694–703, 1983. (in
Russian).

K. Kumar, C. Bhattacharya, and R. Hariharan. A randomized algorithm for large
scale support vector learning. In J. Platt, D. Koller, Y. Singer, and S. Roweis,
editors, Advances in Neural Information Processing Systems, volume 20. MIT
Press, 2008.

R. D. C. Monteiro and B. F. Svaiter. Complexity of vairants of Tseng’s modified
F-B splitting and Korpelevich’s methods for generalized variational inequalities
with applications to saddle point and convex optimization problems. Technical
report, Optimization Online,
http://www.optimization-online.org/DB HTML/2010/07/2675.html, 2010a.

R. D. C. Monteiro and B. F. Svaiter. On the complexity of the hybrid proximal
extragradient method for the iterates and the ergodic mean. SIAM Journal on
Optimization, 20:2755–2787, 2010b.

A. Nemirovski. Prox-method with rate of convergence o(1/t) for variational inequal-
ities with lipschitz continuous monotone operators and smooth convex-concave
saddle-point problems. SIAM Journal on Optimization, 15:229–251, 2004.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approxi-
mation approach to stochastic programming. SIAM Journal on Optimization, 19
(4):1574–1609, 2009.

A. Nemirovski, S. Onn, and U. Rothblum. Accuracy certificates for computational
problems with convex structure. Mathematics of Operations Research, 35:52–78,
2010.

A. Nemirovskii and D. Yudin. On Cezari’s convergence of the steepest descent
method for approximating saddle points of convex-concave functions. Soviet
Math. Doklady, 19(2), 1978.

Y. Nesterov. A method for solving a convex programming problem with rate of
convergence o(1/k2). Soviet Math. Doklady, 27(2):372–376, 1983.

Y. Nesterov. Smooth minimization of nonsmooth functions. Mathematical Pro-
gramming, Series A, 103:127–152, 2005a.

Y. Nesterov. Excessive gap technique in nonsmooth convex minimization. SIAM
Journal on Optimization, 16(1):235–239, 2005b.

Y. Nesterov. Gradient methods for minimizing composite objective function.
Technical Report 2007/76, Center for Operations Rersearch and Econometrics,
Catholic University of Louvain,
http://www.uclouvain.be/cps/ucl/doc/core/documents/coredp2007 76.pdf,
2007a.

Y. Nesterov. Dual extrapolation and its application for solving variational in-
equalities and related problems. Mathematical Programming, Series A, 109(2–3):
319–344, 2007b.

M. A. Noor. New extragradient-type methods for general variational inequalities.

6.7 References 63

Journal of Mathematical Analysis and Applications, 277:379–394, 2003.

P. Tseng. A modified forward-backward splitting method for maximal monotone
mappings. SIAM Journal on Control and Optimization, 38(2):431–446, 2000.

P. Tseng. On accelerated proximal gradient methods for convex-concave optimiza-
tion. Technical report,
http://www.math.washington.edu/∼tseng/papers/apgm.pdf, 2008.

