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1 Introduction

In large-scale convex optimization, first-order methods are methods of choice
due to their cheap iteration cost. When the objective function is assumed to be
smooth, for example when its gradient is Lipschitz-continuous with constant L,
the simplest numerical schemes to be considered are the gradient method and
its variants. If accuracy ε is desired for the objective function, these methods
require O

(
L
ε

)
iterations.

However, it is well-known that in the black-box framework [11], first-order

methods can achieve the lower complexity bound of O
(√

L
ε

)
iterations. Such

optimal methods, called Fast Gradient Methods (FGM), have been developed
for various classes of problems since 1983 [12,13,14,15] and outperform the-
oretically, and often in practice, the classical gradient methods. Interest into
these methods has been renewed recently with development of smoothing tech-
niques for non-smooth convex problems (see [15,16,17,4]), where FGMs are
used to minimize a smooth approximation of a non-smooth objective function.

Standard analysis of first-order methods assumes availability of exact first-
order information. Namely, the oracle must provide at each given point the
exact values of the function and its gradient. However, in many convex prob-
lems, including those obtained by smoothing techniques, the objective func-
tion and its gradient are computed by solving another auxiliary optimization
problem. In practice, we are often only able to solve these subproblems approx-
imately. Hence, in that context, numerical methods solving the outer problem
are provided with inexact first-order information. This led us to investigate
the behavior of first-order methods working with an inexact oracle.

We introduce in Section 2 a new definition of inexact first-order oracle
and list a few simple examples. In Section 3, we show how our concept is
applicable to situations when the inexact oracle is computed by an auxiliary
optimization problem. In particular, we consider convex-concave saddle point
problems, augmented Lagrangians, and Moreau-Yosida regularization.

In Sections 4 and 5, we consider classical (primal and dual) and fast
gradient methods, designed for the class of convex functions with Lipschitz-
continuous gradient. We obtain efficiency estimates when these methods are
used with an inexact first-order oracle. We also study the link between desired
accuracy for the objective function and necessary accuracy for the oracle. We
observe that the superiority of the fast gradient methods over the classical ones
is no longer absolute when an inexact oracle is used, because FGMs suffer from
error accumulation. In particular, fast methods require first-order information
with higher accuracy than standard gradient methods to obtain a solution
with a given accuracy. Therefore, the choice between these methods depends
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on the availability and relative cost of an inexact oracle at different levels of
accuracy, as is explained in Section 6.

In Section 7, we compare our approach with other definitions of inexact
oracle, as applied to the smoothed max-representable functions typically ob-
tained by the smoothing techniques [3,1]. We show that our definition can give
better complexity results.

Our definition of inexact oracle is applicable to non-smooth and weakly
smooth convex problems. Section 8 shows how to apply first-order methods
designed for smooth convex optimization to functions with a weaker level of
smoothness. For that, we show that (exact) first-order information for a non-
smooth problem, such as subgradients, can be viewed as an inexact oracle,
so that the methods of Sections 4 and 5 can be applied. We obtain in this
way “universal” first-order methods possessing optimal rates of convergence
for objective functions with different level of smoothness. We also prove lower
bounds on the rate of error accumulation for any first-order method using an
inexact oracle, which shows that all methods discussed in this paper have the
lowest possible rate of error accumulation. In particular, it appears that while
slower standard gradient methods are able to maintain an error comparable to
the oracle accuracy, any optimal method must suffer from error accumulation.

2 Inexact first-order oracle

2.1 Motivation and definition

We consider the following convex optimization problem:

f∗ = min
x∈Q

f(x), (1)

where Q is a closed convex set in a finite-dimensional space E, and function
f is convex on Q. Space E is endowed with the norm ‖·‖E and E∗, the dual
space of E, with the dual norm ‖g‖∗E = supy∈E{|〈g, y〉| : ‖y‖E ≤ 1} where 〈., .〉
denotes the dual pairing. For example, by fixing a positive definite self-adjoint
operator B : E → E∗, we can define the following Euclidean norms:

‖h‖E = ‖h‖2 = 〈Bh, h〉 ∀h ∈ E

‖s‖∗E = ‖s‖∗2 = 〈s,B−1s〉 ∀s ∈ E∗.

We assume that problem (1) is solvable with optimal solution x∗.
Consider F 1,1

L (Q), the class of convex functions on convex set Q whose gra-
dient is Lipschitz-continuous with constant L. It is well-known that functions
belonging to this class satisfy

0 ≤ f(x)−
(
f(y) + 〈∇f(y), x− y〉

)
≤ L

2
‖x− y‖2E for all x, y ∈ Q, (2)

see the top of Figure 1. Moreover, it is easy to check that, for a given y,
quantities f(y) and ∇f(y) are uniquely determined by this pair of inequalities.
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Therefore, membership in F 1,1
L (Q) can be characterized by the existence of an

oracle returning for each point y ∈ Q a pair (fL(y), gL(y)) ∈ R×E∗, necessarily
equal to (f(y),∇f(y)), satisfying

0 ≤ f(x)−
(
fL(y) + 〈gL(y), x− y〉

)
≤ L

2
‖x− y‖2E for all x ∈ Q

(both zeroth-order and first-order information are included in the oracle). Our
definition of an inexact oracle simply consists in introducing a given amount
δ of tolerance in this pair of inequalities (see bottom of Figure 1).

Definition 1 Let function f be convex on convex set Q. We say that it is
equipped with a first-order (δ, L)-oracle if for any y ∈ Q we can compute a
pair (fδ,L(y), gδ,L(y)) ∈ R× E∗ such that

0 ≤ f(x)−
(
fδ,L(y) + 〈gδ,L(y), x− y〉

)
≤ L

2
‖x− y‖2E + δ for all x ∈ Q. (3)

A function f belongs to F 1,1
L (Q) if and only it admits a (0, L)-oracle, namely

(f0,L(y), g0,L(y)) = (f(y),∇f(y)). However, the class of functions admitting a
(δ, L)-oracle is strictly larger, and includes non-smooth functions, as we will
see later.

2.2 Properties

We list here a few important properties of (δ, L)-oracles.

– A (δ, L)-oracle provides a lower δ-approximation of the function value.
Indeed, taking x = y in (3), we obtain

fδ,L(y) ≤ f(y) ≤ fδ,L(y) + δ. (4)

– A (δ, L)-oracle provides a δ-subgradient of f at y ∈ Q, i.e.

gδ,L(y) ∈ ∂δf(y) = {z ∈ E∗ : f(x) ≥ f(y) + 〈z, x− y〉 − δ ∀x ∈ Q}.

Indeed, using the first inequality in (3) and (4), we have for all x, y ∈ Q

f(x) ≥ fδ,L(y) + 〈gδ,L(y), x− y〉 ≥ f(y) + 〈gδ,L(y), x− y〉 − δ. (5)

Methods of non-smooth convex optimization based on δ-subgradients have
a long history (see e.g. [20,19,2,9] for subgradient methods, and [2,6,7] for
proximal point and bundle methods). We will show later that a standard
subgradient can also satisfy the second inequality in (3), which opens the
possibility of using the concept of inexact oracle in the context of non-
smooth convex optimization.

– A (δ, L) oracle can certify than an approximate solution has accuracy δ.
Indeed, assuming gδ,L(y) satisfies 〈gδ,L(y), x−y〉 ≥ 0 for all x ∈ Q, we have
that fδ,L(y) ≤ f(x∗) = f∗ and therefore, using (4), we have f(y) ≤ f∗+ δ.
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Fig. 1 Illustration of lower and upper bounds (blue lines) implied by the definition of an
exact (top) and inexact (bottom) oracle.

– If f admits a (δ, L)-oracle, then cf admits a (cδ, cL)-oracle for any value
of the constant c > 0. If fi admits a (δi, Li)-oracle, i = 1, 2, then f1 + f2

admits a (δ1 + δ2, L1 + L2)-oracle.
– When Q = E, the difference between gδ,L and any subgradient gy ∈ ∂f(y)

is bounded as follows

‖gy − gδ,L(y)‖∗E ≤ [2δL]
1
2 . (6)

Indeed, for any x ∈ Q we have f(x) ≥ f(y)+〈gy, x−y〉 ≥ fδ,L(y)+〈gy, x−
y〉. Subtracting this inequality from the second part of (3), we get that

〈gy − gδ,L(y), x− y〉 ≤ L

2
‖x− y‖2E + δ

holds for all x ∈ Q. If z ∈ E is such that ‖gy − gδ,L(y)‖∗E = |〈gy − gδ,L(y), z〉|
and ‖z‖E = 1 and if we choose x ∈ Q such that x−y = t sign(〈gy−gδ,L, z〉)z
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with t > 0, we obtain:

t‖gy − gδ,L(y)‖∗E ≤
L

2
t2 + δ ⇔ ‖gy − gδ,L(y)‖∗E ≤

L

2
t+

δ

t
. (7)

This upper bound attains its minimum [2δL]
1
2 when t = [ 2δ

L ]
1
2 . In particu-

lar, when Q = E, parameter t is free to take any real value, and we obtain
inequality (6). For constrained problems, a similar bound can be obtained
in terms of the distance d(y, ∂Q) between y and the boundary of Q: letting

d(y, ∂Q) = max{r|‖x− y‖E ≤ r ⇒ x ∈ Q}

we have that (7) holds for all t such that 0 < t ≤ d(y, ∂Q), so that

‖gy − gδ,L(y)‖∗E ≤

{
L
2 d(y, ∂Q) + δ

d(y,∂Q) when 0 < d(y, ∂Q) ≤ [ 2δ
L ]

1
2 ,

[2δL]
1
2 when d(y, ∂Q) ≥ [ 2δ

L ]
1
2 .

– If E is endowed with the Euclidean norm ‖.‖2, the distance between exact
and inexact gradient mappings can be bounded by the same quantities as
the distance between exact and inexact (sub)gradients. Recall that for any
γ > 0, g ∈ E∗ and y ∈ E, the gradient mapping Mγ(y, g), which replaces
the gradient for constrained problems, is defined by

Tγ(y, g) = arg min
x∈Q
{〈g, x− y〉+

γ

2
‖x− y‖2E} (8)

Mγ(y, g) = γ(y − Tγ(y, g)). (9)

If f is subdifferentiable at point y, the exact gradient mapping for any
subgradient gy ∈ ∂f(y) is equal to Mγ(y, gy). Similarly, if an inexact (δ, L)
oracle returns (fδ,L(y), gδ,L(y)) for point y, we call Mγ(y, gδ,L(y)) the in-
exact gradient mapping. We are going to prove that the following holds

‖Mγ(y, gy)−Mγ(y, gδ,L(y))‖2 ≤ ‖gy − gδ,L(y)‖∗2 . (10)

First-order optimality conditions for (8) can be written as

〈g + γB(Tγ(y, g)− y), x− Tγ(y, g)〉 ≥ 0 ∀x ∈ Q. (11)

Applying those to Tγ(y, gy) and Tγ(y, gδ,L(y)) leads to

〈gy −BMγ(y, gy), x− Tγ(y, gy)〉 ≥ 0 ∀x ∈ Q
〈gδ,L(y)−BMγ(y, gδ,L(y)), x− Tγ(y, gδ,L(y))〉 ≥ 0 ∀x ∈ Q

and specializing respectively to x = Tγ(y, gδ,L(y)) and x = Tγ(y, gy) gives

〈gy −BMγ(y, gy), Tγ(y, gδ,L(y))− Tγ(y, gy)〉 ≥ 0

〈gδ,L(y)−BMγ(y, gδ,L(y)), Tγ(y, gy)− Tγ(y, gδ,L(y))〉 ≥ 0 .

Using now (9) in the inner products, multiplying by γ and summing, we
obtain

〈gy−BMγ(y, gy)−gδ,L(y)+BMγ(y, gδ,L(y)),Mγ(y, gy)−Mγ(y, gδ,L(y))〉 ≥ 0
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and assuming that E is endowed with the Euclidean norm ‖.‖2 gives

〈gy−gδ,L(y),Mγ(y, gy)−Mγ(y, gδ,L(y))〉 ≥ ‖Mγ(y, gy)−Mγ(y, gδ,L(y))‖22 ,

from which the desired inequality (10) follows by Cauchy-Schwartz.

Characterizing the class of functions that can be endowed with a (δ, L)-
oracle is an interesting open question. We provide below some necessary con-
ditions in the simple case where Q = E and E is endowed with the Euclidean
norm ‖.‖2. First of all, we establish the following inequality:

Theorem 1 If f is equipped with a (δ, L)-oracle, we have

1

2L
(‖gδ,L(x)− gδ,L(y)‖∗2)2 ≤ f(y)− fδ,L(x)− 〈gδ,L(x), y − x〉+ δ ∀x, y ∈ E.

Proof Let x ∈ E and consider the function F (y) = f(y)− 〈gδ,L(x), y〉.
As (fδ,L(y), gδ,L(y)) is a (δ, L)-oracle for f and (−〈gδ,L(x), y〉,−gδ,L(x)) is a
(0, 0)-oracle for −〈gδ,L(x), y〉, the resulting sum of oracles (Fδ,L(y), Gδ,L(y)) =
(fδ,L(y) − 〈gδ,L(x), y〉, gδ,L(y) − gδ,L(x)) is a (δ, L)-oracle for F (y). Using the
lower bound in the definition of the oracle Fδ,L(x) + 〈Gδ,L(x), y − x〉 ≤ F (y),
valid for any y, and the fact that Gδ,L(x) = 0, we derive

Fδ,L(x) ≤ F

(
y − 1

L
B−1Gδ,L(y)

)
≤ Fδ,L(y) + 〈Gδ,L(y),− 1

L
B−1Gδ,L(y)〉+

L

2

(∥∥∥∥ 1

L
Gδ,L(y)

∥∥∥∥∗
2

)2

+ δ

= Fδ,L(y)− 1

2L

(
‖Gδ,L(y)‖∗2

)2
+ δ

which allows us to obtain

1

2L

(
‖gδ,L(y)− gδ,L(x)‖∗2

)2 ≤ fδ,L(y)− fδ,L(x)− 〈gδ,L(x), y − x〉+ δ

≤ f(y)− fδ,L(x)− 〈gδ,L(x), y − x〉+ δ.

ut

As a Corollary, we have:

Corollary 1 If f is equipped with a (δ, L)-oracle, then we have for all x, y ∈ E

‖gδ,L(x)− gδ,L(y)‖∗2 ≤
√
L2 ‖x− y‖22 + 4Lδ

and for any gx ∈ ∂f(x) and any gy ∈ ∂f(y)

‖gx − gy‖∗2 ≤ (2
√

2 + 2)
√
Lδ + L ‖x− y‖2 .
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Proof Our first claim directly follows from

1

2L

(
‖gδ,L(x)− gδ,L(y)‖∗2

)2 ≤ f(y)− fδ,L(x)− 〈gδ,L(x), y − x〉+ δ

(3)

≤ L

2
‖x− y‖22 + 2δ.

Furthermore, for any gx ∈ ∂f(x) and gy ∈ ∂f(y), we have by (6):

‖gx − gδ,L(x)‖∗2 ≤
√

2δL,

‖gy − gδ,L(y)‖∗2 ≤
√

2δL,

and therefore (using the ‖ · ‖2 ≤ ‖ · ‖1 inequality for the last step)

‖gx − gy‖∗2 ≤ ‖gx − gδ,L(x)‖∗2 + ‖gδ,L(x)− gδ,L(x)‖∗2 + ‖gδ,L(y)− gy‖∗2

≤ 2
√

2δL+

√
L2 ‖x− y‖22 + 4Lδ

≤ (2
√

2 + 2)
√
δL+ L ‖x− y‖2 .

ut

We conclude that the variation of subgradients of f is locally bounded, i.e.

‖gx − gy‖∗2 ≤ (2
√

2 + 2)
√
Lδ + LR ∀x, y s.t. ‖x− y‖2 ≤ R.

Note however that this property is true for any subdifferentiable convex func-
tion defined on the whole space E. Assume now that function f is endowed
with a family of (δ, L(δ))-oracles and consider the following situations:

–

lim
δ→0

L(δ) = L̄ < +∞

In this case we have ‖gx − gy‖∗2 ≤ L̄ ‖x− y‖2 and f must be a smooth
convex function with a Lipschitz-continuous gradient.

–

lim
δ→∞

L(δ) = 0 and lim
δ→∞

L(δ)δ = C̄ < +∞,

which is the case for example when L(δ) = C̄
δ . We have ‖gx − gy‖∗2 ≤

(2
√

2 + 2)
√
C̄ so that f must be a convex function with bounded variation

of subgradients.
–

lim
δ→∞

L(δ) = 0 and lim
δ→∞

L(δ)δ = 0

which would happen for example when L(δ) = C̄
δ2 . We have in that case

that ‖gx − gy‖∗2 ≤ 0 and f must be a constant function.
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2.3 Examples

To conlude this section, we consider four simple examples of inexact oracle.
More sophisticated examples will be given in Section 3.

a. Computations at shifted points. Let function f ∈ F 1,1
M (Q) be endowed with

an oracle providing at each point y ∈ Q the exact values of function and
gradient, albeit computed at a shifted point ŷ different from y. Let us show
that such an oracle can be converted into a (δ, L)-oracle with

δ = M ‖y − ŷ‖2E , L = 2M.

Convexity of f implies the following inequality for any x ∈ Q

f(x) ≥ f(ŷ) + 〈∇f(ŷ), x− ŷ〉

= f(ŷ) + 〈∇f(ŷ), y − ŷ〉+ 〈∇f(ŷ), x− y〉.

Therefore, to satisfy the first inequality in (3) we can choose fδ,L(y)
def
= f(ŷ)+

〈∇f(ŷ), y − ŷ〉, and gδ,L(y)
def
= ∇f(ŷ). In order to prove the second inequality

in (3), note that we have for all x ∈ Q

f(x)
(2)

≤ f(ŷ) + 〈∇f(ŷ), x− ŷ〉+ M
2 ‖x− ŷ‖

2
E

= f(ŷ) + 〈∇f(ŷ), y − ŷ〉+ 〈∇f(ŷ), x− y〉+ M
2 ‖x− ŷ‖

2
E .

Since ‖ · ‖2E is a convex function, we have

‖x− ŷ‖2E =

∥∥∥∥1

2

(
2(x− y)

)
+

1

2

(
2(y − ŷ)

)∥∥∥∥2

E

(12)

≤ 1

2
‖2(x− y)‖2E +

1

2
‖2(y − ŷ)‖2E = 2‖y − ŷ‖2E + 2‖x− y‖2E .(13)

Therefore,

f(x) ≤ fδ,L(y) + 〈gδ,L(y), x− y〉+M ‖x− y‖2E +M ‖y − ŷ‖2E .

We can therefore choose L = 2M and δ = M‖y − ŷ‖2E to satisfy the (δ, L)-
oracle definition.
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b. Convex problems with weaker level of smoothness. Let us show that the
notion of (δ, L)-oracle can be useful for solving the problems with exact first-
order information but with a lower level of smoothness. Let function f be
convex and subdifferentiable on Q. For each y ∈ Q, denote by g(y) an arbitrary
element of the subdifferential ∂f(y). Assume that f satisfies the following
Hölder condition:

‖g(x)− g(y)‖∗E ≤ Lν ‖x− y‖νE , ∀x, y ∈ Q, (14)

where ν ∈ [0, 1], and Lν < +∞. This condition leads to the following inequal-
ity:

f(x) ≤ f(y) + 〈g(y), x− y〉+ Lν
1+ν ‖x− y‖

1+ν
E , ∀x, y ∈ Q. (15)

Denote the class of such functions by F 1,ν
Lν

(Q). When ν = 1, we get func-
tions with Lipschitz-continuous gradient. For ν < 1, we get a lower level of
smoothness. In particular, when ν = 0, we obtain functions whose subgradi-
ents have bounded variation. Clearly, the latter class includes functions whose
subgradients are uniformly bounded by M (just take L0 = 2M).

Let us fix ν ∈ [0, 1) and an arbitrary δ > 0 . We are going to find a constant
A(δ, ν) such that for any function f ∈ F 1,ν

Lν
(Q) we have

f(x)− f(y)− 〈g(y), x− y〉 ≤ A(δ,ν)
2 ‖x− y‖2E + δ, ∀x, y ∈ Q. (16)

Comparing (15) and (16), we need choose A(δ, ν) such that

Lν
1 + ν

‖x− y‖1+ν
E ≤ A(δ, ν)

2
‖x− y‖2E + δ .

Since t = ‖x− y‖2E can take any nonnegative value, we may choose

A(δ, ν) = 2 max
t≥0

{
Lν

1+ν t
−1+ν − δt−2

}
= Lν

[
Lν
2δ ·

1−ν
1+ν

] 1−ν
1+ν

.

(the latter expression is obtained after straightforward computations, the op-

timal value of t in the maximization being t∗ =
[
Lν
2δ ·

1−ν
1+ν

]− 1
1+ν

). This means

that the exact first-order information (f(y), g(y)) also constitutes an inexact
(δ, A(δ, ν))-oracle. We will therefore be able to apply the methods from Sec-
tions 4 and 5, initially devoted for smooth problems, to the minimization of
the non- or weakly smooth objective f .

For example, for functions with bounded variation of subgradients (ν = 0)
we have

A(δ, 0) =
L2

0

2δ . (17)

so that a (δ,
L2

0

2δ )-oracle is available for all values of δ > 0.
Note that parameter δ does not represent an actual accuracy: it can be

chosen arbitrarily, independently of the answer of the oracle. In particular, δ
can be chosen as small as we want, at the price of a larger value for Lipschitz

constant L of the (δ, L)-oracle, which grows as O
(
δ−

1−ν
1+ν

)
. Section 8 will

describe the details and consequences of the application of first-order method
of smooth convex optimization to non-smooth or weakly smooth functions.
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Remark 1 This analysis can easily be extended to the case where δ-subgradients
with bounded variations are used instead of exact subgradients. We obtain in
this case a (2δ, A(δ, ν))-oracle.

c. Function smoothed by local averaging. Another typical approach in order
to apply first-order method of F 1,1

L (E) to a non-smooth function consists in
smoothing the function by averaging of first-order information. Assume that
E is endowed with an Euclidean norm and consider a non-smooth convex
function f ∈ F 1,0

M (E). Let r > 0, y ∈ E, and define

fδ(y) =
1

Vr

∫
‖z−y‖2≤r

f(z) dz

∇fr(y) = gr(y) =
1

Vr

∫
‖z−y‖2≤r

g(z) dz

where Vr denotes the volume of a Euclidean ball with radius r, and {g(z) :
‖z − y‖2 ≤ r} is a measurable selection of subgradients of f in this ball. As f
is convex and Lipschitz-continuous with constant M we have

0 ≤ f(x)− f(z)− 〈g(z), x− z〉 ≤M ‖x− z‖2 ∀x, z ∈ E

and therefore

f(x) ≥ f(z) + 〈g(z), x− y〉+ 〈g(z), y − z〉 ∀x, y, z ∈ E
f(x) ≤ f(z) + 〈g(z), x− y〉+ 〈g(z), y − z〉+M ‖x− z‖2 ∀x, y, z ∈ E.

Averaging now these two inequalities with respect to z over the ball {z :
‖z − y‖2 ≤ r}, we obtain for all x, y ∈ Z

f(x) ≥ fr(y) + 〈gr(y), x− y〉 −Mr

f(x) ≤ fr(y) + 〈gr(y), x− y〉+Mr +
M

Vr

∫
‖z−y‖2≤r

‖x− z‖2 dz

(where we used that |〈g(z), y − z〉| ≤ ‖g(z)‖∗2‖y − z‖2 ≤ Mr). Furthermore,
we have

‖x− z‖2
(13)

≤
√

2 ‖x− y‖22 + 2 ‖z − y‖22 ≤
2 ‖x− y‖22 + 2 ‖z − y‖22

2r
+
r

2

(where the second inequality comes from the arithmetic-geometric inequality),
and therefore

f(x) ≤ fr(y) + 〈gr(y), x− y〉+
3

2
Mr +M

‖x− y‖22
r

+
M

Vr

∫
‖z−y‖2≤r

‖z − y‖2 dz

≤ fr(y) + 〈gr(y), x− y〉+
5

2
Mr +M

‖x− y‖22
r

.

Finally, choosing fδ,L(y) = fr(y)−Mr, gδ,L(y) = gr(y), δ = 7Mr
2 and L = 2M

r ,

we obtain a (δ, L) = (7Mr
2 , 2M

r ) = (δ, 7M2

δ )-oracle. Note that the dependence
of L in M and δ is similar to that of the previous example, where subgradients
are used directly instead of being averaged.
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d. Functions approximated by a smooth function When a function f can be
well approximated by a smooth convex function f̄ , in the sense that their
difference is bounded, the exact values of f̄ and its gradient provide an inexact
oracle for f . Indeed, assume that there exists a smooth convex function f̄ ∈
F 1,1
L (Q) such that f̄ is a δ-lower approximation of f on all Q, i.e.

0 ≤ f(y)− f̄(y) ≤ δ ∀y ∈ Q.

We can then show that

f(x) ≥ f̄(x) ≥ f̄(y) + 〈∇f̄(y), x− y〉 ∀x, y ∈ Q,

(using convexity of f̄), and

f(x) ≤ f̄(x) + δ ≤ f̄(y) + 〈∇f̄(y), x− y〉+
L

2
‖x− y‖2E + δ ∀x, y ∈ Q.

(using Lipschitz continuity of f̄), which shows that (f̄(y),∇f̄(y)) is a (δ, L)-
oracle for f .

One might wonder whether all inexact oracles can be obtained in that
fashion, i.e. whether any inexact oracle can be seen as an exact oracle for
a smooth approximation f̄ . It turns out that is not the case: indeed, as we
have seen earlier, when f has subgradients with bounded variation, its exact
function values and subgradients can be seen as a (δ, L)-oracle (for arbitrary
value of δ). Clearly, such an oracle cannot be at the same time equal to the
exact function values and gradient of any smooth function f̄ .

Finally, note that the above result can be readily extended to the case
when the δ-lower approximation f̄ is not necessarily smooth but is equipped
with an inexact (δ′, L) oracle: we can then show that the inexact oracle of f̄
also constitutes an inexact (δ + δ′, L) oracle for f .

3 Inexact oracle for functions defined by an optimization problem

3.1 Accuracy measures for approximate solutions

In this section, we consider smooth convex optimization problems of the form (1)
whose objective function is defined by another optimization problem:

f(x) = max
u∈U

Ψ(x, u), (18)

where U is a convex set of a finite dimensional space F endowed with the norm
‖.‖F and for any x ∈ Q function Ψ(x, ·) is smooth and (strongly) concave with
concavity parameter κ ≥ 0 . Computation of f and its gradient requires the
exact solution of this auxiliary problem. However, in practice, such a solution
might often be impossible or too costly to compute, so that an approximate
solution has to be used instead.
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We will measure the accuracy of an approximate solution ux for problem
(18) in three different ways:

V1(ux) = max
u∈U
〈∇2Ψ(x, ux), u− ux〉,

V2(ux) = max
u∈U

[
Ψ(x, u)− Ψ(x, ux) + κ

2 ‖ux − u‖
2
F

]
,

V3(ux) = max
u∈U

[Ψ(x, u)− Ψ(x, ux)] .

(19)

Since Ψ(x, ·) is strongly concave, we have:

Ψ(x, u) ≤ Ψ(x, ux) + 〈∇2Ψ(x, ux), u− ux〉 − κ
2 ‖u− ux‖

2
F , ∀u ∈ U.

Therefore our three measures are related by

V3(ux) ≤ V2(ux) ≤ V1(ux).

For a given level of accuracy δ > 0, the condition V1(ux) ≤ δ is the strongest,
and condition V3(ux) ≤ δ is the most relaxed.

We describe below three classes of max-type functions for which the ap-
proximate solution of subproblem (18), when satisfying one of the conditions
Vi(ux) ≤ δ, allows the construction of a (δ, L)-oracle.

Let us show first how to satisfy stopping criteria (19) in practice. The
most common criterion is the third one. It amounts to estimating the optimal-
ity gap in the value of objective function. Many optimization methods offer
direct control of this criterion. Other criteria might be more difficult to han-
dle. Therefore, let us describe a “brute force” approach designed to satisfy the
strongest V1 criterion (Here we assume that F is endowed with an Euclidean
norm).

Let Du <∞ be the diameter of U . Let us choose u0 ∈ U and form a new
function

Ψ̄(x, u) = Ψ(x, u)− 1
2µ‖u− u0‖22.

Denote by V̄i(u) the corresponding accuracy measures, and u∗x = arg max
u∈U

Ψ̄(x, u).

For any u ∈ U we obtain

0 ≥ 〈∇2Ψ̄(x, u∗x), u− u∗x〉 = 〈∇2Ψ̄(x, u∗x), ux − u∗x〉+ 〈∇2Ψ̄(x, u∗x), u− ux〉

≥ −V̄3(ux) + 〈∇2Ψ̄(x, u∗x)−∇2Ψ̄(x, ux), u− ux〉+ 〈∇2Ψ̄(x, ux), u− ux〉

≥ −V̄3(ux)− ‖∇2Ψ̄(x, u∗x)−∇2Ψ̄(x, ux)‖∗2Du + 〈∇2Ψ̄(x, ux), u− ux〉.

Since ∇2Ψ̄(x, ·) is Lipschitz continuous on U with constant L, we get

1

2L

(∥∥∇2Ψ̄(x, u∗x)−∇2Ψ̄(x, ux)
∥∥∗

2

)2

≤ Ψ̄(x, u∗x)− Ψ̄(x, ux) + 〈∇2Ψ̄(x, u∗x), ux − u∗x〉

≤ Ψ̄(x, u∗x)− Ψ̄(x, ux) = V̄3(ux).
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and therefore:

V1(ux) ≤ V̄1(ux) + µD2
u

(2)

≤ V̄3(ux) +Du[2LV̄3(ux)]1/2 + µD2
u.

Thus, if we choose µ = δ
3D2

u
, we can get the desired level of V1(ux) by ensuring

V̄3(ux) ≤ δ2

18LD2
u

. Note that function Ψ̄(x, ·) is strongly concave. Therefore, the

complexity of its maximization in the scale V̄3 depends logarithmically on the
desired accuracy. If this is done, for example, by a FGM, it requires at most

O(L
1/2

δ1/2
ln 1

δ ) iterations (see section 2.2 in [14]).

3.2 Functions obtained by smoothing techniques

Let U be a closed, convex set of a finite dimensional space F endowed with
the norm ‖·‖F , and

Ψ(x, u) = G(u) + 〈Au, x〉,
where A : F → E∗ is a linear operator, and G(u) is a differentiable, strongly
concave function with concavity parameter κ > 0. Under these assumptions,
optimization problem (18) has only one optimal solution u∗x. Moreover, f is
convex and smooth with Lipschitz-continuous gradient ∇f(x) = Au∗x. The
corresponding Lipschitz-constant is equal to

L(f) = 1
κ‖A‖

2
F→E∗ (20)

where ‖A‖F→E∗ = max{‖Au‖E∗ : ‖u‖F = 1}. The importance of this class
of functions is justified by the smoothing approach for non-smooth convex
optimization (see [15,16,17,4]).

Suppose that for all y ∈ Q we can find a point uy ∈ U satisfying condition

V3(uy) = Ψ(y, u∗y)− Ψ(y, uy) ≤ δ
2 . (21)

Let us show that this allows us to construct an (δ, 2L(f))-oracle. Indeed, since
Ψ(·, u) is convex, for all u ∈ U , we have

f(x) = Ψ(x, u∗x) ≥ Ψ(x, uy) ≥ Ψ(y, uy) + 〈∇1Ψ(y, uy), x− y〉

= fδ,L(y) + 〈gδ,L(y), x− y〉,
(22)

where fδ,L(y)
def
= Ψ(y, uy), gδ,L(y)

def
= ∇1Ψ(y, uy) = Auy, and L will be speci-

fied later. Further, note that

〈∇1Ψ(y, u∗y), x− y〉 = 〈gδ,L(y), x− y〉+ 〈A(u∗y − uy), x− y〉. (23)

Since f has Lipschitz-continuous gradient, we have:

f(x) ≤ f(y) + 〈∇f(y), x− y〉+ L(f)
2 ‖x− y‖2E

= f(y) + 〈∇Ψ1(y, u∗y), x− y〉+ L(f)
2 ‖x− y‖2E

(23)
= f(y) + 〈gδ,L(y), x− y〉+ L(f)

2 ‖x− y‖2E + 〈A(u∗y − uy), x− y〉.
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On the other hand, we have:

〈A(u∗y − uy), x− y〉 ≤
∥∥u∗y − uy∥∥F ∥∥AT (x− y)

∥∥∗
E

(20)

≤ κ
2

∥∥u∗y − uy∥∥2

F
+ L(f)

2 ‖x− y‖2E .

Therefore,

f(x) ≤ f(y) + 〈gδ,L(y), x− y〉+ L(f) ‖x− y‖2E + κ
2

∥∥u∗y − uy∥∥2

F
.

Since Ψ is strongly concave, κ
2

∥∥uy − u∗y∥∥2

F
≤ Ψ(y, u∗y)− Ψ(y, uy). Thus,

f(x) ≤ Ψ(y, uy) + 2(Ψ(y, u∗y)− Ψ(y, uy)) + 〈gδ,L(y), x− y〉+ L(f) ‖x− y‖2E .

In view of conditions (21) and (22), we have proved that the pair (Ψ(y, uy), Auy),
satisfying condition (21), corresponds to an (δ, L)-oracle with L = 2L(f).

3.3 Moreau-Yosida regularization

In this section, we consider functions of the form

f(x) = min
u∈U

{
L(x, u)

def
= h(u) + κ

2 ‖u− x‖
2
2

}
, (24)

where h is a smooth convex function on a convex set U ⊂ Rn endowed with the
usual Euclidean norm ‖x‖22 = 〈x, x〉. The function f is convex with Lipschitz-
continuous gradient ∇f(x) = κ(x− u∗x), where u∗x denotes the unique optimal
solution of the problem (24). The Lipschitz constant of the gradient is equal
to κ.

Instead of solving exactly the problem (24), we compute a feasible solution
ux satisfying

V2(ux) = max
u∈U

{
L(x, ux)− L(x, u) + κ

2 ‖u− ux‖
2
2

}
≤ δ. (25)

(Since L is convex in u, we inverted the sign in the definition of V2 in (19).)
Let us show that for all x ∈ Q the objects

fδ,L(x) = L(x, ux)− δ = h(ux) + κ
2 ‖ux − x‖

2
2 − δ,

gδ,L(x) = ∇1L(x, ux) = κ(x− ux)
(26)
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correspond to an answer of an (δ, L)-oracle with L = κ. Indeed,

f(x) = L(x, u∗x) ≥ L(y, u∗x) + κ
2 〈y − x, 2u

∗
x − x− y〉

(25)

≥ L(y, uy) + κ
2 ‖u

∗
x − uy‖22 − δ + κ

2 〈y − x, 2u
∗
x − x− y〉

= L(y, uy) + κ〈y − uy, x− y〉+ κ
2 ‖u

∗
x − uy‖

2
2 − δ

+κ
2 〈y − x, 2u

∗
x − 2uy + y − x〉

= L(y, uy) + κ〈y − uy, x− y〉 − δ

+κ
2

(
‖u∗x − uy‖

2
2 + ‖y − x‖22 + 2〈y − x, u∗x − uy〉

)
≥ L(y, uy) + κ〈y − uy, x− y〉 − δ.

Thus, we satisfy the first inequality in (3) with the values defined by (26).
Further, for all x, y ∈ Q we have

f(x) = h(u∗x) + κ
2 ‖u

∗
x − x‖

2
2 ≤ h(uy) + κ

2 ‖uy − x‖
2
2

= h(uy) + κ
2 ‖uy − y‖

2
2 + κ

2 〈x− y, x+ y − 2uy〉

= L(y, uy) + κ〈y − uy, x− y〉+ κ
2 ‖y − x‖

2
2 .

Thus, in view of definition (26), we have proved the second inequality in (3)
with L = κ.

3.4 Functions defined by Augmented Lagrangians

Consider the following convex problem:

max
u∈U
{h(u) : Au = 0} , (27)

where h is a smooth concave function on the convex set U ⊂ F , F is a finite-
dimensional space, and A : F → E∗ is a linear operator. Let E be endowed
with the Euclidean norm ‖.‖2. In the Augmented Lagrangian approach, we
need to solve the dual problem

min
x∈E

f(x), (28)

where

f(x)
def
= max

u∈U

[
Ψ(x, u)

def
= h(u) + 〈Au, x〉 − κ

2 (‖Au‖∗2)2
]
. (29)

It is well-known that f is a convex smooth function with Lipschitz-continuous
gradient

∇f(x) = Au∗x,
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where u∗x denotes any optimal solution of the optimization problem (29). The
Lipschitz constant of the gradient is equal to 1

κ .
Assume that, instead of solving (28) exactly, we compute an approximate

solution ux ∈ U such that

V1(ux) = max
u∈U

〈∇2Ψ(x, ux), u− ux〉

= max
u∈U

〈∇h(ux) +ATx− κATB−1Aux, u− ux〉 ≤ δ.
(30)

Let us show that the objects

fδ,L(x) = Ψ(x, ux), gδ,L(x) = ∇1Ψ(x, ux) = Aux (31)

correspond to a (δ, L)-oracle with L = 1
κ . Indeed, for all x, y ∈ E we have

f(x) = max
u∈U

{
h(u) + 〈Au, x〉 − κ

2 (‖Au‖∗2)2
}

≥ h(uy) + 〈Auy, x〉 − κ
2 (‖Auy‖∗2)2 = Ψ(y, uy) + 〈Auy, x− y〉.

Thus, in view of definition (31), the first inequality in (3) is proved. Further,

f(x) ≤ max
u∈U
{h(uy) + 〈∇h(uy), u− uy〉+ 〈Au, x〉 − κ

2 (‖Au‖∗2)2}

(30)

≤ max
u∈U
{h(uy)− 〈AT y − κATB−1Auy, u− uy〉+ 〈Au, x〉 − κ

2 (‖Au‖∗2)2}+ δ

= Ψ(y, uy) + 〈Auy, x− y〉

+ max
u∈U

{
〈A(u− uy), x− y〉 − κ

2 (‖A(u− uy)‖∗2)2
}

+ δ.

Thus, in view of (31), we have proved the second inequality in (3) with L = 1
κ .

4 Gradient methods with inexact oracle

Consider the problem (1), where f is endowed with an inexact (δ, L)-oracle.
In this section, we will use the Euclidean norm ‖.‖2. As usual when dealing
with constrained problems, we assume that the gradient mapping TL(x, g) is
computable for any x ∈ Q and g ∈ E∗, see (8).

4.1 Primal gradient method

The classical (primal) gradient method can be adapted in a straightforward
manner to accept first-order information from an inexact oracle: it is enough
to replace the true gradient by its approximate counterpart gδ,L. Moreover,
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we allow the parameters (δk, Lk) of the inexact oracle to be different for each
iteration k. We obtain

Initialization: Choose x0 ∈ Q.

Iteration (k ≥ 0): 1. Choose δk and Lk.

2. Compute (fδk,Lk(xk), gδk,Lk(xk)).

3. Compute xk+1 = TLk(xk, gδk,Lk(xk)).

(PGM)

Theorem 2 For k ≥ 1, we have

k−1∑
i=0

1
Li

[f(xi+1)− f(x∗)] ≤ 1
2‖x0 − x∗‖22 +

k−1∑
i=0

δi
Li
. (32)

Proof Denote rk = ‖xk − x∗‖22, fk = fδk,Lk(xk), and gk = gδk,Lk(xk). Then

r2
k+1 = r2

k + 2〈B(xk+1 − xk), xk+1 − x∗〉 − ‖xk+1 − xk‖22

(11)

≤ r2
k + 2

Lk
〈gk, x∗ − xk+1〉 − ‖xk+1 − xk‖22

= r2
k + 2

Lk
〈gk, x∗ − xk〉 − 2

Lk
[〈gk, xk+1 − xk〉+ Lk

2 ‖xk+1 − xk‖22]

(3)

≤ r2
k + 2

Lk
[f(x∗)− fk]− 2

Lk
[f(xk+1)− fk − δk].

Summing up these inequalities for i = 0, . . . , k − 1, we obtain (32). ut
When exact first-order information is used (δi = 0, Li = L), it is well-

known that sequence {f(xi)} must be decreasing. This is no longer true when
an inexact oracle is used. Therefore, let us define

x̂k =
∑k−1
i=0 L

−1
i xi+1∑k−1

i=0 L
−1
i

∈ Q.

Since f is convex, we have

f(x̂k)− f(x∗) ≤
1
2‖x0−x∗‖22 +

∑k−1
i=0 L

−1
i δi∑k−1

i=0 L
−1
i

. (33)

In the case when the oracle accuracy is constant (δi = δ, Li = L), we have

f(x̂k)− f(x∗) ≤ LR2

2k + δ, R
def
= ‖x0 − x∗‖2 . (34)

Thus, there is no error accumulation, and the upper bound for the objective
function accuracy decreases with k and asymptotically tends to δ. Hence, if

an accuracy ε on the objective function is required (with ε > δ), k = LR2

2(ε−δ)
iterations are sufficient. In particular, we see that PGM allows the oracle
accuracy to be of the same order as the desired accuracy for the objective
function.
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4.2 Dual gradient method

This method [18] generates two sequences {xk}k≥0 and {yk}k≥0.

Initialization: Choose x0 ∈ Q.

Iteration (k ≥ 0): 1. Choose δk and Lk.

2. Compute (fδk,Lk(xk), gδk,Lk(xk)).

3. Compute xk+1 = arg min
x∈Q

[
k∑
i=0

1
Li
〈gδi,Li(xi), x− xi〉+ 1

2‖x− x0‖22
]
.

(35)

Define yk = TLk(xk, gδk,Lk(xk)), k ≥ 0.

Theorem 3 For any k ≥ 0 we have

k∑
i=0

1
Li

[f(yi)− f(x∗)] ≤ 1
2‖x0 − x∗‖22 +

k∑
i=0

δi
Li
. (36)

Proof For k ≥ 0, denote fk = fδk,Lk(xk), gk = gδk,Lk(xk), and

ψk(x) =
k∑
i=0

1
Li

[fi + 〈gi, x− xi〉] + 1
2‖x− x0‖22, ψ∗k = min

x∈Q
ψk(x).

In view of the first inequality in (3), we have for all x ∈ Q

ψ∗k ≤ ψk(x) ≤
∑k
i=0

1
Li
f(x) + 1

2 ‖x− x0‖22 . (37)

Let us prove that ψ∗k ≥
k∑
i=0

1
Li

[f(yi) − δi]. Indeed, this inequality is valid for

k = 0:

f(y0)
(3)

≤ f0 + 〈g0, y0 − x0〉+ L0

2 ‖y0 − x0‖22 + δ0 = L0ψ
∗
0 + δ0.

Assume it is valid for some k ≥ 1. Since Ψk(x) is strongly convex, we have:

ψk(x) ≥ ψ∗k + 1
2‖x− xk+1‖22, x ∈ Q

Therefore,

ψ∗k+1 = min
x∈Q

{
ψk(x) + 1

Lk+1
[fk+1 + 〈gk+1, x− xk+1〉]

}
≥ ψ∗k + 1

Lk+1
min
x∈Q

{
fk+1 + 〈gk+1, x− xk+1〉+ Lk+1

2 ‖x− xk+1‖22
}

(3)

≥ ψ∗k + 1
Lk+1

(f(yk+1)− δk+1).
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Hence, using our inductive assumption, we can prove that ψ∗k ≥
k∑
i=0

1
Li

[f(yi)−

δi] for all k ≥ 0. To conclude we combine this fact with inequality (37) for
x = x∗. ut

As for the Primal Gradient Method, we define

ŷk =
∑k
i=0 L

−1
i yi∑k

i=0 L
−1
i

∈ Q,

and obtain the same upper bound

f(ŷk)− f(x∗) ≤
1
2‖x0−x∗‖22 +

∑k
i=0 L

−1
i δi∑k

i=0 L
−1
i

, k ≥ 0. (38)

Since we obtain the same convergence results for both primal and dual gradient
methods, we will refer to both as Classical Gradient Methods (CGM) in the
rest of this paper.

5 Fast gradient method with inexact oracle

5.1 Convergence analysis

In this section, we adapt one of the last versions of Fast Gradient Method
(FGM) developed in [15]. Let d(x) be a prox-function, differentiable and strongly
convex on Q, and let x0 = arg min

x∈Q
d(x) be its prox-center.

Translating and scaling d if necessary, we can always ensure that

d(x0) = 0, d(x) ≥ 1
2 ‖x− x0‖2E , ∀x ∈ Q. (39)

(here ‖·‖E denotes any norm on E). Let {αk}∞k=0 be a sequence of reals such
that

α0 ∈ (0, 1],
α2
k

Lk
≤ Ak

def
=

k∑
i=0

αi
Li
, k ≥ 0. (40)

Define τk = αk+1

Ak+1Lk+1
, k ≥ 0 and consider the following method.

Initialization: Choose δ0, L0, and x0 = arg min
x∈Q

d(x).

Iteration (k ≥ 0): 1. Compute (fδk,Lk(xk), gδk,Lk(xk)).

2. Compute yk = TLk(xk, gδk,Lk(xk)).

3. Compute zk = arg min
x∈Q
{d(x) +

k∑
i=0

αi
Li
〈gδi,Li(xi), x− xi〉}.

4. Choose δk+1 and Lk+1. Define xk+1 = τkzk + (1− τk)yk.

(FGM)

Denote ψ∗k = min
x∈Q
{d(x) +

∑k
i=0

αi
Li

[fδi,Li(xi) + 〈gδi,Li(xi), x− xi〉]}.
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Theorem 4 For all k ≥ 0, we have Akf(yk) ≤ ψ∗k + Ek with Ek =
k∑
i=0

Aiδi.

Proof Denote fk = fδk,Lk(xk), and gk = gδk,Lk(xk). For k = 0, we have

ψ∗0 = min
x∈Q

{
d(x) + α0

L0
[f0 + 〈g0, x− x0〉]

}
(39)

≥ α0

L0
min
x∈Q

{
f0 + 〈g0, x− x0〉+ L0

2 ‖x− x0‖2E
} (3)

≥ α0

L0
[f(y0)− δ0].

Assume now that the statement of the theorem is true for some k ≥ 0.
Optimality conditions for the optimization problem solved at Step 3 imply

〈∇d(zk) +
∑k
i=0

αi
Li
gi, x− zk〉 ≥ 0, ∀x ∈ Q.

Hence, in view of strong convexity of d,

d(x) ≥ d(zk) + 〈∇d(zk), x− zk〉+ 1
2‖x− zk‖

2
E

≥ d(zk) +
∑k
i=0

αi
Li
〈gi, zk − x〉+ 1

2 ‖x− zk‖
2
E .

Thus, we have for all x ∈ Q that

d(x) +
k+1∑
i=0

αi
Li

[fi + 〈gi, x− xi〉] ≥ d(zk) +
k∑
i=0

αi
Li

[fi + 〈gi, zk − xi〉]

+ 1
2 ‖x− zk‖

2
E + αk+1

Lk+1
[fk+1 + 〈gk+1, x− xk+1〉].

We have obtained

ψ∗k+1 ≥ ψ∗k + min
x∈Q
{ 1

2 ‖x− zk‖
2
E + αk+1

Lk+1
[fk+1 + 〈gk+1, x− xk+1〉]}.

On the other hand, we have

ψ∗k + αk+1

Lk+1
[fk+1 + 〈gk+1, x− xk+1〉]

≥ Akf(yk)− Ek + αk+1

Lk+1
[fk+1 + 〈gk+1, x− xk+1〉]

(3)

≥ Ak[fk+1 + 〈gk+1, yk − xk+1〉]− Ek + αk+1

Lk+1
[fk+1 + 〈gk+1, x− xk+1〉]

= Ak+1fk+1 + 〈gk+1, Ak(yk − xk+1) + αk+1

Lk+1
(x− xk+1)〉 − Ek.

Taking into account that

Ak(yk − xk+1) + αk+1

Lk+1
(x− xk+1)

= Akτk(yk − zk) + αk+1

Lk+1
x− αk+1

Lk+1
τkzk − αk+1

Lk+1
(1− τk)yk = αk+1

Lk+1
(x− zk),
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we obtain

ψ∗k + αk+1

Lk+1
[fk+1 + 〈gk+1), x− xk+1〉] ≥ Ak+1fk+1 + αk+1

Lk+1
〈gk+1, x− zk〉 − Ek.

Therefore,

ψ∗k+1 ≥ Ak+1fk+1 − Ek + min
x∈Q
{ 1

2 ‖x− zk‖
2
E + αk+1

Lk+1
〈gk+1, x− zk〉}

= Ak+1

[
fk+1 + min

x∈Q
{ 1

2Ak+1
‖x− zk‖2E + τk〈gk+1, x− zk〉}

]
− Ek

(40)

≥ Ak+1

[
fk+1 + minx∈Q{ τ

2
kLk+1

2 ‖x− zk‖2E + τk〈gk+1, x− zk〉}
]
− Ek.

For x ∈ Q, define y = τkx+ (1− τk)yk. Since y−xk+1 = τk(x− zk), we obtain

min
x∈Q

{
τ2
kLk+1

2 ‖x− zk‖2E + τk〈gk+1, x− zk〉
}

= min
y

{
Lk+1

2 ‖y − xk+1‖2E + 〈gk+1, y − xk+1〉 : y ∈ τkQ+ (1− τk)yk

}
≥ min

y∈Q

{
Lk+1

2 ‖y − xk+1‖2E + 〈gk+1, y − xk+1〉
}
.

(41)

Therefore,we have:

Ψ∗k+1 ≥ Ak+1

[
fk+1 + min

x∈Q
{ τ

2
kLk+1

2 ‖x− zk‖2E + τk〈gk+1, x− zk〉}
]
− Ek

(3),(41)

≥ Ak+1f(yk+1)− Ek −Ak+1δk+1,

and we get Ak+1f(yk+1) ≤ Ψk+1 + Ek+1 with Ek+1 = Ek +Ak+1δk+1. ut

Theorem 5 For all k ≥ 0, we have f(yk)− f∗ ≤ 1
Ak

(
d(x∗) +

∑k
i=0Aiδi

)
.

Proof Denote fi = fδi,Li(xi), and gi = gδi,Li(xi). Then

ψ∗k = min
x∈Q

{
d(x) +

k∑
i=0

αi
Li

[fi + 〈gi, x− xi〉]
}

≤ d(x∗) +
k∑
i=0

αi
Li

[fi + 〈gi, x∗ − xi〉] ≤ d(x∗) +Akf(x∗).

The proof now simply follows from the recurrence established in Theorem 4.
ut
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A simple choice for the sequence {αi} consists in letting αi = i+1
2 . In that

case, the sequence of Lipschitz constants must satisfy the inequality (k+1)2

4Lk

(40)

≤
k∑
i=0

i+1
2Li

, i.e.

Lk ≥ (k+1)2

2 /

[
k∑
i=0

i+1
Li

]
.

(It is true, for example, for any increasing sequence {Lk}k≥0.) In this case, we
obtain

f(yk)− f∗ ≤ 1∑k
i=0

i+1
2Li

(
d(x∗) +

k∑
i=0

i∑
j=0

j+1
2Lj

δi

)
.

If the parameters of the inexact oracle are constant (δi = δ, Li = L), we

have Ak = (k+1)(k+2)
4L , τk = 2

k+3 , and therefore

f(yk)− f∗ ≤ 4Ld(x∗)
(k+1)2 + 1

(k+1)(k+2)

k∑
i=0

(i+ 1)(i+ 2)δ.

Since
∑k
i=0(i+ 1)(i+ 2) = 1

6 (k + 1)(k + 2)(2k + 6), we obtain

f(yk)− f∗ ≤ 4Ld(x∗)
(k+1)(k+2) + 1

6 (2k + 6)δ = 4LR2

(k+1)2 + 1
3 (k + 3)δ (42)

where R
def
=
√
d(x∗).

5.2 Error accumulation

Contrarily to the classical gradient methods, the use of inexact oracle in FGM
results in error accumulation. Indeed, while the first term in (42) decreases
as O( 1

k2 ), the second term is increasing in k, and this FGM used with an
inexact oracle is asymptotically divergent. Section 8.3 will prove that error
accumulation and divergence are unavoidable for all fast first-order methods.

We now study the non-asymptotic behavior of FGM, and consider two
cases.

a. Oracle accuracy δ is fixed. In this case, we can find the number of iterations
k∗ that achieves the minimal guaranteed residual for the objective function.
We let

E(k) = 4Ld(x∗)
(k+1)2 + 1

3 (k + 1)δ + 2
3δ.

This function is convex in k and its minimum is reached at iteration k∗

k∗ = 2 3

√
3Ld(x∗)

δ − 1

for which the guaranteed accuracy for the objective function is

E(k∗) = Θ(δ2/3L1/3R2/3).
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b. Oracle accuracy δ can be chosen. Let us assume that parameter L of the
inexact oracle is independent on δ. If we need to reach accuracy ε for the
residual f(yk)− f∗, it is enough to perform k iterations, with k satisfying two
inequalities:

4Ld(x∗)
(k+1)2 ≤

ε
2 ,

1
3 (k + 3)δ ≤ ε

2 .

The first inequality gives us k ≥
√

8Ld(x∗)
ε − 1, and the second one gives

k ≤ 3ε
2δ − 3. Therefore attaining both ε

2 accuracies is possible if and only if

δ ≤ 3ε3/2

2
√

8Ld(x∗)+4
√
ε
. (43)

In conclusion, if we choose the oracle accuracy satisfying relation (43), then
after

k(ε) =
√

8Ld(x∗)
ε − 1

iterations, we obtain a point yk(ε) ∈ Q satisfying f(yk(ε))− f∗ ≤ ε.
We observe that, compared to CGM, FGM requires a higher-order accuracy

for the oracle (O(ε3/2) versus O(ε) for CGM).

6 Comparison between classical and fast gradient methods

When an exact oracle is used, FGM is an optimal method for the class F 1,1
L (Q).

It reaches an objective function accuracy ε after O(
√

L
εR) iterations while

CGM requires O
(
LR2

ε

)
iterations for the same result.

Performing such a comparison becomes more complicated when an inexact
first-order oracle is used. Contrary to CGM, FGM suffers from error accumu-
lation. In order to compare their efficiency, we consider two cases.

6.1 Oracle accuracy δ can be freely chosen

In this case we assume that L is independent from the oracle accuracy δ
(see examples in Section 3). If we need to reach ε accuracy for the objective
function, CGM will work using an inexact oracle with δ = Θ(ε). However, it

will then need O
(
LR2

ε

)
iterations.

For FGM with inexact oracle, error accumulation forces the use of a more

accurate oracle, i.e. with δ = Θ
(
ε3/2√
LR

)
. However only O

(√
L
εR
)

iterations

are needed. Thus, the choice between two methods depends on the complexity
of the inexact oracle. Denote by C(δ) the cost associated with computing an
answer (fδ,L(x), gδ,L(x)) for a (δ, L) inexact oracle. We see that CGM is prefer-
able to FGM if the following holds (up to constant factors in the arguments
of C(·))

1
εLR

2C(ε) < 1
ε1/2

L1/2RC
(

ε3/2

L1/2R

)
.

which leads us to consider the following situations.
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– Oracle for which higher accuracy is very expensive: C(δ) = Ω
(

1
δ

)
(e.g.

C(δ) = 1
δ2 ). In this case, it is preferable to use CGM.

– Oracle for which higher accuracy is moderately expensive: C(δ) = Θ
(

1
δ

)
.

For such an oracle both methods are equivalent.
– Oracle for which higher accuracy is cheap: C(δ) = o

(
1
δ

)
(for example,

C(δ) = 1
δ1/2

, or even C(δ) = ln 1
δ ). FGM is here better than CGM.

6.2 Oracle accuracy δ is fixed.

In this case, the sequence of iterates generated by CGM satisfies inequality

f(xk)− f∗ ≤ LR2

2k + δ,

whereas the sequence obtained by FGM satisfies inequality

f(yk)− f∗ ≤ 4LR2

(k+1)(k+2) + k+3
3 δ.

Figures 3, 4 and 2 depict these two rates of convergence for three different
values of the oracle accuracy parameter δ (with L = R = 1 in all cases).

Fig. 2 Convergence rate of CGM and FGM with δ = 0.0001, L = 1 and R = 1
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Fig. 3 Convergence rate of CGM and FGM with δ = 0.01, L = 1 and R = 1

The higher the accuracy of the oracle, the larger the number of iterations
for which FGM is better than CGM. For example, on Figure 2, we see that
when the oracle accuracy is sufficiently high (δ = 0.0001), FGM outperforms
GM accuracy at least for the first hundred iterations (except for a few initial
iterations, where smaller constant factors benefit CGM). In the exact case, i.e.
when the oracle accuracy δ = 0, FGM outperforms CGM for any number of
iterations.

On the other hand, when oracle accuracy is low, accumulation of oracle
errors in FGM becomes so prevalent that CGM is always better than FGM.
Figure 3 (with δ = 0.01) depicts this situation.

For intermediate values of accuracy (such as on Figure 4, where δ = 0.001),
the situation is more complicated. Better constant factors in the convergence
rate initially lead to smaller errors for the first few iterations of CGM. Af-
ter that, FGM reduces errors much better than CGM, because of its better
convergence rate. For FGM, the error attains its minimum value after N1 =

Θ

(
3

√
LR2

δ

)
iterations, with corresponding accuracy δ∗ = Θ(δ2/3L1/3R2/3). It

is not interesting to perform further FGM iterations since the gap can then
only increase due to error accumulation.
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Fig. 4 Convergence rate of CGM and FGM with δ = 0.001, L = 1 and R = 1

Note that there exists an iteration threshold N2 (> N1) after which CGM
provides better accuracy than FGM. However, this does not mean that CGM
is superior to FGM as soon as we reach that number of iterations, because
FGM already achieved a lower accuracy δ∗ after N1 iterations. If we wait

further until we reach N3 = Θ
(
LR2

δ2/3

)
(> N2) iterations, the accuracy of CGM

finally becomes better than δ∗, the best reachable accuracy with FGM. Final
accuracies ε between δ∗ and δ can then only be reached by CGM (they are

inaccessible by FGM), and require Θ
(
LR2

ε−δ

)
iterations.

In conclusion, FGM is the method of choice when we need accuracy not
better than δ∗ = Θ(δ2/3L1/3R2/3). Indeed, accuracy δ∗ is reached by the FGM
after N1 iterations whereas the CGM needs N3 iterations in order to obtain
the same error. In order to obtain accuracy better than δ∗, CGM must be used
since the FGM cannot decrease the error below δ∗.

7 Comparison with other types of inexact oracle

Fast-gradient methods using inexact first-order oracle have been recently stud-
ied in [3] and [1]. These works assume that set Q is bounded and that the oracle
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provides at each point y ∈ Q an approximate gradient g(y) satisfying condition

|〈g(y)−∇f(y), x− z〉| ≤ ξ ∀x, y, z ∈ Q. (44)

Let us compare this definition with (3), taking into account both their appli-
cability and the results obtained. First of all, the existence of an inexact oracle
satisfying (44) require more assumptions than our definition:

– Set Q must be bounded (this is not needed for (3)).
– Objective function f must be differentiable. The existence of the gradient

at all points is necessary since it must be compared with the approximate
gradient. Our approach is also able to consider non- or weakly smooth
convex functions.

Furthermore, even in the smooth case f ∈ F 1,1
L (Q) with bounded Q, we

argue that condition (44) is strictly stronger than (3). Assume f ∈ F 1,1
L (Q).

1. Any approximate gradient g(y) satisfying (44) also satisfies our definition.
Indeed, in view of (2) and (44), we have for all x, y ∈ Q

f(y)− ξ + 〈g(y), x− y〉 ≤ f(x) ≤ f(y) + ξ + 〈g(y), x− y〉+ L
2 ‖x− y‖

2
E .

and therefore taking fδ,L(y) = f(y) − ξ, and gδ,L(y) = g(y) satisfies (3)
with δ = 2ξ and the same value for L.

2. On the other hand, our condition (3) does not imply (44) with any ξ =
Θ(δ). Indeed, consider the function f(x) = maxu∈U Ψ(x, u), where

Ψ(x, u) = − 1
2 ‖u‖

2
2 + 〈x, u〉, Q = {y ∈ Rn : ‖y‖2 ≤ 1}, U = Rn. (45)

Let us assume the answer of oracle for x = 0 is obtained for some point
u0 satisfying ‖u0‖2 = δ1/2. Since u∗0 = arg maxu∈U Ψ(0, u) = 0, and f(0)−
Ψ(0, ux0

) = 1
2 ‖ux0

‖22 = δ
2 , the pair (fδ,L(0), gδ,L(0)) = (− δ2 , u0) is an

acceptable answer for a (δ, L) inexact oracle with L = 2 (see Section 3.2).
However we can check that

max
y,z∈Q

|〈∇f(0)− gδ,L(0), y − z〉| = 2 maxy∈Q |〈u0, y〉| = 2δ1/2.

We now compare efficiency estimates of FGM based on these oracles. FGM
using oracle (44) converges as follows:

f(yk)− f∗ ≤ CLR2

k2 + 3ξ,

where C is an absolute constant. This bound does not feature error accumu-
lation, meaning the accuracy ξ of the oracle can be chosen to be of the same
order as the desired accuracy ε of the solution. This result seems at first sight
to be better than what we obtained with our (δ, L)-oracle.

However, we noted that for the same level of accuracy, condition (44) is
much stronger than (3). Let us look at important example. Consider the class of
functions with explicit max-structure: f(x) = maxu∈U Ψ(x, u), where set U is
closed and convex, and Ψ(x, u) = G(u)+〈x,Au〉, where G(u) is a differentiable,
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strongly concave function with concavity parameter κ. Assume that we want
to solve the primal problem minx∈Q f(x) with accuracy ε. With our definition
of inexact oracle, the oracle accuracy δ corresponds directly to the (objective
function) accuracy required when solving the dual problem (see Section 3.2).

In the case of an approximate gradient satisfying definition (44), we can
also use an approximate dual solution ux ≈ u∗x

∇f(x) = Au∗x, g(x) = Aux.

However, we need to satisfy the following relation:

|〈A(u∗x − ux), y − z〉| ≤ ε, ∀x, y, z ∈ Q. (46)

(We can take ξ = ε since the condition (44) avoids accumulation of errors).
For that, we need to have ux close to u∗x according to

‖ux − u∗x‖F ≤
ε

diam (Q)·‖A‖F→E∗
.

Since Ψ is strongly concave, i.e. Ψ(x, u∗x)−Ψ(x, ux) ≥ κ
2 ‖ux − u

∗
x‖

2
F , a sufficient

condition for (44) is then as follows

Ψ(x, u∗x)− Ψ(x, ux) ≤ κ
2

(
ε

diam (Q)·‖A‖F→E∗

)2

= O(ε2).

Compare this to our approach, for which it was enough to solve the dual
problem up to accuracy ε3/2 (see (43)) in order to avoid accumulation of errors.

Remark 2 In some cases, inequality Ψ(x, u∗x)−Ψ(x, ux) ≤ ε2/8 is also a neces-
sary condition for (46). Indeed, consider again the saddle point problem defined

by (45). We have f(0)− Ψ(0, u0) = 1
2 ‖u0‖22. In order to satisfy condition (46)

we need to ensure

ε ≥ 2 max
y∈Q
|〈u0, y〉| = 2‖u0‖2 = 2

√
2(f(0)− Ψ(0, u0)).

Remark 3 The definition of inexact oracle used in [1] is slightly different from
(44). The author assume that g(y) satisfies the following conditions:

f(x) ≥ f(y) + 〈g(y), x− y〉 − ξ̄ ∀x ∈ dom f

f(x) ≥ f(y) + 〈g(y), x− y〉 − ξ̄ ‖x− y‖ ∀x ∈ dom f

and that the set Q is bounded. It is possible to prove that this definition
implies (44) with ξ = DQξ̄ (where DQ denotes the diameter of Q), possibly
replacing ∇f(y) with a subgradient when function f is non-smooth.
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8 Applications to non-smooth optimization

8.1 Solving weakly smooth problems

Let f be a convex function satisfying the Hölder condition (14). This class
includes non-smooth convex functions with bounded variation of subgradients
(ν = 0), and smooth convex functions with Hölder continuous gradient (ν ∈
(0, 1]). We have shown in Section 2, that for all δ > 0 these functions can be
equipped with (δ, L)-oracle with

L = A(δ, ν) = Lν

[
Lν
2δ ·

1−ν
1+ν

] 1−ν
1+ν

.

This observation allows us to apply first-order methods of F 1,1
L (Q) to func-

tions with weaker level of smoothness, replacing the gradients by subgradients

and using a Lipschitz constant L that grows as O
(
δ−

1−ν
1+ν

)
in terms of the δ

parameter of the oracle.
This parameter δ, which does not correspond to the actual accuracy of the

oracle, will have to be properly tuned in numerical methods, with a tradeoff
between the high “accuracy” of the oracle, and a small Lipschitz constant L.

For the sake of simplicity, we assume in the rest of this section that a fixed
number of iterations N is performed.

Let us apply method PGM to a weakly smooth function f with an inexact
(δ, L)-oracle. In view of (34), after N iterations we have

f(x̂N )− f(x∗) ≤ Lν

[
Lν
2δ ·

1−ν
1+ν

] 1−ν
1+ν R2

2N + δ
def
= CN

(
1
δ

) 1−ν
1+ν + δ.

Denote τ = 1−ν
1+ν . Then the optimal accuracy δN can be found from the equa-

tion
CN

τ
δ1+τN

= 1.

Thus, we come to the following bound:

f(x̂N )− f(x∗) ≤ δN

(
CN
δ1+τN

+ 1
)

= 2δN
1−ν . (47)

Note that

δN = (τCN )
1

1+τ =

(
1−ν
1+ν · Lν

[
Lν
2 ·

1−ν
1+ν

] 1−ν
1+ν R2

2N

) 1+ν
2

= 1−ν
1+ν ·

LνR
1+ν

2
1−ν
2 ·N

1+ν
2

.

Thus, we come to the following upper bound:

f(x̂N )− f(x∗) ≤ LνR
1+ν

1+ν ·
(

2
N

) 1+ν
2 . (48)

For functions with bounded variation of subgradients (ν = 0), we get:

f(x̂N )− f(x∗) ≤ L0R ·
(

2
N

) 1
2 ,
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which is the optimal rate of convergence (see [11,14]). However for functions
with Hölder continuous gradient (0 < ν), the obtained rate is not optimal (it

should be O(N−
1+3ν

2 ), see [10,8]).
Let us now apply FGM to a weakly smooth function using an (δ, L)-oracle.

In view of (42), after N iterations we have:

f(yN )− f(x∗) ≤ 4Lν

[
Lν
2δ ·

1−ν
1+ν

] 1−ν
1+ν R2

(N+1)2 + δ · (N + 1)

def
= ĈN

(
1
δ

) 1−ν
1+ν + δ · (N + 1).

The equation for optimal δN now becomes ĈN
τ

δ1+τN

= N + 1. Therefore, we

get

f(yN )− f(x∗) ≤ δN

(
ĈN
δ1+τN

+N + 1
)

= 2δN
1−ν (N + 1).

Note that

δN = (ĈN
τ

N+1 )
1

1+τ =

(
1−ν
1+ν · 4Lν

[
Lν
2 ·

1−ν
1+ν

] 1−ν
1+ν R2

(N+1)3

) 1+ν
2

= 1−ν
1+ν ·

LνR
1+ν

(N+1)
3
2
(1+ν)

· 2 1+3ν
2 .

Thus, we obtain the following upper bound

f(yN )− f(x∗) ≤ 2LνR
1+ν

1+ν

(
2

N+1

) 1+3ν
2

. (49)

For functions with bounded variation of subgradients (ν = 0), we get

f(yN )− f(x∗) ≤ 2L0R
(

2
N+1

) 1
2

.

In all cases, we obtain the optimal rate of convergence. Therefore, FGM can
be seen as a universal first-order method simultaneously optimal for smooth,
weakly smooth and non-smooth convex functions.

The applicability of first-order method of smooth convex optimization to
non-smooth convex problems, justified by the notion of (δ, L)-oracle, has sev-
eral further interesting consequences. We describe two of them below.

– We can apply CGM and FGM to objective functions composed of a sum
of smooth and non-smooth components.

– We can get lower bounds on the rate of accumulation of errors in the first-
order methods based on (δ, L)-oracle. It appears that error accumulation
is an intrinsic property of any fast gradient method. Slower first-order
methods can avoid accumulation of errors, and CGM is the fastest method
among those.
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8.2 Solving composite optimization problems

Consider the composite convex objective function:

f(x) = f1(x) + f2(x),

where f1 is a smooth convex function with Lipschitz continuous gradient (con-
stant L(f1)), and f2 is a non-smooth convex function with subgradients whose
variation is bounded by constant M(f2). We assume that the standard exact
first-order oracles are available for both f1 and f2.

Note that function f1 is equipped with (0, L(f1))-oracle, and by (17) func-
tion f2 has (δ, 1

2δM
2(f2))-oracle. Hence, we conclude that the pair

(f1(y) + f2(y),∇f1(y) + g2(y)), g2(y) ∈ ∂f2(y), (50)

is a (δ, L)-oracle for function f with L = L(f1) + 1
2δM

2(f2). Assume again
that the number of iterations N for our methods is fixed.

Let us apply now CGM to function f using the inexact (δ, L)-oracle (50).
Then, after N iterations we have:

f(x̂N )− f∗
(34)

≤
(
L(f1) + 1

2δM
2(f2)

)
R2

2N + δ.

Minimizing this expression with respect to δ ≥ 0, we obtain δ∗ = M(f2)R
2N1/2 .

Therefore, the best upper bound for the residual is

f(x̂N )− f∗ ≤ L(f1)R2

2N + M(f2)R
N1/2 .

This method has the optimal rate of convergence for non-smooth part of the
problem, but not for the smooth one.

Let us check now the performance of FGM as applied to the composite
problems. In view of (42), we have after N iterations of the scheme

f(yN )− f∗ ≤ 4
(
L(f1) + 1

2δM
2(f2)

)
R2

(N+1)2 + δ · (N + 1).

Minimizing this function in δ ≥ 0, we obtain: δ∗ = 21/2M(f2)R
(N+1)3/2

. The upper-

bound therefore becomes

f(yN )− f∗ ≤ 4L(f1)R2

(N+1)2 + 23/2M(f2)R
(N+1)1/2

.

For such a composite objective function, this method is optimal both for the
smooth and non-smooth parts of the problem.

Remark 4 Our analysis is in a certain sense similar to that of [5], where the
author applies a version of FGM to a stochastic composite optimization prob-
lem.

In the deterministic case, the author applies a variant of FGM, replacing
the gradients by subgradients in the non-smooth part of objective, and the
Lipschitz constant by a quantity of orderO(M(f2)N3/2). This method appears
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to be optimal both for the smooth and non-smooth parts of the composite
function.

In our approach,N = Θ(( 1
δM(f2))2/3), and we getM(f2)N3/2 = Θ( 1

δM
2(f2)),

which is, up to a constant factor, the quantity that replaces the Lispchitz con-
stant for our method.

8.3 First-order methods and error accumulation

Applicability of first-order methods of smooth optimization to non-smooth
problems, based on the notion of inexact oracle, opens a possibility to derive
lower bounds on error accumulation. This is the main subject of this section.
We start from the following observation.

Theorem 6 Consider a first-order method for F 1,1
L (Q) with convergence rate

O(LR
2

kp ) when exact first-order information is used. Assume that the bounds
on the performance of this method, as applied to a problem equipped with an
inexact (δ, L)-oracle, are given by inequality

f(zk)− f∗ ≤ C1LR
2

kp + C2k
qδ, (51)

where C1, C2 are absolute constants, and k is the iteration counter. Then the
inequality q ≥ p− 1 must hold.

Proof Let f be a non-smooth convex function, whose subgradients have vari-
ation bounded by constant M . We have seen that for such a function, the

standard oracle can be treated as (δ, M
2

2δ )-oracle for any δ > 0. Therefore, by
our method we can ensure the following rate of convergence:

f(zk)− f∗ ≤ C1M
2R2

2δkp + C2k
qδ.

Optimizing the right-hand side of this inequality in δ, we get

f(zk)− f∗ ≤ [2C1C2]1/2MR · k−
p−q
2 .

From the lower complexity bounds for non-smooth optimization problems, we
know that black-box methods cannot converge faster than O( 1

k1/2
). Hence, we

conclude that p− q ≤ 1. ut
In the exact case, when minimizing a function in F 1,1

L (Q), any first-order

method with convergence rate Θ(LR
2

k2 ) is optimal (e.g. FGM), and any method

with the convergence rate Θ(LR
2

k ) is suboptimal (e.g. CGM). In the case of
inexact (δ, L)-oracle, the situation is more complicated.

Total performance of the method also depends from the way it accumulates
successive errors coming from the oracle. In this situation, the superiority of
FGM over CGM is not completely clear anymore. As we have seen in the
previous sections, FGM suffers from accumulation of errors, but CGM does
not.

From Theorem 6, we know that this accumulation is a direct consequence
of the fast convergence of the scheme. Any method with complexity estimate
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Θ(
√

L
εR) must suffer from this instability. On the other hand, it appears that

in the inexact situation, both FGM and CGM are optimal, but in different
senses.

– q = 0⇒ p ≤ 1 :
It is impossible to have a first-order method without accumulation of errors,

which has better complexity than CGM, that is Θ(LR
2

ε ) .
– p = 2⇒ q ≥ 1 :

On the other hand, if we have a first-order method with complexityΘ(
√

L
εR),

then it always has accumulating of errors, which grow at least as Θ(kδ) .

The next theorem relates the rate of convergence of the method with the
required accuracy of the oracle.

Theorem 7 Let parameter L of inexact oracle (3) be independent from δ. Un-
der assumptions of Theorem 6, accuracy ε in the residual of objective function
requires at least the following accuracy of the oracle:

δ ≤ p·ε
(p+q)C2

[
q·ε

(p+q)C1LR2

]q/p
.

Proof In order to guarantee accuracy ε by the estimate (51), we have to choose
k and δ such that:

C1LR
2

kp ≤ αε, C2k
qδ ≤ (1− α)ε

for some α ∈ [0, 1]. The first inequality gives us k ≥
[
C1LR

2

αε

]1/p
, and using

the second inequality, we obtain

C2

[
C1LR

2

αε

]q/p
δ ≤ (1− α)ε.

Thus, δ ≤ (1−α)αq/p·ε(p+q)/p
C2[C1LR2]q/p

. It remains to maximize the right-hand side of this

inequality in α. ut

Corollary 2 If a first-order method has efficiency estimate Θ
(
LR2

ε

)
, then it

can be applied to an (δ, L)-oracle, with accuracy at least Ω( ε1+q

LqR2q ) or higher.
For the method optimal with respect to accumulation of errors (q = p−1 = 0),
we can choose δ = Ω(ε).

Corollary 3 If a first-order method has efficiency estimate Θ
(√

L
εR
)

, then

it can be applied to an (δ, L)-oracle, with accuracy at least Ω( ε
1+q/2

Lq/2Rq
) or higher.

For the method optimal with respect to accumulation of errors (q = p−1 = 1),

we can choose δ = Ω( ε3/2

L1/2R
).
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