
17 Optimization Methods for Sparse Inverse

Covariance Selection

Katya Scheinberg katyas@lehigh.edu

Department of Industrial and Systems Engineering

Lehigh University

Bethlehem, PA 18015-1582

Shiqian Ma sm2756@columbia.edu

Department of Industrial Engineering and Operations Research

Columbia University

New York, NY 10027

17.1 Introduction

In many practical applications of statistical learning the objective is not

simply to construct an accurate predictive model, but rather to discover

meaningful interactions among the variables. For example, in applications

such as reverse engineering of gene networks, discovery of functional brain

connectivity patterns from brain-imaging data, and analysis of social inter-

actions, the main focus is on reconstructing the network structure repre-

senting dependencies among multiple variables, such as genes, brain areas,

and individuals. Probabilistic graphical models, such as Markov networks

(or Markov random fields), provide a statistical tool for multivariate data

analysis that allows the capture of interactions such as conditional inde-

pendence relationships between variables. We focus on the task of learning

the structure of a Markov network over Gaussian random variables, which

is equivalent to learning the zero pattern of the inverse covariance matrix.

A standard approach is to choose the sparsest network (inverse covariance

matrix) that adequately explains the data. This can be achieved by solving

a regularized maximum likelihood problem with the regularization term in-

volving the number of nonzeros (�0-norm) in the inverse covariance matrix—

456 Optimization Methods for Sparse Inverse Covariance Selection

a generally intractable problem that is often solved approximately by greedy

search (Heckerman, 1995). Recently, however, novel tractable approxima-

tions have been suggested that exploit the sparsity-enforcing property of �1-

norm regularization and yield convex optimization problems (Meinshausen

and Buhlmann, 2006; Wainwright et al., 2007; Yuan and Lin, 2007; Baner-

jee et al., 2008; Friedman et al., 2007). In this chapter we focus on one such

convex formulation, often referred to as sparse inverse covariance selection

(SICS), and describe several optimization approaches to this problem.

17.1.1 Problem Formulation

Let S be a set of p random variables with joint distribution P (S). It is

common to assume a multivariate Gaussian probability density function over

S, hence, if s is a p-dimensional vector which is a realization of p random

variables, then

p(s) = (2π)−p/2 det(Σ)−
1

2 e−
1

2
(s−μ)TΣ−1(s−μ), (17.1)

where μ is the mean and Σ is the covariance matrix of the distribution,

respectively. Without loss of generality we assume that the data are centered

so that μ = 0; hence the purpose is to estimate Σ. Introducing X :=

det(Σ)−1, we can rewrite (17.1) as

p(s) = (2π)−p/2 det(X)
1

2 e−
1

2
s	Xs. (17.2)

Missing edges in the above graphical model correspond to zero entries

in the inverse covariance matrix X, and vice versa (Lauritzen, 1996), and

thus the problem of structure learning for the above probabilistic graphical

model is equivalent to the problem of learning the zero pattern of the

inverse covariance matrix. Note that the maximum likelihood estimate of

the covariance matrix Σ is the empirical covariance matrix S = 1
n

∑n
i=1 sis

	
i

where si is the ith sample, i = 1, ..., n. The inverse of S, even if it exists,

does not typically contain any elements that are exactly zero. Therefore an

explicit sparsity-enforcing constraint needs to be added to the estimation

process.

A common approach is to include the (vector) �1-norm of X as a penalty

term in the objective function, which is equivalent to imposing a Laplace

prior on Σ−1 in a maximum likelihood framework (Friedman et al., 2007;

Banerjee et al., 2008; Yuan and Lin, 2007). Formally, the entries Xij of the

inverse covariance matrix are assumed to be independent random variables,

each following a Laplace distribution

p(Xij) =
λ

2
e−λ|Xij−αij | (17.3)

17.1 Introduction 457

with zero location parameter (mean) αij , yielding

p(X) =

p∏
i=1

p∏
j=1

p(Xij) = (λ/2)p
2

e−λ||X||1 , (17.4)

where ||X||1 =
∑

ij |Xij | is the (vector) �1-norm of X. Then the objective is

to find the maximum log-likelihood solution argmaxX�0 log p(X|S), where S
is the n×p data matrix whose rows are given by s	, and X � 0 denotes that

X is positive definite. Invoking Bayes’s rule, p(X|S) = P (S|X)P (X)/p(S),

this max-likelihood estimate can be obtained by

argmax
X�0

log

n∏
i=1

[
det(X)

1

2

(2π)p/2
e−

1

2
s	i Xsi] + log[(λ/2)p

2

e−λ||X||1]. (17.5)

We write 1
n

∑n
i=1 s

	
i Xsi = 〈S,X〉. This yields the following optimization

problem (also see Friedman et al. (2007); Banerjee et al. (2008); Yuan and

Lin (2007)):

max
X�0

log det(X)− 〈S,X〉 − ρ||X||1, (17.6)

where ρ = 2
nλ.

More generally, one can consider the following formulation:

max
X�0

log det(X)− 〈S,X〉 −
∑
ij

Mij |Xij |. (17.7)

If M is a product of ρ = 2
nλ and E is the matrix of all ones, then problem

formulation (17.7) reduces to (17.6).

Note that by allowing the matrix M to have arbitrary nonnegative entries,

we automatically include in the formulation the case where the diagonal

elements of X are not penalized or the case when the absolute values of the

entries of X are scaled by their estimated value, as was considered in Yuan

and Lin (2007).

We will refer to (17.6) and (17.7) as the SICS problem. The two formu-

lations are very similar in terms of optimization effort. In some cases, for

brevity we present methods for (17.6) and explain its extension for (17.7)

afterward.

The dual of (17.7) can be written as (Banerjee et al., 2008)

max
W�0

{log det(W)− p : s.t. −M ≤W − S ≤M}, (17.8)

where the inequalities involving matrices W , S, and M are element-wise.

Problems (17.6) and (17.7) are both strictly convex, and as long as the off-

diagonal elements of M are positive, the optimal solution is always attained.

458 Optimization Methods for Sparse Inverse Covariance Selection

The optimality conditions for this pair of primal and dual problems imply

that W = X−1 and that Wij − Sij = Mij if Xij > 0 and Wij − Sij = −Mij

if Xij < 0. These optimality conditions are imperative when the primal

sparsity structure needs to be recovered from the dual solution. Several

existing methods solve (17.8) and obtain an approximate solution to (17.7)

by inverting the solution of (17.8). Since the obtained dual solution is

also approximate, the resulting primal approximate solution is not sparse.

However, it is often the case that the dual solution is an accurate projection

onto the dual feasible set. Hence, for the “true” nonzero elements of Xij the

appropriate complementarity conditions Wij − Sij = Mij and Wij − Sij =

−Mij are observed from the solution obtained for (17.8).

17.1.2 Overview of Optimization Approaches

Problems (17.6) and (17.7) are special cases of a semidefinite programming

problem (SDP) (Wolkowicz et al., 2000) which can be solved in polynomial

time by interior-point methods (IPM). However, as is well known, each

iteration of an IPM applied to a semidefinite programming problem of

size p requires up to O(p6) operations and O(p4) memory space, which

is very costly. Although an approximate IPM has recently been proposed

for the SICS problem (Li and Toh, 2010), another reason that using an

IPM is undesirable for our problem is that an IPM does not produce the

sparsity pattern of the solution. The sparsity is, in theory, recovered in

the limit. In practice it is recovered by thresholding the elements of an

approximate solution; hence, numerical inaccuracy can interfere with the

structure recovery.

As an alternative to IPMs, more efficient approaches, COVSEL and glasso,

were developed for problem (17.6) in Banerjee et al. (2008) and (Friedman

et al., 2007). The methods are similar in that they are based on applying

a block coordinate descent (BCD) method to the dual of (17.6). At each

iteration only one row (and the corresponding symmetric column) of the

dual matrix is optimized while the rest of that matrix remains fixed. The

resulting subproblem is a convex quadratic problem. The difference between

the COVSEL method, described in Banerjee et al. (2008), and the glasso

method in Friedman et al. (2007), is that COVSEL solves the subproblems

via an interior-point approach, while glasso poses the subproblem as a dual

of the Lasso problem (Tibshirani, 1996) and utilizes a coordinate descent

(CD) approach (Tibshirani, 1996) to solve the resulting Lasso subproblem.

Due to the use of the coordinate descent, the sparsity of the primal matrix

is recovered more accurately than with the interior-point approach, and the

glasso method (Friedman et al., 2007) is faster than COVSEL because it

17.1 Introduction 459

takes advantage of that sparsity. On the other hand, subproblems solved

by glasso are solved by coordinate descent up to an unknown accuracy;

hence, the current implementation of this method lacks rigor. A recent

row-by-row (RBR) method for general SDP (Wen et al., 2009) is based

on the same idea of updating one row and column at a time, like glasso

and COVSEL, but can also be applied directly to the primal matrix. The

resulting subproblem is in general a second-order cone problem (SOCP),

while in the dual case it reduces to a convex quadratic problem (QP).

It follows from the result in Wen et al. (2009) that the BCD approach

converges to the optimal solution when applied to the primal and dual SICS

formulations. The SINCO method proposed by Scheinberg and Rish (2009)

is a greedy coordinate descent method applied to the primal problem. We

will describe the approaches of glasso and SINCO in more detail below. Sun

et al. (2009) propose solving the primal problem (17.6) by using a BCD

method. They formulate the subproblem as a min-max problem and solve it

using a prox-method proposed by Nemirovski (2005). All of these BCD and

CD approaches lack iteration complexity bounds as of now.

As alternatives to block coordinate based approaches several gradient

based approaches, for problem (17.6) have been suggested. A projected

gradient method for solving the dual problem (17.8) was proposed by Duchi

et al. (2008). Variants of Nesterov’s method (Nesterov, 2005, 2004) were

applied to solving the SICS problem by d’Aspremont et al. (2008) and Lu

(2009, 2010). d’Aspremont et al. (2008) apply Nesterov’s optimal first-order

method to solve the primal problem (17.6) after smoothing the nonsmooth

�1-term, obtaining an iteration complexity bound of O(1/ε) for an ε-optimal

solution. Lu solves the dual problem (17.8), which is a smooth problem, by

Nesterov’s algorithm, and improves the iteration complexity to O(1/
√
ε).

However, since the practical performance of this algorithm is not attractive,

Lu gives a variant of it (VSM) with unknown complexity that exhibits

better performance. Yuan (2009) proposes an alternating direction method

based on an augmented Lagrangian framework. Goldfarb et al. (2009) and

Scheinberg et al. (2010) have developed an alternating linearization method

with O(1/
√
ε) complexity which is similar to the augmented Lagrangian

approach. A proximal point algorithm was proposed by Wang et al. (2009)

which requires a reformulation which increases the size of the problem. The

IPM in Li and Toh (2010) also requires such a reformulation.

In this chapter we give details of BCD approaches developed in Friedman

et al. (2007) and Scheinberg and Rish (2009). The fundamental difference

between the two approaches is in the choice of the next coordinates that are

updated. From the class of the first-order methods we choose to present the

alternating linearization method from Goldfarb et al. (2009) and Scheinberg

460 Optimization Methods for Sparse Inverse Covariance Selection

et al. (2010), which currently appears to be the most efficient approach for

SICS (see Scheinberg et al. (2010) for computational comparison).

17.1.3 Preliminaries

17.1.3.1 Properties of Matrix Determinant and Inverse

Let X ∈ Sn
++ be a positive definite matrix. We will list here a few useful

properties from linear algebra.

Let X be partitioned as

X =

(
ξ y	

y B

)
where ξ ∈ R, y ∈ R

n−1, and B ∈ Sn−1
++ . Then

detX = (ξ − y	B−1y) detB. (17.9)

Consider a matrix X + uv	, where u, v ∈ R
n, then

det(X + uv) = det(X)(1 + v	X−1u) (17.10)

and

(X + uv)−1 = X−1 −X−1uv	X−1/(1 + v	X−1u). (17.11)

The last expression is well known as the Sherman-Morrison-Woodbury

formula.

17.1.3.2 Soft Thresholding and Shrinkage

We will use the well-known fact that the solution to the following optimiza-

tion problem,

min
x

1

2
‖x− r‖22 + λ‖x‖1, (17.12)

where x and r are vectors in R
n, can be obtained in closed form by a

shrinkage operator x∗ = shrink(r, λ), where

x∗i = shrink(ri, λ) =

⎧⎨⎩
ri − λ if ri ≥ λ

0 if − λ < ri < λ

ri + λ if ri ≤ −λ.
(17.13)

17.2 Block Coordinate Descent Methods 461

17.1.3.3 Coordinate Descent for Lasso

Let us consider a general Lasso problem (Tibshirani, 1996),

min
x

1

2
‖Ax− b‖22 + ρ‖x‖1, (17.14)

where A ∈ R
m×n, b ∈ R

m and x ∈ R
n. The idea of a coordinate descent

approach is at each step to fix all elements of x except for the ith element

and to optimize the objective function for only one variable xi. Let x̄ denote

the fixed part of vector x, and Ā the part of matrix A that corresponds to

x̄. Writing the reduced problem omitting the terms that do not depend on

xi, we get

min
xi

1

2
x	i A

	
i Aixi + x̄	Ā	Aixi − b	Aixi + ρ|xi|, (17.15)

where Ai is the ith column of A. Let ri = −A	
i (Āx̄ − b)/‖Ai‖2 and

ηi = ρ/‖Ai‖2; then problem (17.15) is equivalent to

min
xi

1

2
(xi − ri)

2 + ηi|xi|, (17.16)

which is solved by the soft thresholding step x∗i = shrink(ri, ηi). Hence, each

step of coordinate descent for Lasso requires computing ri and ηi. The cost

of this computation depends on the manner in which different parts of the

expression for r are stored and updated. For instance, if the elements of

A	A are precomputed and stored, then at each step all ri’s can be updated

in O(n) operations. Alternatively, the residual Ax − b can be stored and

updated at the cost of O(m) storage and operations, in which case each ri
can be computed in O(m) operations whenever it is required.

17.2 Block Coordinate Descent Methods

17.2.1 Row-by-Row Method

For simplicity let us consider the case when M = ρE, that is, formulation

(17.6). Instead of solving (17.6) directly, the approaches in Banerjee et al.

(2008) and Friedman et al. (2007) consider the dual

max
W�0

{log det(W)− p : s.t. ‖W − S‖∞ ≤ ρ}. (17.17)

The subproblems solved at each iteration of the BCD methods in Banerjee

et al. (2008) and Friedman et al. (2007) are constructed as follows. Given a

462 Optimization Methods for Sparse Inverse Covariance Selection

positive definite matrix W � 0, W and S are partitioned conformally as

W =

(
ξ y	

y B

)
and S =

(
ξS y	S
yS BS

)
,

where ξ, ξS ∈ R, y, yS ∈ R
n−1, and B,BS ∈ Sn−1. It follows from (17.9)

that log detW = log(ξ − y	B−1y) + log detB, and B is fixed, so the BCD

subproblem for (17.6) becomes the quadratic program

min
[ξ;y]

y	B−1y − ξ, s.t. ‖[ξ; y]− [ξS ; yS]‖∞ ≤ ρ, ξ ≥ 0. (17.18)

Note that (17.18) is separable in y and ξ. The solution ξ is equal to ξS + ρ.

In fact, the first-order optimality conditions of (17.6) and X � 0 imply that

Wii = Sii + ρ for i = 1, . . . , n. Hence, problem (17.18) reduces to

min
y

y	B−1y, s.t. ‖y − yS‖∞ ≤ ρ. (17.19)

The BCD method in Banerjee et al. (2008) solves a sequence of constrained

problems (17.19). After each step the duality gap for (17.6) at the current

iterate W k can be obtained as 〈(W k)−1, S〉 − p + ρ‖(W k)−1‖1. The BCD

method proposed in Banerjee et al. (2008) for solving (17.17) is outlined in

algorithm 17.1.

Algorithm 17.1 Block coordinate descent method for (17.17)

1: Set W 1 = S + ρI, k := 1, and ε ≥ 0.
2: while 〈(W k)−1, S〉 − p+ ρ‖(W k)−1‖1 ≥ ε do
3: for i = 1, · · · , p do
4: Set B := W k

ic,ic , yS = Sic,i, and BS = Sic,ic .
5: Solve (17.19) to get y.
6: Update W k

ic,i := y and W k
i,ic := y
.

7: end for
8: Set W k+1 := W k and k := k + 1.
9: end while

Each instance of (17.19) is solved by applying an interior-point quadratic

programming solver. Also, the inverse of W k is computed at each iteration.

This makes each iteration of the BCD costly. Moreover, the sparsity of the

primal solution Xk = (W k)−1 is not exploited, and is obtained only in the

limit. Since the BCD approach typically does not produce accurate solutions,

this sparsity is hard to recover accurately.

The glasso method proposed in Friedman et al. (2007) is based on algo-

rithm 17.1 except for the method of solving (17.19). Specifically, it can be

17.2 Block Coordinate Descent Methods 463

easily verified that the dual of (17.19) is

min
x

x	Bx− y	S x+ ρ‖x‖1, (17.20)

which is also equivalent to

min
x

∥∥∥∥B 1
2x− 1

2B
−1
2 yS

∥∥∥∥2
2

+ ρ‖x‖1. (17.21)

If x solves (17.21), then y = Bx solves (17.19).

Problem (17.21) is equivalent to the Lasso problem (Tibshirani, 1996). The

Lasso problem is then solved using a coordinate descent algorithm, which

does not require computation of either B
1
2 or B−1

2 . Indeed, if we recall the

subproblem (17.16) which is generated and solved at each coordinate descent

step for (17.14) we see that to compute the scalars ri and ηi we require only

elements of B and y, since B
1
2
i B

1
2
i = Bi and B

1
2
i B

−1
2

i yi = yi.

For each BCD iteration, the resulting solution of the Lasso subproblem

(17.21) has the same nonzero pattern as the corresponding row of Xk =

(W k)−1, which can be viewed as the current estimate of the inverse of the

covariance. Hence, the sparsity pattern is explicitly available and is exploited

by the glasso algorithm. This makes glasso significantly more efficient than

COVSEL (developed in Banerjee et al. (2008)). In terms of CPU time glasso

is currently the most efficient block coordinate descent approach to the

SICS problem. On the other hand, it is unclear if the convergence results of

BCD apply to glasso due to the way the subproblems are addressed in the

implementation.

It is easy to extend the BCD approach to the more general formulation

(17.7). One needs to consider the appropriate partitioning of M ,

M =

(
ξM y	M
yM BM

)
.

The bound constraints in (17.19) become −yM ≤ (y − yS) ≤ yM and

ξ = ξs + ξM . Both glasso and COVSEL easily extend to this formulation.

The BCD approach cycles through each row/column of W one by one.

Hence the nonzeros in the inverse covariance matrix generated by glasso

are generated by rows. This may introduce small nonzero elements, which

are undesirable in the solution. It is possible to modify this method so that

only one element in each row is updated at a time, thus bringing the whole

approach closer to the simple coordinate descent used for Lasso. However, it

is unclear how to efficiently select the next working variable to be updated. A

simple cycling rule would be equivalent to the approach in Friedman et al.

(2007) which we just described. The method in the next subsection is a

464 Optimization Methods for Sparse Inverse Covariance Selection

primal greedy coordinate descent, which addresses the issue of the working

variable selection.

17.2.2 Primal Greedy Coordinate Descent

We now describe an algorithm which addresses the primal problem directly

and also uses coordinate descent,1 which naturally preserves the sparsity

of the solution. The method is referred to as SINCO (Sparse INverse

COvariance) and is introduced in Scheinberg and Rish (2009). Unlike the

dual BCD approach of COVSEL, glasso, and the general RBR, SINCO

optimizes only one diagonal or two (symmetric) off-diagonal entries of the

matrix X at each step. The advantages of this approach are that only one

nonzero entry (discounting the matrix symmetry) can be introduced at each

step, and that the solution to each subproblem is available in closed form

as a root of a quadratic equation. Computation at each step requires a

constant number of arithmetic operations, independent of p. Hence, in O(p2)

operations a potential step can be computed for all pairs of symmetric

elements (i.e., for all pairs (i, j)). Then the step which provides the best

objective function value improvement can be chosen, which is the essence

of the greedy nature of this approach. Once the step is taken, the update

of the gradient information requires O(p2) operations. Hence, overall, each

iteration takes O(p2) operations. Note that each step is also suitable for

massive parallelization.

In comparison, glasso and COVSEL (and RBR) require solution of a

quadratic programming problem whose theoretical and empirical complexity

varies depending on the method used, but always exceeds O(p2). These

algorithms apply optimization to each row/column consecutively; hence the

greedy nature is lacking. On the other hand, a whole row and a whole

column are optimized at each step, thus reducing the overall number of

steps. As is shown in Scheinberg and Rish (2009), SINCO, in a serial mode,

is comparable to glasso, which is orders of magnitude faster than COVSEL,

according to the results in Friedman et al. (2007). Also, SINCO may lead to

a lower false-positive error than glasso since it introduces nonzero elements

greedily. On the other hand, it may suffer from introducing too few nonzeros

and thus misses some of the true positives, especially on dense networks.

Perhaps the most interesting consequence of SINCO’s greedy nature is

that it reproduces the regularization path behavior while using only one

value of the regularization parameter ρ. We will discuss this property further

1. We should call it “coordinate ascent” since we are solving a maximization problem;
however, we use the word “descent” to adhere to standard terminology.

17.2 Block Coordinate Descent Methods 465

after we describe the algorithm.

17.2.2.1 Algorithm Description

The main idea of the method is that at each iteration, the matrix X is

updated by changing one element on the diagonal or two symmetric off-

diagonal elements. This implies the change in X that can be written as

X + θ(eie
	
j + eje

	
i), where i and j are the indices corresponding to the

elements that are being changed. The key observation is that given the

matrix W = X−1, the exact line search that optimizes the objective function

of problem (17.7) along the direction eie
	
j + eje

	
i reduces to a solution of a

quadratic equation, as we will show below. Hence, each such line search takes

a constant number of operations. Moreover, given the starting objective

value, the new function value on each step can be computed in a constant

number of steps. This means that we can perform such line search for all

(i, j) pairs in O(p2) time, which is linear in the number of unknown variables

Xij . We then can choose the step that gives the best improvement in the

value of the objective function. After the step is chosen, the dual matrix

W = X−1 and, hence, the objective function gradient are updated in O(p2)

operations.

We now describe the method. For a fixed pair (i, j) consider now the

update of X of the form X(θ) = X + θ(eie
	
j + eje

	
i), such that X ≥ 0. Let

us consider the objective function as the function of θ:

f(θ) = log det(X + θeie
	
j + θeje

	
i)− (17.22)

〈S,X + θeie
	
j + θeje

	
i 〉 −

p∑
i,j=1

Mij |X + θeie
	
j + θeje

	
i |. (17.23)

We use the property of the determinant (17.10) and the Sherman-Morrison-

Woodbury formula (17.11) to obtain

det(X + θeie
	
j + θeje

	
i) = det(X + θeje

	
i)(1 + θe	j (X + θeje

	
i)

−1ei)

= det(X)(1 + θe	i X
−1ej)(1 + θe	j X

−1ei − θ2e	j X
−1ej(1 + θe	i X

−1ej)
−1e	i X

−1ei)

= det(X)(1 + 2θe	i X
−1ej + (θe	j X

−1ei)
2 − θ2e	i X

−1eie
	
j X

−1ej).

Given the dual solution W = X−1, we can write the above as

det(X + θeie
	
j + θeje

	
i) = det(X)(1 + 2θWij + θ2(W 2

ij −WiiWjj)).

We define the function g(θ) as

g(θ) := 1 + 2θWij + θ2(W 2
ij −WiiWjj).

466 Optimization Methods for Sparse Inverse Covariance Selection

Recalling that W and S are symmetric, but M is not necessarily so,

maximizing the objective function f(θ) over θ is equivalent to

max
θ

log(g(θ))− 2Sijθ − (Mij +Mji)|Xij + θ|. (17.24)

This problem can be rewritten as

max
θ

min
u∈R: |u|≤Mij+Mji

log(g(θ))− 2Sijθ − u(Xij + θ). (17.25)

Swapping the min and the max, we have as the inner problem

max
θ

fu(θ) = log g(θ)− 2Sijθ − u(Xij + θ), (17.26)

which can be solved by setting the derivative of the objective with respect

to θ to zero.

f ′
u(θ) =

g′(θ)
g(θ)

− 2Sij − u =
Wij + θ(W 2

ij −WiiWjj)

θ2(W 2
ij −WiiWjj) + 1 + 2θWij

− 2Sij − u.

To find the maximum of f(θ), we need to find θ for which f ′(θ) = 0.

Letting a denote WiiWjj −W 2
ij , this condition can be written as

Wij − 2Sij − u− (a+ 2Wij(2Sij + u)θ + a(2Sij + u)θ2 = 0.

If we know the value of u, we can obtain the optimal θ from the above

quadratic equation. From the optimality conditions for the primal-dual

problem (17.25) we know that for optimal θ

Xij + θ ≥ 0 if u = Mij +Mji

Xij + θ ≤ 0 if u = −Mij −Mji

Xij + θ = 0 if −Mij −Mji < u < Mij +Mji.

Hence, considering the three different scenarios, one can find the optimal

solution to (17.25) via solving quadratic equations in a constant number of

steps, which does not depend on p. In Scheinberg and Rish (2009) the details

of solving the quadratic equation are given along with the proof that the

solution corresponding to the maximum of f(θ) always exists.

Once the optimal θ is computed, the objective function improvement is

easily obtained from f(θ)− f(0), where f(0) is the objective function value

from the previous iteration. Since for each (i, j) pair the optimal θ and

the objective function value improvement can be computed in a constant

number of operations, then in O(p2) operations one can compute the (i, j)

pair, which gives the largest objective function improvement. Once such a

pair is determined, the appropriate update to X can be performed and the

iteration is completed.

17.2 Block Coordinate Descent Methods 467

The inverse W̄ of X̄ = X + θeiej + θejej is obtained, according to the

Sherman-Morrison-Woodbury formula, in O(p2) operations as follows:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
W̄ = W − θ(κ1WiW

	
j + κ2WiW

	
i + κ3WjW

	
j + κ1WjW

	
i)

κ1 = −(1 + θWij)/κ

κ2 = θWjj/κ

κ3 = θWii/κ

κ = θ2(WiiWjj −W 2
ij)− 1− 2θWij

(17.27)

We outline the steps of the SINCO method in algorithm 17.2.

Algorithm 17.2 Coordinate descent method for (17.7)

1: Set X1 = I, set k := 1, θk = 0, and ε ≥ 0. Compute f(X1).
2: while f(θk)− f(Xk) ≥ ε do
3: for i = 1, · · · , p, j = i, · · · , p do
4: Compute θij = argmaxθ f(θ) where f(θ) is defined by (17.22)
5: If f(θk) > f(θij), θ

k = θij , (i, j)
k = (i, j)

6:

7: end for
8: Update W k according to (17.27) for (i, j) = (i, j)k.
9: end while

The overall per-iteration complexity of SINCO is O(p2). Moreover, this

algorithm lends itself readily to massive parallelization. Indeed, at each

iteration of the algorithm the step computation for each (i, j) pair can be

parallelized, and the procedure that updates W involves simply adding to

each element of W a function that involves only two rows of W . Hence,

the updates can be also done in parallel, and in very large-scale cases the

matrix W can also be stored in a distributed manner. The same is true of

the storage of matrices S and M (assuming that M needs to be stored, that

is, not all elements of M are the same), while the best way to store the X

matrix may be in sparse form.

The convergence of the method follows from the convergence of a block

coordinate descent method on a strictly convex objective function, as is

shown for the RBR method in Wen et al. (2009). The only constraints are

box constraints (nonnegativity), and they do not hinder the convergence. In

the case of SINCO we extensively use the fact that each coordinate descent

step is cheap and, unlike the glasso algorithm, we select the next step based

on the best function value improvement. On the other hand, we maintain

both the primal matrix X and the inverse matrix W , while glasso method

does not. However, none of these differences prevent the convergence result

for RBR in Wen et al. (2009) to apply to both methods.

468 Optimization Methods for Sparse Inverse Covariance Selection

17.2.3 Regularization Path

One of the main challenges in sparse inverse covariance selection is the

proper choice of the weight matrix M in (17.6). Typically M is chosen

to be a multiple of the matrix of all ones as in the formulation (17.6). The

multiplying coefficient ρ is called the regularization parameter. Clearly, for

large values of ρ as ρ → ∞, the solution to (17.6) is likely to be very

sparse and eventually diagonal, which means that no structure recovery is

achieved. On the other hand, if ρ is small as ρ→ 0, the solution X is likely

to be dense and eventually approach S−1 and, again, no structure recovery

occurs. Hence, exploration of a regularization path is an integral part of the

sparse inverse covariance selection.

Typically, problem (17.6) is solved for several values of ρ in a predefined

range and the best value, according to some criteria, is selected. The reason

only a scalar parameter ρ is usually considered is that it is expensive to

explore solutions along a multi-dimensional grid.

The work in Krishnamurthy and d’Aspremont (2009), also presented in

this volume, addresses an algorithm for the SICS problem that computes

the entire regularization path by a path-following method.

In this section, we concentrate on computing the regularization path (or

some parts of it) by solving the SICS problem for a finite range of values

of ρ rather than the complete path. All methods described in this chapter,

including the alternating linearization method described below, are very

well suited for the efficient computation of the regularization path, since

it directly exploits warm starts. When ρ is relatively large, a very sparse

solution can be obtained quickly. This solution can be used as a warm start

to the problem with a smaller value of ρ and, if the new value of ρ is not too

small compared with the previous value, then the new solution is typically

obtained in just a few iterations, because the new solution has only a few

extra nonzero elements.

The regularization path is evaluated via the ROC curves showing the

trade-off between the number of true positive (TP) elements recovered and

the number of false positive (FP) elements. Producing better curves (where

the number of TPs rises fast relative to FPs) is usually an objective of any

method that does not focus on specific ρ selection. An interesting property

of SINCO is that it introduces nonzero entries into the matrix X as it

progresses. Hence, if one uses looser tolerance and stops the algorithm early,

then a sparser solution is obtained for any specific value of ρ. What we

observe, as seen in figure 17.1, is that if we apply SINCO to problem (17.6)

with ever tighter tolerance, the ROC curves obtained from the tolerance

solution path match the ROC curves obtained from the regularization

17.3 Alternating Linearization Method 469

path. Here we show several examples of the matching ROC curves for

various random networks (see Scheinberg and Rish (2009), for details of

the experiments). The ROC curves of the regularization path computed by

glasso are very similar to SINCO’s ROC curves (Scheinberg and Rish, 2009).

Note that changing tolerance does not have the same affect on glasso as it

does on SINCO. The numbers of TP and FP do not change noticeably with

increasing tolerance. This is due to the fact that the algorithm in glasso

updates a whole row and a column of C at each iteration while it cycles

through the rows and columns, rather than selecting the updates in a greedy

manner.

Our observations imply that methods like SINCO can be used to greedily

select the elements of the graphical model until the desired trade-off between

FPs and TPs is achieved. In the limit SINCO solves the same problem as

glasso and hence the limit numbers of the true and false positives are dictated

by the choice of ρ. But since the real goal is to recover the true nonzero

structure of the covariance matrix, it is not necessary to solve problem (17.6)

accurately. For the purpose of recovering a good TP/FP ratio, one can apply

the SINCO method without adjustments to ρ.

For details on the numerical experiments presented here, see Scheinberg

and Rish (2009).

17.3 Alternating Linearization Method

Efficient alternatives to BCD methods are the gradient based methods

which we discussed briefly in section 17.1.2. These methods have higher

per-iteration complexity (typically O(p3)), but they usually converge in

fewer iterations than a BCD method. Moreover, several of these methods,

including the one presented here, have variants with provable complexity

bounds.

We discuss here the alternating linearization method (ALM) introduced

in Goldfarb et al. (2009) for solving (17.6) which we write here as

min
X∈Sp

++

F (X) ≡ f(X) + g(X), (17.28)

where f(X) = − log det(X) + 〈S,X〉 and g(X) = ρ‖X‖1. An effective way

to approach an objective function of this form is to “split” f and g by

introducing a new variable, that is, to rewrite (17.28) as

min
X,Y ∈Sp

++

{f(X) + g(Y) : X − Y = 0}, (17.29)

and to apply an alternating-direction augmented Lagrangian method to it.

470 Optimization Methods for Sparse Inverse Covariance Selection

SINCO paths when varying tolerance and ρ for SF network

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

FP

T
P

tolerance path

regularization path

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

FP

T
P

tolerance path

regularization path

(a) p = 100, N = 5000 (b) p = 100, N = 500

SINCO paths when varying tolerance and ρ for a random network

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

FP

T
P

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

FP

T
P

(c) p = 100, N = 5000 (d) p = 100, N = 500

Figure 17.1: Random and scale-free networks: SINCO paths when varying toler-
ance and ρ.

Given a penalty parameter 1/μ, and an estimate of the Lagrange multiplier

Λ, at the kth iteration the augmented Lagrangian method minimizes the

augmented Lagrangian function

L(X,Y ; Λ) := f(X) + g(Y)− 〈Λ, X − Y 〉+ 1

2μ
‖X − Y ‖22,

with respect to X and Y , that is, it solves the subproblem

(Xk, Y k) := arg min
X,Y ∈Sp

++

L(X,Y ; Λk) (17.30)

and updates the Lagrange multiplier Λ via

Λk+1 := Λk − (Xk − Y k)/μ. (17.31)

Minimizing L(X,Y ; Λ) with respect to X and Y jointly is difficult, while

doing so with respect to X and Y alternatingly can be done efficiently, as

17.3 Alternating Linearization Method 471

we will show below. Moreover, minimization over Y does not have to include

the constraint Y ∈ Sp
++.

The following alternating-direction version of the augmented Lagrangian

method (ADAL) is often advocated (see, e.g., Fortin and Glowinski (1983);

Glowinski and Le Tallec (1989)):⎧⎨⎩
Xk+1 := argminX∈Sp

++
L(X,Y k; Λk)

Y k+1 := argminY L(Xk+1, Y ; Λk)

Λk+1 := Λk − (Xk+1 − Y k+1)/μ.

(17.32)

In Goldfarb et al. (2009) the following symmetric version of the ADAL

method is considered:⎧⎪⎪⎨⎪⎪⎩
Xk+1 := argminX L(X,Y k; Λk

Y)

Λk+1
X := Λk

Y − (Xk+1 − Y k)/μ

Y k+1 := argminY L(Xk+1, Y ; Λk+1
X)

Λk+1
Y := Λk+1

X − (Xk+1 − Y k+1)/μ.

(17.33)

Let us assume for the moment that f(X) is in the class C1,1 with Lipschitz

constant L(f),2 while g(X) is simply convex. In this case, from the first-order

optimality conditions for the two subproblems in (17.33), we have

Λk+1
X = ∇f(Xk+1) and− Λk+1

Y ∈ ∂g(Y k+1), (17.34)

where ∂g(Y k+1) is the subdifferential of g(Y) at Y = Y k+1. Substituting

these relations into (17.33), we obtain the following algorithm for solving

(17.28), which we refer to as an alternating linearization minimization

algorithm.

Algorithm 17.3 Alternating linearization method (ALM)

1: Input: X0 = Y 0

2: for k = 0, 1, · · · do
3: 1. Solve Xk+1 := argminX∈S

p
++

Qg(X,Y k) ≡ f(X) + g(Y k) − 〈
Λk, X − Y k

〉
+

1
2μ

‖X − Y k‖22;
4: 2. Solve Y k+1 := argminY Qf (X

k+1, Y) ≡ f(Xk+1) +
〈∇f(Xk+1), Y −Xk+1

〉
+

1
2μ

‖Y −Xk+1‖22 + g(Y);

5: 3. Λk+1 = ∇f(Xk+1)− (Xk+1 − Y k+1)/μ.
6: end for

Algorithm 17.3 can be viewed in the following way: at each iteration we

construct a quadratic approximation of the functions g(X) at the current

2. This does not hold for our f(X) if we consider X ∈ Sp
++, but it holds in a smaller

feasible set.

472 Optimization Methods for Sparse Inverse Covariance Selection

iterates Y k and minimize the sum of this approximation and f(X). The

approximation is based on linearizing g(X) (hence the name “alternating

linearization method”) and adding a “prox”-term 1
2μ‖X − Y k‖22. Then the

linearization step is applied to f(X) at the next iterate Xk+1. The purpose

of these linearizations is to replace one of the functions with a simple

linear function with a prox-term to make optimization easy. It is important,

however, that the resulting functions Qg(X,Y k) and Qf (X
k+1, Y) provide a

good approximation of F (X). For theoretical purposes it is sufficient that at

the obtained minimum Qg(X,Y k) ≤ F (X) (Qf (X
k+1, Y) ≤ F (Y)), which

means that the reduction in the value of F (X) achieved by minimizing

Qg(X,Y k) in step 1 and Qf (X
k+1, Y) in step 2 is not smaller than the

reduction achieved in the value of Qg(X,Y k) (Qf (X
K+1, Y)) itself. For

the case of Qf (X
k+1, Y), when μ is small enough (μ ≤ 1/L(f)), the

quadratic function f(Xk+1)+
〈∇f(Xk+1), Y −Xk+1

〉
+ 1

2μ‖Y −Xk+1‖22 is an
upper approximation to f(X), which means that condition Qf (X

k+1, Y) ≤
F (Y) is guaranteed to hold. For the case of Qg(X,Y k), however, condition

Qg(X,Y k) ≤ F (X) may fail for any μ > 0, since g(X) is not smooth.

In this case, if the condition fails, one can simply skip the step in X by

assigning Xk+1 = Y k. This leads to the following ALM with skipping steps

(algorithm 17.4).

Algorithm 17.4 Alternating linearization method with skipping step

1: Input: X0 = Y 0

2: for k = 0, 1, · · · do
3: 1. Solve Xk+1 := argminX Qg(X,Y k) ≡ f(X) + g(Y k)− 〈

Λk, X − Y k
〉
+ 1

2μ
‖X −

Y k‖22;
4: 2. If F (Xk+1) > Qg(X

k+1, Y k), then Xk+1 := Y k.
5: 3. Solve Y k+1 := argminY Qf (X

k+1, Y) ≡ f(Xk+1) +
〈∇f(Xk+1), Y −Xk+1

〉
+

1
2μ

‖Y −Xk+1‖22 + g(Y);

6: 4. Λk+1 = ∇f(Xk+1)− (Xk+1 − Y k+1)/μ.
7: end for

Algorithm 17.4 is identical to 17.3, and hence to the symmetric ADAL

algorithm (17.33) as long as F (Xk+1) ≤ Qg(X
k+1, Y k) at each iteration. If

this condition fails, then the algorithm simply sets Xk+1 ← Y k. Algorithm

17.4 has the following convergence property and iteration complexity bound

(Goldfarb et al., 2009).

Theorem 17.1. Assume ∇f is Lipschitz continuous with Lipschitz constant

17.3 Alternating Linearization Method 473

L(f). For μ ≤ 1/L(f), algorithm 17.4 satisfies

F (yk)− F (x∗) ≤ ‖x0 − x∗‖2
2μ(k + kn)

, ∀k, (17.35)

where x∗ is an optimal solution of (17.28) and kn is the number of iterations

until the kth for which F (xk+1) ≤ Qg(x
k+1, yk). Thus, algorithm 17.4

produces a sequence which converges to the optimal solution in function

value, and the number of iterations needed is O(1/ε) for an ε-optimal

solution.

The iteration complexity bound in theorem 17.1 can be improved. Nes-

terov (1983, 2004) proved that one can obtain an optimal iteration complex-

ity bound of O(1/
√
ε), using only the first-order information. His accelera-

tion technique is based on using a linear combination of previous iterates to

obtain a point where the approximation is built. This technique has been ex-

ploited and extended by Tseng (2008), Beck and Teboulle (2009), and many

others. Specifically for SICS a method with complexity bound O(1/
√
ε) was

introduced by Lu (2009). A similar technique can be adopted to derive a

fast version of algorithm 17.4 that has an improved complexity bound of

O(1/
√
ε), while keeping the computational effort in each iteration almost

unchanged. However, we do not present this method here, since when it is

applied to the SICS problem, it does not appear to work as well as algo-

rithm 17.4.

Note that in our case f(X) = − log det(X) + 〈S,X〉 does not have a

Lipschitz continuous gradient in general. Moreover, f(X) is defined only for

positive definite matrices while g(X) is defined everywhere. These properties

of the objective function make the SICS problem especially challenging for

optimization methods. Nevertheless, we can still apply (17.33) to solve the

problem directly. Moreover, we can apply algorithm 17.4 and obtain the

complexity bound in theorem 17.1 as follows. As proved in Lu (2009), the

optimal solution X∗ of (17.28) satisfies X � αI, where α = 1
‖S‖+pρ (see

proposition 3.1 in Lu (2009)). Therefore, the SICS problem (17.28) can be

formulated as

min
X,Y

{f(X) + g(Y) : X − Y = 0, X ∈ C, Y ∈ C}, (17.36)

where C := {X ∈ Sn : X � α
2 I}. We know that the constraint X � α

2 I

is not tight at the solution. Hence, if we start the algorithm with X � αI

and restrict the stepsize μ to be sufficiently small, then the iterates of the

method will remain in the domain where the gradient of f(X) is Lipschitz

continuous, and we can apply algorithm 17.3 and theorem 17.1.

Note, however, that the bound on the Lipschitz constant of the gradient

474 Optimization Methods for Sparse Inverse Covariance Selection

of f(X) is 1/α2, and hence can be very large. It is not practical to restrict

μ in the algorithm to be smaller than α2, since μ determines the stepsize at

each iteration. Below is a practical version of our algorithm applied to the

SICS problem.

Algorithm 17.5 Alternating linearization method for SICS

1: Input: X0 = Y 0, μ0.
2: for k = 0, 1, · · · do
3: 0. Pick μk+1 ≤ μk.
4: 1. Solve Xk+1 := argminX∈C Qg(X,Y k) ≡ f(X) + g(Y k) − 〈Λk, X − Y k〉 +

1
2μk+1

‖X − Y k‖2F ;
5: 2. If F (Xk+1) > Qg(X

k+1, Y k), then Xk+1 := Y k.
6: 3. Solve Y k+1 := argminY f(Xk+1)+〈∇f(Xk+1), Y −Xk+1〉+ 1

2μk+1
‖Y −Xk+1‖2F+

g(Y);
7: 4. Λk+1 = ∇f(Xk+1)− (Xk+1 − Y k+1)/μk+1.
8: end for

17.3.1 Solving Subproblems of ALM for SICS

We now show how to solve the two optimization problems in algorithm 17.5.

The first-order optimality conditions for step 1 in algorithm 17.5, ignoring

the constraint X ∈ C, are

∇f(X)− Λk + (X − Y k)/μk+1 = 0. (17.37)

Consider V Diag(d)V 	, the spectral decomposition of Y k + μk+1(Λ
k − S),

and let

γi =

(
di +

√
d2i + 4μk+1

)
/2, i = 1, . . . , p. (17.38)

Since ∇f(X) = −X−1 + S, it is easy to verify that Xk+1 := V Diag(γ)V 	

satisfies (17.37). When the constraintX ∈ C is imposed, the optimal solution

changes to Xk+1 := V Diag(γ)V 	 with

γi = max

{
α/2,

(
di +

√
d2i + 4μk+1

)
/2

}
, i = 1, . . . , p.

We observe that solving (17.37) requires approximately the same effort

(O(p3)) as is required to compute ∇f(Xk+1) itself. Moreover, from the

solution to (17.37), ∇f(Xk+1) is obtained with only a negligible amount

of additional effort, since (Xk+1)−1 := V Diag(γ)−1V 	.
The first-order optimality conditions for step 2 in algorithm 17.5 are

0 ∈ ∇f(Xk+1) + (Y −Xk+1)/μk+1 + ∂g(Y). (17.39)

17.4 Remarks on Numerical Performance 475

Since g(Y) = ρ‖Y ‖1, the solution to (17.39) is given by

Y k+1 = shrink(Xk+1 − μk+1(S − (Xk+1)−1), μk+1ρ),

where the “shrinkage operator” shrink(Z, ρ) is defined as shrink(Z, ρ)ij =

shrink(Zij , ρ). It is trivial to see that to apply algorithm 17.5 to the ex-

tended formulation (17.7), one only needs to modify the shrinkage step

shrink(Z,M), which is then defined as [shrink(Z,M)]ij = shrink(Zij ,Mij).

Note that the O(p3) complexity of step 1 which requires a spectral

decomposition, dominates the O(p2) complexity of step 2 which requires

a simple shrinkage. There is no closed-form solution for the subproblem

corresponding to Y when the constraint Y ∈ C is imposed. One can

attempt to impose this by a line search on the value of μk. Imposing such a

constraint in practice limits the stepsize too much, and the performance of

the algorithm deteriorates substantially. Thus, resulting iterates Y k may not

be positive definite, while the iterates Xk remain so. Eventually, due to the

convergence of Y k and Xk, the Y k iterates become positive definite and the

constraint Y ∈ C is satisfied. Relaxing the positive definiteness constraint

during the course of the algorithm appears to be desirable for the overall

performance.

17.4 Remarks on Numerical Performance

A number of numerical comparisons of optimization methods for SICS have

been presented in the literature. See, for instance, Duchi et al. (2008);

Goldfarb et al. (2009); Scheinberg et al. (2010); Friedman et al. (2007); Lu

(2009); Scheinberg and Rish (2009) for the comparison of methods discussed

in this chapter. The comparison we discuss here is based solely on the time

and iteration efficiency of the algorithms to achieve comparable solutions in

terms of their objective function values. The sparsity patterns recovered by

these methods (aside from COVSEL) appears to be comparable.

In summary, the first-order methods in Duchi et al. (2008); Goldfarb et al.

(2009); Scheinberg et al. (2010); Lu (2009) outperform glasso in Friedman

et al. (2007), which substantially outperforms 3 COVSEL in Banerjee et al.

(2008) and somewhat outperforms SINCO in Scheinberg and Rish (2009).

Most of the tests were performed on instances up to the size p = 2000.

On very sparse structured large matrices SINCO outperforms glasso. In

3. The Fortran implementation of glasso has some faults and occasionally breaks down,
especially in large-scale cases. We believe it is an issue with the implementation rather
than the algorithm so we do not elaborate on this further.

476 Optimization Methods for Sparse Inverse Covariance Selection

all experiments in Scheinberg et al. (2010) ALM outperforms the projected

gradient method in Duchi et al. (2008), and the smooth accelerated gradient

method in Lu (2009), in terms of CPU time and accuracy of the solution. The

first-order methods do not exploit the solution sparsity, in that regardless of

the sparsity, the per-iteration complexity remains O(p3). The per-iteration

complexity of glasso and SINCO is empirically smaller, but the number of

iterations required to achieve comparable accuracy is larger than that of the

first-order methods.

17.5 References

O. Banerjee, L. El Ghaoui, and A. d’Aspremont. Model selection through sparse
maximum likelihood estimation for multivariate gaussian for binary data. Journal
of Machine Learning Research, 9:485–516, 2008.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. SIAM Journal of Imaging Sciences, 2(1):183–202, 2009.

A. d’Aspremont, O. Banerjee, and L. El Ghaoui. First-order methods for sparse
covariance selection. SIAM Journal on Matrix Analysis and its Applications, 30
(1):56–66, 2008.

J. Duchi, S. Gould, and D. Koller. Projected subgradient methods for learning
sparse Gaussians. Proceedings of the 24th Conference on Uncertainty in Artificial
Intelligence, 2008.

M. Fortin and R. Glowinski. Augmented Lagrangian methods: applications to the
numerical solution of boundary-value problems. North-Holland, 1983.

J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation
with the graphical lasso. Biostatistics, 9(3):432–441, 2007.

R. Glowinski and P. Le Tallec. Augmented Lagrangian and Operator-Splitting
Methods in Nonlinear Mechanics. SIAM, Philadelphia, 1989.

D. Goldfarb, S. Ma, and K. Scheinberg. Fast alternating linearization methods for
minimizing the sum of two convex functions. Technical report, Department of
IEOR, Columbia University, 2009.

D. Heckerman. A tutorial on learning Bayesian networks. Technical report,
Microsoft Research, 1995.

V. Krishnamurthy and A. d’Aspremont. A pathwise algorithm for covariance
selection. preprint, 2009. arXiv:0908.0143.

S. Lauritzen. Graphical Models. Oxford University Press, 1996.

L. Li and K.-C. Toh. An inexact interior point method for l1-regularized sparse
covariance selection. Mathematical Programming Computation, 2(3–4):291–315,
2010.

Z. Lu. Smooth optimization approach for sparse covariance selection. SIAM Journal
on Optimization, 19(4):1807–1827, 2009.

Z. Lu. Adaptive first-order methods for general sparse inverse covariance selection.
SIAM Journal on Matrix Analysis and Applications, 31(4):2000–2016, 2010.

N. Meinshausen and P. Buhlmann. High dimensional graphs and variable selection

17.5 References 477

with the Lasso. Annals of Statistics, 34(3):1436–1462, 2006.

A. Nemirovski. Prox-method with rate of convergence O(1/t) for variational
inequalities with Lipschitz continuous monotone operators and smooth convex-
concave saddle point problems. SIAM Journal on Optimization, 15(1):229–251,
2005.

Y. E. Nesterov. A method for unconstrained convex minimization problem with
the rate of convergence O(1/k2). Doklady Akademia Nauk SSSR, 269:543–547,
1983.

Y. E. Nesterov. Introductory lectures on convex optimization: A basic course. 87,
2004.

Y. E. Nesterov. Smooth minimization of non-smooth functions. Mathematical
Programming, series A, 103:127–152, 2005.

K. Scheinberg and I. Rish. SINCO - a greedy coordinate ascent method for
sparse inverse covariance selection problem. 2009. Preprint available at
http://www.optimization-online.org/DB HTML/2009/07/2359.html.

K. Scheinberg, S. Ma, and D. Goldfarb. Sparse inverse covariance selection via
alternating linearization methods. In Advances in Neural Information Processing
Systems 23, 2010.

L. Sun, R. Patel, J. Liu, K. Chen, T. Wu, J. Li, E. Reiman, and J. Ye. Mining brain
region connectivity for alzheimer’s disease study via sparse inverse covariance
estimation. Proceedings of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2009.

R. Tibshirani. Regression shrinkage and selection via the lasso. J. Royal. Statist.
Soc B., 58(1):267–288, 1996.

P. Tseng. On accelerated proximal gradient methods for convex-concave optimiza-
tion. submitted to SIAM Journal on Optimization, 2008.

M. Wainwright, P. Ravikumar, and J. Lafferty. High-dimensional graphical model
selection using �1-regularized logistic regression. In Advances in Neural Informa-
tion Processing Systems 20, pages 1465–1472. 2007.

C. Wang, D. Sun, and K.-C. Toh. Solving log-determinant optimization problems
by a Newton-CG primal proximal point algorithm. Preprint, 2009.

Z. Wen, D. Goldfarb, S. Ma, and K. Scheinberg. Row by row methods for
semidefinite programming. Technical report, Department of IEOR, Columbia
University, 2009.

H. Wolkowicz, R. Saigal, and L. Vandenberghe, editors. Handbook of Semidefinite
Programming. Kluwer Academic, 2000.

M. Yuan and Y. Lin. Model selection and estimation in the gaussian graphical
model. Biometrika, 94(1):19–35, 2007.

X. Yuan. Alternating direction methods for sparse covariance se-
lection. 2009. Preprint available at http://www.optimization-
online.org/DB FILE/2009/09/2390.pdf.

