
Chapter 10

The Proximal Gradient
Method

Underlying Space: In this chapter, with the exception of Section 10.9, E is
a Euclidean space, meaning a finite dimensional space endowed with an inner
product 〈·, ·〉 and the Euclidean norm ‖ · ‖ =

√
〈·, ·〉.

10.1 The Composite Model
In this chapter we will be mostly concerned with the composite model

min
x∈E

{F (x) ≡ f(x) + g(x)}, (10.1)

where we assume the following.

Assumption 10.1.

(A) g : E → (−∞,∞] is proper closed and convex.

(B) f : E → (−∞,∞] is proper and closed, dom(f) is convex, dom(g) ⊆ int(dom(f)),
and f is Lf -smooth over int(dom(f)).

(C) The optimal set of problem (10.1) is nonempty and denoted by X∗. The opti-
mal value of the problem is denoted by Fopt.

Three special cases of the general model (10.1) are gathered in the following exam-
ple.

Example 10.2. stam

• Smooth unconstrained minimization. If g ≡ 0 and dom(f) = E, then
(10.1) reduces to the unconstrained smooth minimization problem

min
x∈E

f(x),

where f : E → R is an Lf -smooth function.
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270 Chapter 10. The Proximal Gradient Method

• Convex constrained smooth minimization. If g = δC , where C is a
nonempty closed and convex set, then (10.1) amounts to the problem of min-
imizing a differentiable function over a nonempty closed and convex set:

min
x∈C

f(x),

where here f is Lf -smooth over int(dom(f)) and C ⊆ int(dom(f)).

• l1-regularized minimization. Taking g(x) = λ‖x‖1 for some λ > 0, (10.1)
amounts to the l1-regularized problem

min
x∈E

{f(x) + λ‖x‖1}

with f being an Lf -smooth function over the entire space E.

10.2 The Proximal Gradient Method

To understand the idea behind the method for solving (10.1) we are about to study,
we begin by revisiting the projected gradient method for solving (10.1) in the case
where g = δC with C being a nonempty closed and convex set. In this case, the
problem takes the form

min{f(x) : x ∈ C}. (10.2)

The general update step of the projected gradient method for solving (10.2) takes
the form

xk+1 = PC(x
k − tk∇f(xk)),

where tk is the stepsize at iteration k. It is easy to verify that the update step
can be also written as (see also Section 9.1 for a similar discussion on the projected
subgradient method)

xk+1 = argminx∈C

{
f(xk) + 〈∇f(xk),x− xk〉+ 1

2tk
‖x− xk‖2

}
.

That is, the next iterate is the minimizer over C of the sum of the linearization of
the smooth part around the current iterate plus a quadratic prox term.

Back to the more general model (10.1), it is natural to generalize the above
idea and to define the next iterate as the minimizer of the sum of the linearization
of f around xk, the nonsmooth function g, and a quadratic prox term:

xk+1 = argminx∈E

{
f(xk) + 〈∇f(xk),x− xk〉+ g(x) +

1

2tk
‖x− xk‖2

}
. (10.3)

After some simple algebraic manipulation and cancellation of constant terms, we
obtain that (10.3) can be rewritten as

xk+1 = argminx∈E

{
tkg(x) +

1

2

∥∥x− (xk − tk∇f(xk))
∥∥2} ,

which by the definition of the proximal operator is the same as

xk+1 = proxtkg(x
k − tk∇f(xk)).
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10.2. The Proximal Gradient Method 271

The above method is called the proximal gradient method, as it consists of a gradient
step followed by a proximal mapping. From now on, we will take the stepsizes as
tk = 1

Lk
, leading to the following description of the method.

The Proximal Gradient Method

Initialization: pick x0 ∈ int(dom(f)).
General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) pick Lk > 0;

(b) set xk+1 = prox 1
Lk
g

(
xk − 1

Lk
∇f(xk)

)
.

The general update step of the proximal gradient method can be compactly
written as

xk+1 = T f,gLk
(xk),

where T f,gL : int(dom(f)) → E (L > 0) is the so-called prox-grad operator defined
by

T f,gL (x) ≡ prox 1
L g

(
x− 1

L
∇f(x)

)
.

When the identities of f and g are clear from the context, we will often omit the
superscripts f, g and write TL(·) instead of T f,gL (·).

Later on, we will consider two stepsize strategies, constant and backtracking,
where the meaning of “backtracking” slightly changes under the different settings
that will be considered, and hence several backtracking procedures will be defined.

Example 10.3. The table below presents the explicit update step of the proximal
gradient method when applied to the three particular models discussed in Example
10.2.54 The exact assumptions on the models are described in Example 10.2.

Model Update step Name of method

minx∈E f(x) xk+1 = xk − tk∇f(xk) gradient

minx∈C f(x) xk+1 = PC(x
k − tk∇f(xk)) projected gradient

minx∈E{f(x) + λ‖x‖1} xk+1 = Tλtk(xk − tk∇f(xk)) ISTA

The third method is known as the iterative shrinkage-thresholding algorithm
(ISTA) in the literature, since at each iteration a soft-thresholding operation (also
known as “shrinkage”) is performed.

54Here we use the facts that proxtkg0 = I,proxtkδC = PC and proxtkλ‖·‖1 = Tλtk , where

g0(x) ≡ 0.
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272 Chapter 10. The Proximal Gradient Method

10.3 Analysis of the Proximal Gradient Method—
The Nonconvex Case

55

10.3.1 Sufficient Decrease

To establish the convergence of the proximal gradient method, we will prove a
sufficient decrease lemma for composite functions.

Lemma 10.4 (sufficient decrease lemma). Suppose that f and g satisfy prop-

erties (A) and (B) of Assumption 10.1. Let F = f + g and TL ≡ T f,gL . Then for

any x ∈ int(dom(f)) and L ∈
(Lf

2 ,∞
)
the following inequality holds:

F (x) − F (TL(x)) ≥
L− Lf

2

L2

∥∥∥Gf,gL (x)
∥∥∥2 , (10.4)

where Gf,gL : int(dom(f)) → E is the operator defined by Gf,gL (x) = L(x − TL(x))
for all x ∈ int(dom(f)).

Proof. For the sake of simplicity, we use the shorthand notation x+ = TL(x). By
the descent lemma (Lemma 5.7), we have that

f(x+) ≤ f(x) +
〈
∇f(x),x+ − x

〉
+
Lf
2

‖x− x+‖2. (10.5)

By the second prox theorem (Theorem 6.39), since x+ = prox 1
Lg

(
x− 1

L∇f(x)
)
, we

have 〈
x− 1

L
∇f(x)− x+,x− x+

〉
≤ 1

L
g(x)− 1

L
g(x+),

from which it follows that〈
∇f(x),x+ − x

〉
≤ −L

∥∥x+ − x
∥∥2 + g(x)− g(x+),

which, combined with (10.5), yields

f(x+) + g(x+) ≤ f(x) + g(x) +

(
−L+

Lf
2

)∥∥x+ − x
∥∥2 .

Hence, taking into account the definitions of x+, Gf,gL (x) and the identities F (x) =
f(x) + g(x), F (x+) = f(x+) + g(x+), the desired result follows.

10.3.2 The Gradient Mapping

The operator Gf,gL that appears in the right-hand side of (10.4) is an important
mapping that can be seen as a generalization of the notion of the gradient.

Definition 10.5 (gradient mapping). Suppose that f and g satisfy properties
(A) and (B) of Assumption 10.1. Then the gradient mapping is the operator

55The analysis of the proximal gradient method in Sections 10.3 and 10.4 mostly follows the
presentation of Beck and Teboulle in [18] and [19].
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10.3. Analysis of the Proximal Gradient Method—The Nonconvex Case 273

Gf,gL : int(dom(f)) → E defined by

Gf,gL (x) ≡ L
(
x− T f,gL (x)

)
for any x ∈ int(dom(f)).

When the identities of f and g will be clear from the context, we will use the
notation GL instead of Gf,gL . With the terminology of the gradient mapping, the
update step of the proximal gradient method can be rewritten as

xk+1 = xk − 1

Lk
GLk

(xk).

In the special case where L = Lf , the sufficient decrease inequality (10.4) takes a
simpler form.

Corollary 10.6. Under the setting of Lemma 10.4, the following inequality holds
for any x ∈ int(dom(f)):

F (x)− F (TLf
(x)) ≥ 1

2Lf

∥∥GLf
(x)
∥∥2 .

The next result shows that the gradient mapping is a generalization of the
“usual” gradient operator x �→ ∇f(x) in the sense that they coincide when g ≡ 0
and that, for a general g, the points in which the gradient mapping vanishes are
the stationary points of the problem of minimizing f + g. Recall (see Definition
3.73) that a point x∗ ∈ dom(g) is a stationary point of problem (10.1) if and only if
−∇f(x∗) ∈ ∂g(x∗) and that this condition is a necessary optimality condition for
local optimal points (see Theorem 3.72).

Theorem 10.7. Let f and g satisfy properties (A) and (B) of Assumption 10.1
and let L > 0. Then

(a) Gf,g0L (x) = ∇f(x) for any x ∈ int(dom(f)), where g0(x) ≡ 0;

(b) for x∗ ∈ int(dom(f)), it holds that Gf,gL (x∗) = 0 if and only if x∗ is a sta-
tionary point of problem (10.1).

Proof. (a) Since prox 1
L g0

(y) = y for all y ∈ E, it follows that

Gf,g0L (x) = L(x− T f,g0L (x)) = L

(
x− prox 1

L g0

(
x− 1

L
∇f(x)

))
= L

(
x−

(
x− 1

L
∇f(x)

))
= ∇f(x).

(b) Gf,gL (x∗) = 0 if and only if x∗ = prox 1
Lg

(
x∗ − 1

L∇f(x∗)
)
. By the second

prox theorem (Theorem 6.39), the latter relation holds if and only if

x∗ − 1

L
∇f(x∗)− x∗ ∈ 1

L
∂g(x∗),
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274 Chapter 10. The Proximal Gradient Method

that is, if and only if
−∇f(x∗) ∈ ∂g(x∗),

which is exactly the condition for stationarity.

If in addition f is convex, then stationarity is a necessary and sufficient opti-
mality condition (Theorem 3.72(b)), which leads to the following corollary.

Corollary 10.8 (necessary and sufficient optimality condition under con-
vexity). Let f and g satisfy properties (A) and (B) of Assumption 10.1, and let

L > 0. Suppose that in addition f is convex. Then for x∗ ∈ dom(g), Gf,gL (x∗) = 0
if and only if x∗ is an optimal solution of problem (10.1).

We can think of the quantity ‖GL(x)‖ as an “optimality measure” in the sense
that it is always nonnegative, and equal to zero if and only if x is a stationary point.
The next result establishes important monotonicity properties of ‖GL(x)‖ w.r.t. the
parameter L.

Theorem 10.9 (monotonicity of the gradient mapping). Suppose that f and

g satisfy properties (A) and (B) of Assumption 10.1 and let GL ≡ Gf,gL . Suppose
that L1 ≥ L2 > 0. Then

‖GL1(x)‖ ≥ ‖GL2(x)‖ (10.6)

and
‖GL1(x)‖

L1
≤ ‖GL2(x)‖

L2
(10.7)

for any x ∈ int(dom(f)).

Proof. Recall that by the second prox theorem (Theorem 6.39), for any v,w ∈ E

and L > 0, the following inequality holds:

〈v − prox 1
L g

(v), prox 1
L g

(v) −w〉 ≥ 1

L
g
(
prox 1

L g
(v)
)
− 1

L
g(w).

Plugging L = L1,v = x − 1
L1

∇f(x), and w = prox 1
L2
g

(
x − 1

L2
∇f(x)

)
= TL2(x)

into the last inequality, it follows that〈
x− 1

L1
∇f(x)− TL1(x), TL1(x) − TL2(x)

〉
≥ 1

L1
g(TL1(x))−

1

L1
g(TL2(x))

or〈
1

L1
GL1(x) −

1

L1
∇f(x), 1

L2
GL2(x) −

1

L1
GL1(x)

〉
≥ 1

L1
g(TL1(x))−

1

L1
g(TL2(x)).

Exchanging the roles of L1 and L2 yields the following inequality:〈
1

L2
GL2(x) −

1

L2
∇f(x), 1

L1
GL1(x) −

1

L2
GL2(x)

〉
≥ 1

L2
g(TL2(x))−

1

L2
g(TL1(x)).

Multiplying the first inequality by L1 and the second by L2 and adding them, we
obtain 〈

GL1(x) −GL2(x),
1

L2
GL2(x) −

1

L1
GL1(x)

〉
≥ 0,
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which after some expansion of terms can be seen to be the same as

1

L1
‖GL1(x)‖2 +

1

L2
‖GL2(x)‖2 ≤

(
1

L1
+

1

L2

)
〈GL1(x), GL2(x)〉.

Using the Cauchy–Schwarz inequality, we obtain that

1

L1
‖GL1(x)‖2 +

1

L2
‖GL2(x)‖2 ≤

(
1

L1
+

1

L2

)
‖GL1(x)‖ · ‖GL2(x)‖. (10.8)

Note that if GL2(x) = 0, then by the last inequality, GL1(x) = 0, implying that
in this case the inequalities (10.6) and (10.7) hold trivially. Assume then that

GL2(x) 
= 0 and define t =
‖GL1(x)‖
‖GL2(x)‖

. Then, by (10.8),

1

L1
t2 −

(
1

L1
+

1

L2

)
t+

1

L2
≤ 0.

Since the roots of the quadratic function on the left-hand side of the above inequality
are t = 1, L1

L2
, we obtain that

1 ≤ t ≤ L1

L2
,

showing that

‖GL2(x)‖ ≤ ‖GL1(x)‖ ≤ L1

L2
‖GL2(x)‖.

A straightforward result of the nonexpansivity of the prox operator and the
Lf -smoothness of f over int(dom(f)) is that GL(·) is Lipschitz continuous with
constant 2L+ Lf . Indeed, for any x,y ∈ int(dom(f)),

‖GL(x) −GL(y)‖ = L

∥∥∥∥x− prox 1
L g

(
x− 1

L
∇f(x)

)
− y + prox 1

L g

(
y − 1

L
∇f(y)

)∥∥∥∥
≤ L‖x− y‖+ L

∥∥∥∥prox 1
L g

(
x− 1

L
∇f(x)

)
− prox 1

Lg

(
y − 1

L
∇f(y)

)∥∥∥∥
≤ L‖x− y‖+ L

∥∥∥∥(x− 1

L
∇f(x)

)
−
(
y − 1

L
∇f(y)

)∥∥∥∥
≤ 2L‖x− y‖ + ‖∇f(x)− ∇f(y)‖
≤ (2L+ Lf )‖x− y‖.

In particular, for L = Lf , we obtain the inequality

‖GLf
(x)−GLf

(y)‖ ≤ 3Lf‖x− y‖.

The above discussion is summarized in the following lemma.

Lemma 10.10 (Lipschitz continuity of the gradient mapping). Let f and g

satisfy properties (A) and (B) of Assumption 10.1. Let GL = Gf,gL . Then

(a) ‖GL(x)−GL(y)‖ ≤ (2L+ Lf)‖x− y‖ for any x,y ∈ int(dom(f));

(b) ‖GLf
(x) −GLf

(y)‖ ≤ 3Lf‖x− y‖ for any x,y ∈ int(dom(f)).
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276 Chapter 10. The Proximal Gradient Method

Lemma 10.11 below shows that when f is assumed to be convex and Lf -
smooth over the entire space, then the operator 3

4Lf
GLf

is firmly nonexpansive. A

direct consequence is that GLf
is Lipschitz continuous with constant

4Lf

3 .

Lemma 10.11 (firm nonexpansivity of 3
4Lf

GLf ). Let f be a convex and Lf -

smooth function (Lf > 0), and let g : E → (−∞,∞] be a proper closed and convex
function. Then

(a) the gradient mapping GLf
≡ Gf,gLf

satisfies the relation

〈
GLf

(x)−GLf
(y),x − y

〉
≥ 3

4Lf

∥∥GLf
(x)−GLf

(y)
∥∥2 (10.9)

for any x,y ∈ E;

(b) ‖GLf
(x) −GLf

(y)‖ ≤ 4Lf

3 ‖x− y‖ for any x,y ∈ E.

Proof. Part (b) is a direct consequence of (a) and the Cauchy–Schwarz inequality.
We will therefore prove (a). To simplify the presentation, we will use the notation
L = Lf . By the firm nonexpansivity of the prox operator (Theorem 6.42(a)), it
follows that for any x,y ∈ E,〈

TL (x)− TL (y) ,

(
x− 1

L
∇f (x)

)
−
(
y − 1

L
∇f (y)

)〉
≥ ‖TL (x) − TL (y)‖2 ,

where TL ≡ T f,gL is the prox-grad mapping. Since TL = I − 1
LGL, we obtain that〈(

x− 1

L
GL (x)

)
−
(
y − 1

L
GL (y)

)
,

(
x− 1

L
∇f (x)

)
−
(
y − 1

L
∇f (y)

)〉
≥
∥∥∥∥(x− 1

L
GL (x)

)
−
(
y − 1

L
GL (y)

)∥∥∥∥2 ,
which is the same as〈(

x− 1

L
GL(x)

)
−
(
y − 1

L
GL(y)

)
, (GL(x)− ∇f(x)) − (GL(y) − ∇f(y))

〉
≥ 0.

Therefore,

〈GL(x) −GL(y),x − y〉 ≥ 1

L
‖GL(x)−GL(y)‖2 + 〈∇f(x)− ∇f(y),x − y〉

− 1

L
〈GL(x)−GL(y),∇f(x) − ∇f(y)〉 .

Since f is L-smooth, it follows from Theorem 5.8 (equivalence between (i) and (iv))
that

〈∇f(x)− ∇f(y),x − y〉 ≥ 1

L
‖∇f(x)− ∇f(y)‖2.

Consequently,

L 〈GL(x)−GL(y),x − y〉 ≥ ‖GL(x) −GL(y)‖2 + ‖∇f(x)− ∇f(y)‖2

− 〈GL(x) −GL(y),∇f(x) − ∇f(y)〉 .
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From the Cauchy–Schwarz inequality we get

L 〈GL(x)−GL(y),x − y〉 ≥ ‖GL(x) −GL(y)‖2 + ‖∇f(x)− ∇f(y)‖2

− ‖GL(x) −GL(y) ‖·‖∇f(x)− ∇f(y)‖ . (10.10)

By denoting α = ‖GL (x)−GL (y)‖ and β = ‖∇f (x)− ∇f (y)‖, the right-hand
side of (10.10) reads as α2 + β2 − αβ and satisfies

α2 + β2 − αβ =
3

4
α2 +

(α
2

− β
)2

≥ 3

4
α2,

which, combined with (10.10), yields the inequality

L 〈GL(x)−GL(y),x − y〉 ≥ 3

4
‖GL(x)−GL(y)‖2 .

Thus, (10.9) holds.

The next result shows a different kind of a monotonicity property of the gra-
dient mapping norm under the setting of Lemma 10.11—the norm of the gradient
mapping does not increase if a prox-grad step is employed on its argument.

Lemma 10.12 (monotonicity of the norm of the gradient mapping w.r.t.
the prox-grad operator).56 Let f be a convex and Lf -smooth function (Lf > 0),
and let g : E → (−∞,∞] be a proper closed and convex function. Then for any
x ∈ E,

‖GLf
(TLf

(x))‖ ≤ ‖GLf
(x)‖,

where GLf
≡ Gf,gLf

and TLf
≡ T f,gLf

.

Proof. Let x ∈ E. We will use the shorthand notation x+ = TLf
(x). By Theorem

5.8 (equivalence between (i) and (iv)), it follows that

‖∇f(x+)− ∇f(x)‖2 ≤ Lf〈∇f(x+)− ∇f(x),x+ − x〉. (10.11)

Denoting a = ∇f(x+)−∇f(x) and b = x+−x, inequality (10.11) can be rewritten
as ‖a‖2 ≤ Lf 〈a,b〉, which is the same as∥∥∥∥a− Lf

2
b

∥∥∥∥2 ≤
L2
f

4
‖b‖2

and as ∥∥∥∥ 1

Lf
a− 1

2
b

∥∥∥∥ ≤ 1

2
‖b‖.

Using the triangle inequality,∥∥∥∥ 1

Lf
a− b

∥∥∥∥ ≤
∥∥∥∥ 1

Lf
a− b+

1

2
b

∥∥∥∥+ 1

2
‖b‖ ≤ ‖b‖.

56Lemma 10.12 is a minor variation of Lemma 2.4 from Necoara and Patrascu [88].

Copyright © 2017 Society for Industrial and Applied Mathematics



278 Chapter 10. The Proximal Gradient Method

Plugging the expressions for a and b into the above inequality, we obtain that∥∥∥∥x− 1

Lf
∇f(x) − x+ +

1

Lf
∇f(x+)

∥∥∥∥ ≤ ‖x+ − x‖.

Combining the above inequality with the nonexpansivity of the prox operator (The-
orem 6.42(b)), we finally obtain

‖GLf
(TLf

(x))‖ = ‖GLf
(x+)‖ = Lf‖x+ − TLf

(x+)‖ = Lf‖TLf
(x)− TLf

(x+)‖

= Lf

∥∥∥∥prox 1
Lf
g

(
x− 1

Lf
∇f(x)

)
− prox 1

Lf
g

(
x+ − 1

Lf
∇f(x+)

)∥∥∥∥
≤ Lf

∥∥∥∥x− 1

Lf
∇f(x) − x+ +

1

Lf
∇f(x+)

∥∥∥∥
≤ Lf‖x+ − x‖ = Lf‖TLf

(x)− x‖ = ‖GLf
(x)‖,

which is the desired result.

10.3.3 Convergence of the Proximal Gradient Method—
The Nonconvex Case

We will now analyze the convergence of the proximal gradient method under the
validity of Assumption 10.1. Note that we do not assume at this stage that f
is convex. The two stepsize strategies that will be considered are constant and
backtracking.

• Constant. Lk = L̄ ∈
(
Lf

2 ,∞
)
for all k.

• Backtracking procedure B1. The procedure requires three parame-
ters (s, γ, η), where s > 0, γ ∈ (0, 1), and η > 1. The choice of Lk is done
as follows. First, Lk is set to be equal to the initial guess s. Then, while

F (xk)− F (TLk
(xk)) <

γ

Lk
‖GLk

(xk)‖2,

we set Lk := ηLk. In other words, Lk is chosen as Lk = sηik , where ik
is the smallest nonnegative integer for which the condition

F (xk)− F (Tsηik (x
k)) ≥ γ

sηik
‖Gsηik (xk)‖2

is satisfied.

Remark 10.13. Note that the backtracking procedure is finite under Assumption
10.1. Indeed, plugging x = xk into (10.4), we obtain

F (xk)− F (TL(x
k)) ≥

L− Lf

2

L2

∥∥GL(xk)∥∥2 . (10.12)
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If L ≥ Lf

2(1−γ) , then
L−

Lf
2

L ≥ γ, and hence, by (10.12), the inequality

F (xk)− F (TL(x
k)) ≥ γ

L
‖GL(xk)‖2

holds, implying that the backtracking procedure must end when Lk ≥ Lf

2(1−γ) .

We can also compute an upper bound on Lk: either Lk is equal to s, or the
backtracking procedure is invoked, meaning that Lk

η did not satisfy the backtracking

condition, which by the above discussion implies that Lk

η <
Lf

2(1−γ) , so that Lk <
ηLf

2(1−γ) . To summarize, in the backtracking procedure B1, the parameter Lk satisfies

Lk ≤ max

{
s,

ηLf
2(1− γ)

}
. (10.13)

The convergence of the proximal gradient method in the nonconvex case is
heavily based on the sufficient decrease lemma (Lemma 10.4). We begin with the
following lemma showing that consecutive function values of the sequence generated
by the proximal gradient method decrease by at least a constant times the squared
norm of the gradient mapping.

Lemma 10.14 (sufficient decrease of the proximal gradient method). Sup-
pose that Assumption 10.1 holds. Let {xk}k≥0 be the sequence generated by the
proximal gradient method for solving problem (10.1) with either a constant stepsize

defined by Lk = L̄ ∈
(Lf

2 ,∞
)
or with a stepsize chosen by the backtracking procedure

B1 with parameters (s, γ, η), where s > 0, γ ∈ (0, 1), η > 1. Then for any k ≥ 0,

F (xk)− F (xk+1) ≥M‖Gd(xk)‖2, (10.14)

where

M =

⎧⎪⎪⎨⎪⎪⎩
L̄−Lf

2

(L̄)
2 , constant stepsize,

γ

max
{
s,

ηLf
2(1−γ)

} , backtracking,
(10.15)

and

d =

⎧⎪⎨⎪⎩ L̄, constant stepsize,

s, backtracking.
(10.16)

Proof. The result for the constant stepsize setting follows by plugging L = L̄ and
x = xk into (10.4). As for the case where the backtracking procedure is used, by
its definition we have

F (xk)− F (xk+1) ≥ γ

Lk
‖GLk

(xk)‖2 ≥ γ

max
{
s,

ηLf

2(1−γ)

}‖GLk
(xk)‖2,

where the last inequality follows from the upper bound on Lk given in (10.13).
The result for the case where the backtracking procedure is invoked now follows by
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the monotonicity property of the gradient mapping (Theorem 10.9) along with the
bound Lk ≥ s, which imply the inequality ‖GLk

(xk)‖ ≥ ‖Gs(xk)‖.

We are now ready to prove the convergence of the norm of the gradient map-
ping to zero and that limit points of the sequence generated by the method are
stationary points of problem (10.1).

Theorem 10.15 (convergence of the proximal gradient method—noncon-
vex case). Suppose that Assumption 10.1 holds and let {xk}k≥0 be the sequence
generated by the proximal gradient method for solving problem (10.1) either with a

constant stepsize defined by Lk = L̄ ∈
(Lf

2 ,∞
)
or with a stepsize chosen by the

backtracking procedure B1 with parameters (s, γ, η), where s > 0, γ ∈ (0, 1), and
η > 1. Then

(a) the sequence {F (xk)}k≥0 is nonincreasing. In addition, F (xk+1) < F (xk) if
and only if xk is not a stationary point of (10.1);

(b) Gd(x
k) → 0 as k → ∞, where d is given in (10.16);

(c)

min
n=0,1,...,k

‖Gd(xn)‖ ≤
√
F (x0)− Fopt√
M(k + 1)

, (10.17)

where M is given in (10.15);

(d) all limit points of the sequence {xk}k≥0 are stationary points of problem (10.1).

Proof. (a) By Lemma 10.14 we have that

F (xk)− F (xk+1) ≥M‖Gd(xk)‖2, (10.18)

from which it readily follows that F (xk) ≥ F (xk+1). If xk is not a stationary point
of problem (10.1), then Gd(x

k) 
= 0, and hence, by (10.18), F (xk) > F (xk+1). If
xk is a stationary point of problem (10.1), then GLk

(xk) = 0, from which it follows
that xk+1 = xk − 1

Lk
GLk

(xk) = xk, and consequently F (xk) = F (xk+1).

(b) Since the sequence {F (xk)}k≥0 is nonincreasing and bounded below, it
converges. Thus, in particular, F (xk)− F (xk+1) → 0 as k → ∞, which, combined
with (10.18), implies that ‖Gd(xk)‖ → 0 as k → ∞.

(c) Summing the inequality

F (xn)− F (xn+1) ≥M‖Gd(xn)‖2

over n = 0, 1, . . . , k, we obtain

F (x0)− F (xk+1) ≥ M
k∑

n=0

‖Gd(xn)‖2 ≥ M(k + 1) min
n=0,1,...,k

‖Gd(xn)‖2.

Using the fact that F (xk+1) ≥ Fopt, the inequality (10.17) follows.
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(d) Let x̄ be a limit point of {xk}k≥0. Then there exists a subsequence
{xkj}j≥0 converging to x̄. For any j ≥ 0,

‖Gd(x̄)‖ ≤ ‖Gd(xkj )−Gd(x̄)‖+ ‖Gd(xkj )‖ ≤ (2d+ Lf )‖xkj − x̄‖+ ‖Gd(xkj )‖,
(10.19)

where Lemma 10.10(a) was used in the second inequality. Since the right-hand side
of (10.19) goes to 0 as j → ∞, it follows that Gd(x̄) = 0, which by Theorem 10.7(b)
implies that x̄ is a stationary point of problem (10.1).

10.4 Analysis of the Proximal Gradient Method—
The Convex Case

10.4.1 The Fundamental Prox-Grad Inequality

The analysis of the proximal gradient method in the case where f is convex is based
on the following key inequality (which actually does not assume that f is convex).

Theorem 10.16 (fundamental prox-grad inequality). Suppose that f and g
satisfy properties (A) and (B) of Assumption 10.1. For any x ∈ E, y ∈ int(dom(f))
and L > 0 satisfying

f(TL(y)) ≤ f(y) + 〈∇f(y), TL(y) − y〉 + L

2
‖TL(y) − y‖2, (10.20)

it holds that

F (x)− F (TL(y)) ≥
L

2
‖x− TL(y)‖2 − L

2
‖x− y‖2 + 
f (x,y), (10.21)

where

f(x,y) = f(x)− f(y)− 〈∇f(y),x − y〉.

Proof. Consider the function

ϕ(u) = f(y) + 〈∇f(y),u − y〉+ g(u) +
L

2
‖u− y‖2.

Since ϕ is an L-strongly convex function and TL(y) = argminu∈Eϕ(u), it follows by
Theorem 5.25(b) that

ϕ(x)− ϕ(TL(y)) ≥ L

2
‖x− TL(y)‖2. (10.22)

Note that by (10.20),

ϕ(TL(y)) = f(y) + 〈∇f(y), TL(y)− y〉 + L

2
‖TL(y) − y‖2 + g(TL(y))

≥ f(TL(y)) + g(TL(y)) = F (TL(y)),

and thus (10.22) implies that for any x ∈ E,

ϕ(x) − F (TL(y)) ≥ L

2
‖x− TL(y)‖2.
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Plugging the expression for ϕ(x) into the above inequality, we obtain

f(y) + 〈∇f(y),x − y〉 + g(x) +
L

2
‖x− y‖2 − F (TL(y)) ≥

L

2
‖x− TL(y)‖2,

which is the same as the desired result:

F (x)− F (TL(y)) ≥ L

2
‖x− TL(y)‖2 − L

2
‖x− y‖2

+ f(x)− f(y)− 〈∇f(y),x − y〉.

Remark 10.17. Obviously, by the descent lemma, (10.20) is satisfied for L = Lf ,
and hence, for any x ∈ E and y ∈ int(dom(f)), the inequality

F (x)− F (TLf
(y)) ≥ Lf

2
‖x− TLf

(y)‖2 − Lf
2

‖x− y‖2 + 
f (x,y)

holds.

A direct consequence of Theorem 10.16 is another version of the sufficient
decrease lemma (Lemma 10.4). This is accomplished by substituting y = x in the
fundamental prox-grad inequality.

Corollary 10.18 (sufficient decrease lemma—second version). Suppose that
f and g satisfy properties (A) and (B) of Assumption 10.1. For any x ∈ int(dom(f))
for which

f(TL(x)) ≤ f(x) + 〈∇f(x), TL(x)− x〉+ L

2
‖TL(x)− x‖2,

it holds that

F (x)− F (TL(x)) ≥
1

2L
‖GL(x)‖2.

10.4.2 Stepsize Strategies in the Convex Case

When f is also convex, we will consider, as in the nonconvex case, both constant and
backtracking stepsize strategies. The backtracking procedure, which we will refer to
as “backtracking procedure B2,” will be slightly different than the one considered
in the nonconvex case, and it will aim to find a constant Lk satisfying

f(xk+1) ≤ f(xk) + 〈∇f(xk),xk+1 − xk〉+ Lk
2

‖xk+1 − xk‖2. (10.23)

In the special case where g ≡ 0, the proximal gradient method reduces to the
gradient method xk+1 = xk − 1

Lk
∇f(xk), and condition (10.23) reduces to

f(xk)− f(xk+1) ≥ 1

2Lk
‖∇f(xk)‖2,

which is similar to the sufficient decrease condition described in Lemma 10.4, and
this is why condition (10.23) can also be viewed as a “sufficient decrease condi-
tion.”
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• Constant. Lk = Lf for all k.

• Backtracking procedure B2. The procedure requires two parameters
(s, η), where s > 0 and η > 1. Define L−1 = s. At iteration k (k ≥ 0)
the choice of Lk is done as follows. First, Lk is set to be equal to Lk−1.
Then, while

f(TLk
(xk)) > f(xk) + 〈∇f(xk), TLk

(xk)− xk〉+ Lk
2

‖TLk
(xk)− xk‖2,

we set Lk := ηLk. In other words, Lk is chosen as Lk = Lk−1η
ik , where

ik is the smallest nonnegative integer for which the condition

f(TLk−1ηik (x
k)) ≤ f(xk) + 〈∇f(xk), TLk−1ηik (x

k)− xk〉+
Lk
2

‖TLk−1η
ik (x

k)− xk‖2

is satisfied.

Remark 10.19 (upper and lower bounds on Lk). Under Assumption 10.1 and
by the descent lemma (Lemma 5.7), it follows that both stepsize rules ensure that
the sufficient decrease condition (10.23) is satisfied at each iteration. In addition,
the constants Lk that the backtracking procedure B2 produces satisfy the following
bounds for all k ≥ 0:

s ≤ Lk ≤ max{ηLf , s}. (10.24)

The inequality s ≤ Lk is obvious. To understand the inequality Lk ≤ max{ηLf , s},
note that there are two options. Either Lk = s or Lk > s, and in the latter case
there exists an index 0 ≤ k′ ≤ k for which the inequality (10.23) is not satisfied with
k = k′ and Lk

η replacing Lk. By the descent lemma, this implies in particular that
Lk

η < Lf , and we have thus shown that Lk ≤ max{ηLf , s}. We also note that the
bounds on Lk can be rewritten as

βLf ≤ Lk ≤ αLf ,

where

α =

⎧⎪⎨⎪⎩ 1, constant,

max
{
η, s

Lf

}
, backtracking,

β =

⎧⎪⎨⎪⎩ 1, constant,

s
Lf
, backtracking.

(10.25)

Remark 10.20 (monotonicity of the proximal gradient method). Since
condition (10.23) holds for both stepsize rules, for any k ≥ 0, we can invoke the
fundamental prox-grad inequality (10.21) with y = x = xk, L = Lk and obtain the
inequality

F (xk)− F (xk+1) ≥ Lk
2

‖xk − xk+1‖2,

which in particular implies that F (xk) ≥ F (xk+1), meaning that the method pro-
duces a nonincreasing sequence of function values.
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10.4.3 Convergence Analysis in the Convex Case

We will assume in addition to Assumption 10.1 that f is convex. We begin by
establishing an O(1/k) rate of convergence of the generated sequence of function
values to the optimal value. Such rate of convergence is called a sublinear rate.
This is of course an improvement over the O(1/

√
k) rate that was established for

the projected subgradient and mirror descent methods. It is also not particularly
surprising that an improved rate of convergence can be established since additional
properties are assumed on the objective function.

Theorem 10.21 (O(1/k) rate of convergence of proximal gradient). Sup-
pose that Assumption 10.1 holds and that in addition f is convex. Let {xk}k≥0 be the
sequence generated by the proximal gradient method for solving problem (10.1) with
either a constant stepsize rule in which Lk ≡ Lf for all k ≥ 0 or the backtracking
procedure B2. Then for any x∗ ∈ X∗ and k ≥ 0,

F (xk)− Fopt ≤
αLf‖x0 − x∗‖2

2k
, (10.26)

where α = 1 in the constant stepsize setting and α = max
{
η, s

Lf

}
if the backtracking

rule is employed.

Proof. For any n ≥ 0, substituting L = Ln, x = x∗, and y = xn in the fundamental
prox-grad inequality (10.21) and taking into account the fact that in both stepsize
rules condition (10.20) is satisfied, we obtain

2

Ln
(F (x∗)− F (xn+1)) ≥ ‖x∗ − xn+1‖2 − ‖x∗ − xn‖2 + 2

Ln

f (x

∗,xn)

≥ ‖x∗ − xn+1‖2 − ‖x∗ − xn‖2,

where the convexity of f was used in the last inequality. Summing the above
inequality over n = 0, 1, . . . , k− 1 and using the bound Ln ≤ αLf for all n ≥ 0 (see
Remark 10.19), we obtain

2

αLf

k−1∑
n=0

(F (x∗)− F (xn+1)) ≥ ‖x∗ − xk‖2 − ‖x∗ − x0‖2.

Thus,

k−1∑
n=0

(F (xn+1)− Fopt) ≤
αLf
2

‖x∗ − x0‖2 − αLf
2

‖x∗ − xk‖2 ≤ αLf
2

‖x∗ − x0‖2.

By the monotonicity of {F (xn)}n≥0 (see Remark 10.20), we can conclude that

k(F (xk)− Fopt) ≤
k−1∑
n=0

(F (xn+1)− Fopt) ≤
αLf
2

‖x∗ − x0‖2.

Consequently,

F (xk)− Fopt ≤ αLf‖x∗ − x0‖2
2k

.
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Remark 10.22. Note that we did not utilize in the proof of Theorem 10.21 the
fact that procedure B2 produces a nondecreasing sequence of constants {Lk}k≥0.
This implies in particular that the monotonicity of this sequence of constants is not
essential, and we can actually prove the same convergence rate for any backtracking
procedure that guarantees the validity of condition (10.23) and the bound Lk ≤ αLf .

We can also prove that the generated sequence is Fejér monotone, from which
convergence of the sequence to an optimal solution readily follows.

Theorem 10.23 (Fejér monotonicity of the sequence generated by the
proximal gradient method). Suppose that Assumption 10.1 holds and that in
addition f is convex. Let {xk}k≥0 be the sequence generated by the proximal gradient
method for solving problem (10.1) with either a constant stepsize rule in which Lk ≡
Lf for all k ≥ 0 or the backtracking procedure B2. Then for any x∗ ∈ X∗ and k ≥ 0,

‖xk+1 − x∗‖ ≤ ‖xk − x∗‖. (10.27)

Proof. We will repeat some of the arguments used in the proof of Theorem 10.21.
Substituting L = Lk, x = x∗, and y = xk in the fundamental prox-grad inequality
(10.21) and taking into account the fact that in both stepsize rules condition (10.20)
is satisfied, we obtain

2

Lk
(F (x∗)− F (xk+1)) ≥ ‖x∗ − xk+1‖2 − ‖x∗ − xk‖2 + 2

Lk

f(x

∗,xk)

≥ ‖x∗ − xk+1‖2 − ‖x∗ − xk‖2,

where the convexity of f was used in the last inequality. The result (10.27) now
follows by the inequality F (x∗)− F (xk+1) ≤ 0.

Thanks to the Fejér monotonicity property, we can now establish the conver-
gence of the sequence generated by the proximal gradient method.

Theorem 10.24 (convergence of the sequence generated by the proximal
gradient method). Suppose that Assumption 10.1 holds and that in addition f is
convex. Let {xk}k≥0 be the sequence generated by the proximal gradient method for
solving problem (10.1) with either a constant stepsize rule in which Lk ≡ Lf for all
k ≥ 0 or the backtracking procedure B2. Then the sequence {xk}k≥0 converges to
an optimal solution of problem (10.1).

Proof. By Theorem 10.23, the sequence is Fejér monotone w.r.t. X∗. Therefore,
by Theorem 8.16, to show convergence to a point in X∗, it is enough to show that
any limit point of the sequence {xk}k≥0 is necessarily in X∗. Let then x̃ be a limit
point of the sequence. Then there exists a subsequence {xkj}j≥0 converging to x̃.
By Theorem 10.21,

F (xkj ) → Fopt as j → ∞. (10.28)

Since F is closed, it is also lower semicontinuous, and hence F (x̃) ≤ limj→∞ F (xkj )
= Fopt, implying that x̃ ∈ X∗.
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To derive a complexity result for the proximal gradient method, we will assume
that ‖x0 − x∗‖ ≤ R for some x∗ ∈ X∗ and some constant R > 0; for example, if
dom(g) is bounded, then R might be taken as its diameter. By inequality (10.26) it
follows that in order to obtain an ε-optimal solution of problem (10.1), it is enough
to require that

αLfR
2

2k
≤ ε,

which is the same as

k ≥ αLfR
2

2ε
.

Thus, to obtain an ε-optimal solution, an order of 1
ε iterations is required, which

is an improvement of the result for the projected subgradient method in which an
order of 1

ε2 iterations is needed (see, for example, Theorem 8.18). We summarize
the above observations in the following theorem.

Theorem 10.25 (complexity of the proximal gradient method). Under the
setting of Theorem 10.21, for any k satisfying

k ≥
⌈
αLfR

2

2ε

⌉
,

it holds that F (xk) − Fopt ≤ ε, where R is an upper bound on ‖x∗ − x0‖ for some
x∗ ∈ X∗.

In the nonconvex case (meaning when f is not necessarily convex), an O(1/
√
k)

rate of convergence of the norm of the gradient mapping was established in Theorem
10.15(c). We will now show that with the additional convexity assumption on f ,
this rate can be improved to O(1/k).

Theorem 10.26 (O(1/k) rate of convergence of the minimal norm of the
gradient mapping). Suppose that Assumption 10.1 holds and that in addition f
is convex. Let {xk}k≥0 be the sequence generated by the proximal gradient method
for solving problem (10.1) with either a constant stepsize rule in which Lk ≡ Lf for
all k ≥ 0 or the backtracking procedure B2. Then for any x∗ ∈ X∗ and k ≥ 1,

min
n=0,1,...,k

‖GαLf
(xn)‖ ≤ 2α1.5Lf‖x0 − x∗‖√

βk
, (10.29)

where α = β = 1 in the constant stepsize setting and α = max
{
η, s

Lf

}
, β = s

Lf
if

the backtracking rule is employed.

Proof. By the sufficient decrease lemma (Corollary 10.18), for any n ≥ 0,

F (xn)− F (xn+1) = F (xn)− F (TLn(x
n)) ≥ 1

2Ln
‖GLn(x

n)‖2. (10.30)

By Theorem 10.9 and the fact that βLf ≤ Ln ≤ αLf (see Remark 10.19), it follows
that

1

2Ln
‖GLn(x

n)‖2 =
Ln
2

‖GLn(x
n)‖2

L2
n

≥ βLf
2

‖GαLf
(xn)‖2

α2L2
f

=
β

2α2Lf
‖GαLf

(xn)‖2.

(10.31)
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Therefore, combining (10.30) and (10.31),

F (xn)− Fopt ≥ F (xn+1)− Fopt +
β

2α2Lf
‖GαLf

(xn)‖2. (10.32)

Let p be a positive integer. Summing (10.32) over n = p, p+ 1, . . . , 2p− 1 yields

F (xp)− Fopt ≥ F (x2p)− Fopt +
β

2α2Lf

2p−1∑
n=p

‖GαLf
(xn)‖2. (10.33)

By Theorem 10.21, F (xp) − Fopt ≤ αLf‖x0−x∗‖2
2p , which, combined with the fact

that F (x2p)− Fopt ≥ 0 and (10.33), implies

βp

2α2Lf
min

n=0,1,...,2p−1
‖GαLf

(xn)‖2 ≤ β

2α2Lf

2p−1∑
n=p

‖GαLf
(xn)‖2 ≤ αLf‖x0 − x∗‖2

2p
.

Thus,

min
n=0,1,...,2p−1

‖GαLf
(xn)‖2 ≤

α3L2
f‖x0 − x∗‖2

βp2
(10.34)

and also

min
n=0,1,...,2p

‖GαLf
(xn)‖2 ≤

α3L2
f‖x0 − x∗‖2

βp2
. (10.35)

We conclude that for any k ≥ 1,

min
n=0,1,...,k

‖GαLf
(xn)‖2 ≤

α3L2
f‖x0 − x∗‖2

βmin{(k/2)2, ((k + 1)/2)2} =
4α3L2

f‖x0 − x∗‖2

βk2
.

When we assume further that f is Lf -smooth over the entire space E, we can
use Lemma 10.12 to obtain an improved result in the case of a constant stepsize.

Theorem 10.27 (O(1/k) rate of convergence of the norm of the gradient
mapping under the constant stepsize rule). Suppose that Assumption 10.1
holds and that in addition f is convex and Lf -smooth over E. Let {xk}k≥0 be the
sequence generated by the proximal gradient method for solving problem (10.1) with
a constant stepsize rule in which Lk ≡ Lf for all k ≥ 0. Then for any x∗ ∈ X∗ and
k ≥ 0,

(a) ‖GLf
(xk+1)‖ ≤ ‖GLf

(xk)‖;

(b) ‖GLf
(xk)‖ ≤ 2Lf‖x0−x∗‖

k+1 .

Proof. Invoking Lemma 10.12 with x = xk, we obtain (a). Part (b) now follows
by substituting α = β = 1 in the result of Theorem 10.26 and noting that by part
(a), ‖GLf

(xk)‖ = minn=0,1,...,k ‖GLf
(xn)‖.
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10.5 The Proximal Point Method
Consider the problem

min
x∈E

g(x), (10.36)

where g : E → (−∞,∞] is a proper closed and convex function. Problem (10.36)
is actually a special case of the composite problem (10.1) with f ≡ 0. The update
step of the proximal gradient method in this case takes the form

xk+1 = prox 1
Lk
g(x

k).

Taking Lk = 1
c for some c > 0, we obtain the proximal point method.

The Proximal Point Method

Initialization: pick x0 ∈ E and c > 0.
General step (k ≥ 0):

xk+1 = proxcg(x
k).

The proximal point method is actually not a practical algorithm since the
general step asks to minimize the function g(x) + c

2‖x− xk‖2, which in general is
as hard to accomplish as solving the original problem of minimizing g. Since the
proximal point method is a special case of the proximal gradient method, we can
deduce its main convergence results from the corresponding results on the proximal
gradient method. Specifically, since the smooth part f ≡ 0 is 0-smooth, we can
take any constant stepsize to guarantee convergence and Theorems 10.21 and 10.24
imply the following result.

Theorem 10.28 (convergence of the proximal point method). Let g : E →
(−∞,∞] be a proper closed and convex function. Assume that problem

min
x∈E

g(x)

has a nonempty optimal set X∗, and let the optimal value be given by gopt. Let
{xk}k≥0 be the sequence generated by the proximal point method with parameter
c > 0. Then

(a) g(xk)− gopt ≤ ‖x0−x∗‖2
2ck for any x∗ ∈ X∗ and k ≥ 0;

(b) the sequence {xk}k≥0 converges to some point in X∗.

10.6 Convergence of the Proximal Gradient
Method—The Strongly Convex Case

In the case where f is assumed to be σ-strongly convex for some σ > 0, the sublinear
rate of convergence can be improved into a linear rate of convergence, meaning a
rate of the form O(qk) for some q ∈ (0, 1). Throughout the analysis of the strongly
convex case we denote the unique optimal solution of problem (10.1) by x∗.
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Theorem 10.29 (linear rate of convergence of the proximal gradient
method—strongly convex case). Suppose that Assumption 10.1 holds and that
in addition f is σ-strongly convex (σ > 0). Let {xk}k≥0 be the sequence generated
by the proximal gradient method for solving problem (10.1) with either a constant
stepsize rule in which Lk ≡ Lf for all k ≥ 0 or the backtracking procedure B2. Let

α =

⎧⎪⎨⎪⎩ 1, constant stepsize,

max
{
η, s

Lf

}
, backtracking.

Then for any k ≥ 0,

(a) ‖xk+1 − x∗‖2 ≤
(
1− σ

αLf

)
‖xk − x∗‖2;

(b) ‖xk − x∗‖2 ≤
(
1− σ

αLf

)k
‖x0 − x∗‖2;

(c) F (xk+1)− Fopt ≤ αLf

2

(
1− σ

αLf

)k+1

‖x0 − x∗‖2.

Proof. Plugging L = Lk, x = x∗, and y = xk into the fundamental prox-grad
inequality (10.21) and taking into account the fact that in both stepsize rules con-
dition (10.20) is satisfied, we obtain

F (x∗)− F (xk+1) ≥ Lk
2

‖x∗ − xk+1‖2 − Lk
2

‖x∗ − xk‖2 + 
f(x
∗,xk).

Since f is σ-strongly convex, it follows by Theorem 5.24(ii) that


f (x
∗,xk) = f(x∗)− f(xk)− 〈∇f(xk),x∗ − xk〉 ≥ σ

2
‖xk − x∗‖2.

Thus,

F (x∗)− F (xk+1) ≥ Lk
2

‖x∗ − xk+1‖2 − Lk − σ

2
‖x∗ − xk‖2. (10.37)

Since x∗ is a minimizer of F , F (x∗)− F (xk+1) ≤ 0, and hence, by (10.37) and the
fact that Lk ≤ αLf (see Remark 10.19),

‖xk+1 − x∗‖2 ≤
(
1− σ

Lk

)
‖xk − x∗‖2 ≤

(
1− σ

αLf

)
‖xk − x∗‖2,

establishing part (a). Part (b) follows immediately by (a). To prove (c), note that
by (10.37),

F (xk+1)− Fopt ≤
Lk − σ

2
‖xk − x∗‖2 − Lk

2
‖xk+1 − x∗‖2

≤ αLf − σ

2
‖xk − x∗‖2

=
αLf
2

(
1− σ

αLf

)
‖xk − x∗‖2

≤ αLf
2

(
1− σ

αLf

)k+1

‖x0 − x∗‖2,

where part (b) was used in the last inequality.
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Theorem 10.29 immediately implies that in the strongly convex case, the prox-
imal gradient method requires an order of log( 1ε ) iterations to obtain an ε-optimal
solution.

Theorem 10.30 (complexity of the proximal gradient method—The
strongly convex case). Under the setting of Theorem 10.29, for any k ≥ 1
satisfying

k ≥ ακ log

(
1

ε

)
+ ακ log

(
αLfR

2

2

)
,

it holds that F (xk)−Fopt ≤ ε, where R is an upper bound on ‖x0−x∗‖ and κ =
Lf

σ .

Proof. Let k ≥ 1. By Theorem 10.29 and the definition of κ, a sufficient condition
for the inequality F (xk)− Fopt ≤ ε to hold is that

αLf
2

(
1− 1

ακ

)k
R2 ≤ ε,

which is the same as

k log

(
1− 1

ακ

)
≤ log

(
2ε

αLfR2

)
. (10.38)

Since log(1 − x) ≤ −x for any57 x ≤ 1, it follows that a sufficient condition for
(10.38) to hold is that

− 1

ακ
k ≤ log

(
2ε

αLfR2

)
,

namely, that

k ≥ ακ log

(
1

ε

)
+ ακ log

(
αLfR

2

2

)
.

10.7 The Fast Proximal Gradient Method—FISTA

10.7.1 The Method

The proximal gradient method achieves an O(1/k) rate of convergence in func-
tion values to the optimal value. In this section we will show how to accelerate the
method in order to obtain a rate ofO(1/k2) in function values. The method is known
as the “fast proximal gradient method,” but we will also refer to it as “FISTA,”
which is an acronym for “fast iterative shrinkage-thresholding algorithm”; see Ex-
ample 10.37 for further explanations. The method was devised and analyzed by
Beck and Teboulle in the paper [18], from which the convergence analysis is taken.

We will assume that f is convex and that it is Lf -smooth, meaning that it
is Lf -smooth over the entire space E. We gather all the required properties in the
following assumption.

57The inequality also holds for x = 1 since in that case the left-hand side is −∞.
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Assumption 10.31.

(A) g : E → (−∞,∞] is proper closed and convex.

(B) f : E → R is Lf -smooth and convex.

(C) The optimal set of problem (10.1) is nonempty and denoted by X∗. The opti-
mal value of the problem is denoted by Fopt.

The description of FISTA now follows.

FISTA

Input: (f, g,x0), where f and g satisfy properties (A) and (B) in Assumption
10.31 and x0 ∈ E.
Initialization: set y0 = x0 and t0 = 1.
General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) pick Lk > 0;

(b) set xk+1 = prox 1
Lk
g

(
yk − 1

Lk
∇f(yk)

)
;

(c) set tk+1 =
1+

√
1+4t2k
2 ;

(d) compute yk+1 = xk+1 +
(
tk−1
tk+1

)
(xk+1 − xk).

As usual, we will consider two options for the choice of Lk: constant and back-
tracking. The backtracking procedure for choosing the stepsize is referred to as
“backtracking procedure B3” and is identical to procedure B2 with the sole differ-
ence that it is invoked on the vector yk rather than on xk.

• Constant. Lk = Lf for all k.

• Backtracking procedure B3. The procedure requires two parameters
(s, η), where s > 0 and η > 1. Define L−1 = s. At iteration k (k ≥ 0)
the choice of Lk is done as follows: First, Lk is set to be equal to Lk−1.
Then, while (recall that TL(y) ≡ T f,gL (y) = prox 1

L g
(y − 1

L∇f(y))),

f(TLk
(yk)) > f(yk) + 〈∇f(yk), TLk

(yk)− yk〉+ Lk
2

‖TLk
(yk)− yk‖2,

we set Lk := ηLk. In other words, the stepsize is chosen as Lk=Lk−1η
ik ,

where ik is the smallest nonnegative integer for which the condition

f(TLk−1η
ik (y

k)) ≤ f(yk) + 〈∇f(yk), TLk−1η
ik (y

k)− yk〉

+
Lk
2

‖TLk−1η
ik (y

k)− yk‖2

is satisfied.
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In both stepsize rules, the following inequality is satisfied for any k ≥ 0:

f(TLk
(yk)) ≤ f(yk) + 〈∇f(yk), TLk

(yk)− yk〉+ Lk
2

‖TLk
(yk)− yk‖2. (10.39)

Remark 10.32. Since the backtracking procedure B3 is identical to the B2 procedure
(only employed on yk), the arguments of Remark 10.19 are still valid, and we have
that

βLf ≤ Lk ≤ αLf ,

where α and β are given in (10.25).

The next lemma shows an important lower bound on the sequence {tk}k≥0
that will be used in the convergence proof.

Lemma 10.33. Let {tk}k≥0 be the sequence defined by

t0 = 1, tk+1 =
1 +

√
1 + 4t2k
2

, k ≥ 0.

Then tk ≥ k+2
2 for all k ≥ 0.

Proof. The proof is by induction on k. Obviously, for k = 0, t0 = 1 ≥ 0+2
2 . Suppose

that the claim holds for k, meaning tk ≥ k+2
2 . We will prove that tk+1 ≥ k+3

2 . By
the recursive relation defining the sequence and the induction assumption,

tk+1 =
1 +

√
1 + 4t2k
2

≥ 1 +
√

1 + (k + 2)2

2
≥ 1 +

√
(k + 2)2

2
=
k + 3

2
.

10.7.2 Convergence Analysis of FISTA

Theorem 10.34 (O(1/k2) rate of convergence of FISTA). Suppose that As-
sumption 10.31 holds. Let {xk}k≥0 be the sequence generated by FISTA for solving
problem (10.1) with either a constant stepsize rule in which Lk ≡ Lf for all k ≥ 0
or the backtracking procedure B3. Then for any x∗ ∈ X∗ and k ≥ 1,

F (xk)− Fopt ≤ 2αLf‖x0 − x∗‖2
(k + 1)2

,

where α = 1 in the constant stepsize setting and α = max
{
η, s

Lf

}
if the backtracking

rule is employed.

Proof. Let k ≥ 1. Substituting x = t−1k x∗ + (1 − t−1k )xk, y = yk, and L = Lk in
the fundamental prox-grad inequality (10.21), taking into account that inequality
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(10.39) is satisfied and that f is convex, we obtain that

F (t−1k x∗ + (1− t−1k )xk)− F (xk+1)

≥ Lk
2

‖xk+1 − (t−1k x∗ + (1− t−1k )xk)‖2 − Lk
2

‖yk − (t−1k x∗ + (1− t−1k )xk)‖2

=
Lk
2t2k

‖tkxk+1 − (x∗ + (tk − 1)xk)‖2 − Lk
2t2k

‖tkyk − (x∗ + (tk − 1)xk)‖2. (10.40)

By the convexity of F ,

F (t−1k x∗ + (1− t−1k )xk) ≤ t−1k F (x∗) + (1− t−1k )F (xk).

Therefore, using the notation vn ≡ F (xn)− Fopt for any n ≥ 0,

F (t−1k x∗+(1− t−1k )xk)−F (xk+1) ≤ (1− t−1k )(F (xk)−F (x∗))− (F (xk+1)−F (x∗))

= (1− t−1k )vk − vk+1. (10.41)

On the other hand, using the relation yk = xk +
(
tk−1−1
tk

)
(xk − xk−1),

‖tkyk − (x∗ + (tk − 1)xk)‖2 = ‖tkxk + (tk−1 − 1)(xk − xk−1)− (x∗ + (tk − 1)xk)‖2

= ‖tk−1xk − (x∗ + (tk−1 − 1)xk−1)‖2. (10.42)

Combining (10.40), (10.41), and (10.42), we obtain that

(t2k − tk)vk − t2kvk+1 ≥ Lk
2

‖uk+1‖2 − Lk
2

‖uk‖2,

where we use the notation un = tn−1x
n − (x∗ + (tn−1 − 1)xn−1) for any n ≥ 0. By

the update rule of tk+1, we have t2k − tk = t2k−1, and hence

2

Lk
t2k−1vk − 2

Lk
t2kvk+1 ≥ ‖uk+1‖2 − ‖uk‖2.

Since Lk ≥ Lk−1, we can conclude that

2

Lk−1
t2k−1vk − 2

Lk
t2kvk+1 ≥ ‖uk+1‖2 − ‖uk‖2.

Thus,

‖uk+1‖2 + 2

Lk
t2kvk+1 ≤ ‖uk‖2 + 2

Lk−1
t2k−1vk,

and hence, for any k ≥ 1,

‖uk‖2 + 2

Lk−1
t2k−1vk ≤ ‖u1‖2 + 2

L0
t20v1 = ‖x1 − x∗‖2 + 2

L0
(F (x1)−Fopt) (10.43)

Substituting x = x∗,y = y0, and L = L0 in the fundamental prox-grad inequality
(10.21), taking into account the convexity of f yields

2

L0
(F (x∗)− F (x1)) ≥ ‖x1 − x∗‖2 − ‖y0 − x∗‖2,

which, along with the fact that y0 = x0, implies the bound

‖x1 − x∗‖2 + 2

L0
(F (x1)− Fopt) ≤ ‖x0 − x∗‖2.
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Combining the last inequality with (10.43), we get

2

Lk−1
t2k−1vk ≤ ‖uk‖2 + 2

Lk−1
t2k−1vk ≤ ‖x0 − x∗‖2.

Thus, using the bound Lk−1 ≤ αLf , the definition of vk, and Lemma 10.33,

F (xk)− Fopt ≤
Lk−1‖x0 − x∗‖2

2t2k−1
≤ 2αLf‖x0 − x∗‖2

(k + 1)2
.

Remark 10.35 (alternative choice for tk). A close inspection of the proof of
Theorem 10.34 reveals that the result is correct if {tk}k≥0 is any sequence satisfying
the following two properties for any k ≥ 0: (a) tk ≥ k+2

2 ; (b) t2k+1 − tk+1 ≤ t2k. The

choice tk = k+2
2 also satisfies these two properties. The validity of (a) is obvious;

to show (b), note that

t2k+1 − tk+1 = tk+1(tk+1 − 1) =
k + 3

2
· k + 1

2
=
k2 + 4k + 3

4

≤ k2 + 4k + 4

4
=

(k + 2)2

4
= t2k.

Remark 10.36. Note that FISTA has an O(1/k2) rate of convergence in function
values, while the proximal gradient method has an O(1/k) rate of convergence. This
improvement was achieved despite the fact that the dominant computational steps
at each iteration of both methods are essentially the same: one gradient evaluation
and one prox computation.

10.7.3 Examples

Example 10.37. Consider the following model, which was already discussed in
Example 10.2:

min
x∈Rn

f(x) + λ‖x‖1,

where λ > 0 and f : Rn → R is assumed to be convex and Lf -smooth. The update
formula of the proximal gradient method with constant stepsize 1

Lf
has the form

xk+1 = T λ
Lf

(
xk − 1

Lf
∇f(xk)

)
.

As was already noted in Example 10.3, since at each iteration one shrinkage/soft-
thresholding operation is performed, this method is also known as the iterative
shrinkage-thresholding algorithm (ISTA). The general update step of the accelerated
proximal gradient method discussed in this section takes the following form:

(a) set xk+1 = T λ
Lf

(
yk − 1

Lf
∇f(yk)

)
;
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(b) set tk+1 =
1+

√
1+4t2k
2 ;

(c) compute yk+1 = xk+1 +
(
tk−1
tk+1

)
(xk+1 − xk).

The above scheme truly deserves to be called “fast iterative shrinkage/thresholding
algorithm” (FISTA) since it is an accelerated method that performs at each iteration
a thresholding step. In this book we adopt the convention and use the acronym
FISTA as the name of the fast proximal gradient method for a general nonsmooth
part g.

Example 10.38 (l1-regularized least squares). As a special instance of Exam-
ple 10.37, consider the problem

min
x∈Rn

1

2
‖Ax− b‖22 + λ‖x‖1, (10.44)

where A ∈ Rm×n,b ∈ Rm, and λ > 0. The problem fits model (10.1) with
f(x) = 1

2‖Ax − b‖22 and g(x) = λ‖x‖1. The function f is Lf -smooth with
Lf =

∥∥ATA
∥∥
2,2

= λmax(A
TA) (see Example 5.2). The update step of FISTA

has the following form:

(a) set xk+1 = T λ
Lk

(
yk − 1

Lk
AT (Ayk − b)

)
;

(b) set tk+1 =
1+

√
1+4t2k
2 ;

(c) compute yk+1 = xk+1 +
(
tk−1
tk+1

)
(xk+1 − xk).

The update step of the proximal gradient method, which in this case is the same as
ISTA, is

xk+1 = T λ
Lk

(
xk − 1

Lk
AT (Axk − b)

)
.

The stepsizes in both methods can be chosen to be the constant Lk ≡ λmax(A
TA).

To illustrate the difference in the actual performance of ISTA and FISTA, we
generated an instance of the problem with λ = 1 and A ∈ R100×110. The com-
ponents of A were independently generated using a standard normal distribution.
The “true” vector is xtrue = e3 − e7, and b was chosen as b = Axtrue. We ran
200 iterations of ISTA and FISTA in order to solve problem (10.44) with initial
vector x = e, the vector of all ones. It is well known that the l1-norm element in
the objective function is a regularizer that promotes sparsity, and we thus expect
that the optimal solution of (10.44) will be close to the “true” sparse vector xtrue.
The distances to optimality in terms of function values of the sequences generated
by the two methods as a function of the iteration index are plotted in Figure 10.1,
where it is apparent that FISTA is far superior to ISTA.

In Figure 10.2 we plot the vectors that were obtained by the two methods.
Obviously, the solution produced by 200 iterations of FISTA is much closer to the
optimal solution (which is very close to e3 − e7) than the solution obtained after
200 iterations of ISTA.
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Figure 10.1. Results of 200 iterations of ISTA and FISTA on an l1-
regularized least squares problem.
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Figure 10.2. Solutions obtained by ISTA (left) and FISTA (right).

10.7.4 MFISTA
58

FISTA is not a monotone method, meaning that the sequence of function values
it produces is not necessarily nonincreasing. It is possible to define a monotone
version of FISTA, which we call MFISTA, which is a descent method and at the
same time preserves the same rate of convergence as FISTA.

58MFISTA and its convergence analysis are from the work of Beck and Teboulle [17].
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MFISTA

Input: (f, g,x0), where f and g satisfy properties (A) and (B) in Assumption
10.31 and x0 ∈ E.
Initialization: set y0 = x0 and t0 = 1.
General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) pick Lk > 0;

(b) set zk = prox 1
Lk
g

(
yk − 1

Lk
∇f(yk)

)
;

(c) choose xk+1 ∈ E such that F (xk+1) ≤ min{F (zk), F (xk)};

(d) set tk+1 =
1+

√
1+4t2k
2 ;

(e) compute yk+1 = xk+1 + tk
tk+1

(zk − xk+1) +
(
tk−1
tk+1

)
(xk+1 − xk).

Remark 10.39. The choice xk+1 ∈ argmin{F (x) : x = xk, zk} is a very simple
rule ensuring the condition F (xk+1) ≤ min{F (zk), F (xk)}. We also note that the
convergence established in Theorem 10.40 only requires the condition F (xk+1) ≤
F (zk).

The convergence result of MFISTA, whose proof is a minor adjustment of the
proof of Theorem 10.34, is given below.

Theorem 10.40 (O(1/k2) rate of convergence of MFISTA). Suppose that
Assumption 10.31 holds. Let {xk}k≥0 be the sequence generated by MFISTA for
solving problem (10.1) with either a constant stepsize rule in which Lk ≡ Lf for all
k ≥ 0 or the backtracking procedure B3. Then for any x∗ ∈ X∗ and k ≥ 1,

F (xk)− Fopt ≤ 2αLf‖x0 − x∗‖2
(k + 1)2

,

where α = 1 in the constant stepsize setting and α = max
{
η, s

Lf

}
if the backtracking

rule is employed.

Proof. Let k ≥ 1. Substituting x = t−1k x∗ + (1 − t−1k )xk, y = yk, and L = Lk in
the fundamental prox-grad inequality (10.21), taking into account that inequality
(10.39) is satisfied and that f is convex, we obtain that

F (t−1k x∗ + (1− t−1k )xk)− F (zk)

≥ Lk
2

‖zk − (t−1k x∗ + (1 − t−1k )xk)‖2 − Lk
2

‖yk − (t−1k x∗ + (1− t−1k )xk)‖2

=
Lk
2t2k

‖tkzk − (x∗ + (tk − 1)xk)‖2 − Lk
2t2k

‖tkyk − (x∗ + (tk − 1)xk)‖2. (10.45)

By the convexity of F ,

F (t−1k x∗ + (1− t−1k )xk) ≤ t−1k F (x∗) + (1− t−1k )F (xk).
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Therefore, using the notation vn ≡ F (xn) − Fopt for any n ≥ 0 and the fact that
F (xk+1) ≤ F (zk), it follows that

F (t−1k x∗ + (1 − t−1k )xk)− F (zk) ≤ (1 − t−1k )(F (xk)− F (x∗))− (F (xk+1)− F (x∗))

= (1 − t−1k )vk − vk+1. (10.46)

On the other hand, using the relation yk = xk +
tk−1

tk
(zk−1 − xk) +

(
tk−1−1
tk

)
(xk −

xk−1), we have

tky
k − (x∗ + (tk − 1)xk) = tk−1z

k−1 − (x∗ + (tk−1 − 1)xk−1). (10.47)

Combining (10.45), (10.46), and (10.47), we obtain that

(t2k − tk)vk − t2kvk+1 ≥ Lk
2

‖uk+1‖2 − Lk
2

‖uk‖2,

where we use the notation un = tn−1z
n−1 − (x∗ + (tn−1 − 1)xn−1) for any n ≥ 0.

By the update rule of tk+1, we have t2k − tk = t2k−1, and hence

2

Lk
t2k−1vk − 2

Lk
t2kvk+1 ≥ ‖uk+1‖2 − ‖uk‖2.

Since Lk ≥ Lk−1, we can conclude that

2

Lk−1
t2k−1vk − 2

Lk
t2kvk+1 ≥ ‖uk+1‖2 − ‖uk‖2.

Thus,

‖uk+1‖2 + 2

Lk
t2kvk+1 ≤ ‖uk‖2 + 2

Lk−1
t2k−1vk,

and hence, for any k ≥ 1,

‖uk‖2+ 2

Lk−1
t2k−1vk ≤ ‖u1‖2 + 2

L0
t20v1 = ‖z0 −x∗‖2+ 2

L0
(F (x1)−Fopt). (10.48)

Substituting x = x∗,y = y0, and L = L0 in the fundamental prox-grad inequality
(10.21), taking into account the convexity of f , yields

2

L0
(F (x∗)− F (z0)) ≥ ‖z0 − x∗‖2 − ‖y0 − x∗‖2,

which, along with the facts that y0 = x0 and F (x1) ≤ F (z0), implies the bound

‖z0 − x∗‖2 + 2

L0
(F (x1)− Fopt) ≤ ‖x0 − x∗‖2.

Combining the last inequality with (10.48), we get

2

Lk−1
t2k−1vk ≤ ‖uk‖2 + 2

Lk−1
t2k−1vk ≤ ‖x0 − x∗‖2.

Thus, using the bound Lk−1 ≤ αLf , the definition of vk, and Lemma 10.33,

F (xk)− Fopt ≤
Lk−1‖x0 − x∗‖2

2t2k−1
≤ 2αLf‖x0 − x∗‖2

(k + 1)2
.
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10.7.5 Weighted FISTA

Consider the main composite model (10.1) under Assumption 10.31. Suppose that
E = Rn. Recall that a standing assumption in this chapter is that the underlying
space is Euclidean, but this does not mean that the endowed inner product is the
dot product. Assume that the endowed inner product is the Q-inner product:
〈x,y〉 = xTQy, where Q ∈ Sn++. In this case, as explained in Remark 3.32, the
gradient is given by

∇f(x) = Q−1Df (x),

where

Df (x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∂f
∂x1

(x)

∂f
∂x2

(x)

...

∂f
∂xn

(x)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

We will use a Lipschitz constant of ∇f w.r.t. the Q-norm, which we will denote by
LQ
f . The constant is essentially defined by the relation

‖Q−1Df (x)−Q−1Df (y)‖Q ≤ LQ
f ‖x− y‖Q for any x,y ∈ R

n.

The general update rule for FISTA in this case will have the following form:

(a) set xk+1 = prox 1

L
Q
f

g

(
yk − 1

LQ
f

Q−1Df (y
k)
)
;

(b) set tk+1 =
1+

√
1+4t2k
2 ;

(c) compute yk+1 = xk+1 +
(
tk−1
tk+1

)
(xk+1 − xk).

Obviously, the prox operator in step (a) is computed in terms of the Q-norm,
meaning that

proxh(x) = argminu∈Rn

{
h(u) +

1

2
‖u− x‖2Q

}
.

The convergence result of Theorem 10.34 will also be written in terms of the Q-
norm:

F (xk)− Fopt ≤
2LQ

f ‖x0 − x∗‖2Q
(k + 1)2

.

10.7.6 Restarting FISTA in the Strongly Convex Case

We will now assume that in addition to Assumption 10.31, f is σ-strongly convex
for some σ > 0. Recall that by Theorem 10.30, the proximal gradient method
attains an ε-optimal solution after an order of O(κ log(1

ε )) iterations (κ =
Lf

σ ).
The natural question is obviously how the complexity result improves when using
FISTA instead of the proximal gradient method. Perhaps surprisingly, one option
for obtaining such an improved result is by considering a version of FISTA that
incorporates a restarting of the method after a constant amount of iterations.
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Restarted FISTA

Initialization: pick z−1 ∈ E and a positive integer N . Set z0 = TLf
(z−1).

General step (k ≥ 0):

• run N iterations of FISTA with constant stepsize (Lk ≡ Lf ) and input
(f, g, zk) and obtain a sequence {xn}Nn=0;

• set zk+1 = xN .

The algorithm essentially consists of “outer” iterations, and each one employs N
iterations of FISTA. To avoid confusion, the outer iterations will be called cycles.
Theorem 10.41 below shows that an order of O(

√
κ log(1ε )) FISTA iterations are

enough to guarantee that an ε-optimal solution is attained.

Theorem 10.41 (O(
√
κ log(1

ε
)) complexity of restarted FISTA). Suppose

that Assumption 10.31 holds and that f is σ-strongly convex (σ > 0). Let {zk}k≥0 be
the sequence generated by the restarted FISTA method employed with N = �

√
8κ−1�,

where κ =
Lf

σ . Let R be an upper bound on ‖z−1 − x∗‖, where x∗ is the unique
optimal solution of problem (10.1). Then59

(a) for any k ≥ 0,

F (zk)− Fopt ≤
LfR

2

2

(
1

2

)k
;

(b) after k iterations of FISTA with k satisfying

k ≥
√
8κ

(
log(1ε )

log(2)
+

log(LfR
2)

log(2)

)
,

an ε-optimal solution is obtained at the end of the last completed cycle. That
is,

F (z k
N !)− Fopt ≤ ε.

Proof. (a) By Theorem 10.34, for any n ≥ 0,

F (zn+1)− Fopt ≤ 2Lf‖zn − x∗‖2
(N + 1)2

. (10.49)

Since f is σ-strongly convex, it follows by Theorem 5.25(b) that

F (zn)− Fopt ≥
σ

2
‖zn − x∗‖2,

which, combined with (10.49), yields (recalling that κ = Lf/σ)

F (zn+1)− Fopt ≤
4κ(F (zn)− Fopt)

(N + 1)2
. (10.50)

59Note that the index k in part (a) stands for the number of cycles, while in part (b) it is the
number of FISTA iterations.
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Since N ≥
√
8κ− 1, it follows that 4κ

(N+1)2 ≤ 1
2 , and hence by (10.50)

F (zn+1)− Fopt ≤
1

2
(F (zn)− Fopt).

Employing the above inequality for n = 0, 1, . . . , k − 1, we conclude that

F (zk)− Fopt ≤
(
1

2

)k
(F (z0)− Fopt). (10.51)

Note that z0 = TLf
(z−1). Invoking the fundamental prox-grad inequality (10.21)

with x = x∗,y = z−1, L = Lf , and taking into account the convexity of f , we
obtain

F (x∗)− F (z0) ≥ Lf
2

‖x∗ − z0‖2 − Lf
2

‖x∗ − z−1‖2,

and hence

F (z0)− Fopt ≤
Lf
2

‖x∗ − z−1‖2 ≤ LfR
2

2
. (10.52)

Combining (10.51) and (10.52), we obtain

F (zk)− Fopt ≤ LfR
2

2

(
1

2

)k
.

(b) If k iterations of FISTA were employed, then  kN ! cycles were completed.
By part (a),

F (z k
N !)− Fopt ≤ LfR

2

2

(
1

2

) k
N !

≤ LfR
2

(
1

2

) k
N

.

Therefore, a sufficient condition for the inequality F (z k
N !) − Fopt ≤ ε to hold is

that

LfR
2

(
1

2

) k
N

≤ ε,

which is equivalent to the inequality

k ≥ N

(
log(1ε )

log(2)
+

log(LfR
2)

log(2)

)
.

The claim now follows by the fact that N = �
√
8κ− 1� ≤

√
8κ.

10.7.7 The Strongly Convex Case (Once Again)—Variation on
FISTA

As in the previous section, we will assume that in addition to Assumption 10.31,
f is σ-strongly convex for some σ > 0. We will define a variant of FISTA, called
V-FISTA, that will exhibit the improved linear rate of convergence of the restarted
FISTA. This rate is established without any need of restarting of the method.
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V-FISTA

Input: (f, g,x0), where f and g satisfy properties (A) and (B) in Assumption
10.31, f is σ-strongly convex (σ > 0), and x0 ∈ E.

Initialization: set y0 = x0, t0 = 1 and κ =
Lf

σ .
General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) set xk+1 = prox 1
Lf
g

(
yk − 1

Lf
∇f(yk)

)
;

(b) compute yk+1 = xk+1 +
(√

κ−1√
κ+1

)
(xk+1 − xk).

The improved linear rate of convergence is established in the next result, whose
proof is a variation on the proof of the rate of convergence of FISTA for the non–
strongly convex case (Theorem 10.34).

Theorem 10.42 (O((1−1/
√
κ)k) rate of convergence of V-FISTA).60 Sup-

pose that Assumption 10.31 holds and that f is σ-strongly convex (σ > 0). Let
{xk}k≥0 be the sequence generated by V-FISTA for solving problem (10.1). Then
for any x∗ ∈ X∗ and k ≥ 0,

F (xk)− Fopt ≤
(
1− 1√

κ

)k (
F (x0)− Fopt +

σ

2
‖x0 − x∗‖2

)
, (10.53)

where κ =
Lf

σ .

Proof. By the fundamental prox-grad inequality (Theorem 10.16) and the σ-strong
convexity of f (invoking Theorem 5.24), it follows that for any x,y ∈ E,

F (x)− F (TLf
(y)) ≥ Lf

2
‖x− TLf

y)‖2 − Lf
2

‖x− y‖2 + f(x)− f(y)− 〈∇f(y),x − y〉

≥ Lf
2

‖x− TLf
(y)‖2 − Lf

2
‖x− y‖2 + σ

2
‖x− y‖2.

Therefore,

F (x)− F (TLf
(y)) ≥ Lf

2
‖x− TLf

(y)‖2 − Lf − σ

2
‖x− y‖2. (10.54)

Let k ≥ 0 and t =
√
κ =

√
Lf

σ . Substituting x = t−1x∗ + (1 − t−1)xk and

y = yk into (10.54), we obtain that

F (t−1x∗ + (1− t−1)xk)− F (xk+1)

≥ Lf
2

‖xk+1 − (t−1x∗ + (1− t−1)xk)‖2 − Lf − σ

2
‖yk − (t−1x∗ + (1 − t−1)xk)‖2

=
Lf
2t2

‖txk+1 − (x∗ + (t− 1)xk)‖2 − Lf − σ

2t2
‖tyk − (x∗ + (t− 1)xk)‖2. (10.55)

60The proof of Theorem 10.42 follows the proof of Theorem 4.10 from the review paper of
Chambolle and Pock [42].
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By the σ-strong convexity of F ,

F (t−1x∗ + (1− t−1)xk) ≤ t−1F (x∗) + (1− t−1)F (xk)− σ

2
t−1(1 − t−1)‖xk − x∗‖2.

Therefore, using the notation vn ≡ F (xn)− Fopt for any n ≥ 0,

F (t−1x∗ + (1− t−1)xk)− F (xk+1)

≤ (1 − t−1)(F (xk)− F (x∗))− (F (xk+1)− F (x∗))− σ

2
t−1(1− t−1)‖xk − x∗‖2

= (1 − t−1)vk − vk+1 − σ

2
t−1(1− t−1)‖xk − x∗‖2,

which, combined with (10.55), yields the inequality

t(t− 1)vk +
Lf − σ

2
‖tyk − (x∗ + (t− 1)xk)‖2 − σ(t− 1)

2
‖xk − x∗‖2

≥ t2vk+1 +
Lf
2

‖txk+1 − (x∗ + (t− 1)xk)‖2. (10.56)

We will use the following identity that holds for any a,b ∈ E and β ∈ [0, 1):

‖a+ b‖2 − β‖a‖2 = (1− β)

∥∥∥∥a+
1

1− β
b

∥∥∥∥2 − β

1− β
‖b‖2.

Plugging a = xk −x∗,b = t(yk −xk), and β = σ(t−1)
Lf−σ into the above inequality, we

obtain

Lf − σ

2
‖t(yk − xk) + xk − x∗‖2 − σ(t− 1)

2
‖xk − x∗‖2

=
Lf − σ

2

[
‖t(yk − xk) + xk − x∗‖2 − σ(t − 1)

Lf − σ
‖xk − x∗‖2

]
=
Lf − σ

2

[
Lf − σt

Lf − σ

∥∥∥∥xk − x∗ +
Lf − σ

Lf − σt
t(yk − xk)

∥∥∥∥2 − σ(t− 1)

Lf − σt
‖xk − x∗‖2

]

≤ Lf − σt

2

∥∥∥∥xk − x∗ +
Lf − σ

Lf − σt
t(yk − xk)

∥∥∥∥2 .
We can therefore conclude from the above inequality and (10.56) that

t(t− 1)vk +
Lf − σt

2

∥∥∥∥xk − x∗ +
Lf − σ

Lf − σt
t(yk − xk)

∥∥∥∥2
≥ t2vk+1 +

Lf
2

‖txk+1 − (x∗ + (t− 1)xk)‖2. (10.57)

If k ≥ 1, then using the relations yk = xk +
√
κ−1√
κ+1

(xk − xk−1) and t =
√
κ =

√
Lf

σ ,

we obtain

xk − x∗ +
Lf − σ

Lf − σt
t(yk − xk) = xk − x∗ +

Lf − σ

Lf − σt

t(t− 1)

t+ 1
(xk − xk−1)

= xk − x∗ +
κ− 1

κ−
√
κ

√
κ(

√
κ− 1)√

κ+ 1
(xk − xk−1)

= xk − x∗ + (
√
κ− 1)(xk − xk−1)

= txk − (x∗ + (t− 1)xk−1),
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and obviously, for the case k = 0 (recalling that y0 = x0),

x0 − x∗ +
Lf − σ

Lf − σt
t(y0 − x0) = x0 − x∗.

We can thus deduce that (10.57) can be rewritten as (after division by t2 and using

again the definition of t as t =
√

Lf

σ )

vk+1 +
σ

2
‖txk+1 − (x∗ + (t− 1)xk)‖2

≤

⎧⎪⎨⎪⎩
(
1− 1

t

) [
vk +

σ
2 ‖txk − (x∗ + (t− 1)xk−1)‖2

]
, k ≥ 1,(

1− 1
t

) [
v0 +

σ
2 ‖x0 − x∗‖2

]
, k = 0.

We can thus conclude that for any k ≥ 0,

vk ≤
(
1− 1

t

)k (
v0 +

σ

2
‖x0 − x∗‖2

)
,

which is the desired result (10.53).

10.8 Smoothing
61

10.8.1 Motivation

In Chapters 8 and 9 we considered methods for solving nonsmooth convex optimiza-
tion problems with complexity O(1/ε2), meaning that an order of 1/ε2 iterations
were required in order to obtain an ε-optimal solution. On the other hand, FISTA
requires O(1/

√
ε) iterations in order to find an ε-optimal solution of the composite

model
min
x∈E

f(x) + g(x), (10.58)

where f is Lf -smooth and convex and g is a proper closed and convex function. In
this section we will show how FISTA can be used to devise a method for more general
nonsmooth convex problems in an improved complexity of O(1/ε). In particular,
the model that will be considered includes an additional third term to (10.58):

min{f(x) + h(x) + g(x) : x ∈ E}. (10.59)

The function h will be assumed to be real-valued and convex; we will not assume
that it is easy to compute its prox operator (as is implicitly assumed on g), and
hence solving it directly using FISTA with smooth and nonsmooth parts taken as
(f, g + h) is not a practical solution approach. The idea will be to find a smooth
approximation of h, say h̃, and solve the problem via FISTA with smooth and
nonsmooth parts taken as (f + h̃, g). This simple idea will be the basis for the
improved O(1/ε) complexity. To be able to describe the method, we will need to
study in more detail the notions of smooth approximations and smoothability.

61The idea of producing an O(1/ε) complexity result for nonsmooth problems by employing an
accelerated gradient method was first presented and developed by Nesterov in [95]. The extension
presented in Section 10.8 to the three-part composite model and to the setting of more general
smooth approximations was developed by Beck and Teboulle in [20], where additional results and
extensions can also be found.
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10.8.2 Smoothable Functions and Smooth Approximations

Definition 10.43 (smoothable functions). A convex function h : E → R is
called (α, β)-smoothable (α, β > 0) if for any μ > 0 there exists a convex differ-
entiable function hμ : E → R such that the following holds:

(a) hμ(x) ≤ h(x) ≤ hμ(x) + βμ for all x ∈ E.

(b) hμ is α
μ -smooth.

The function hμ is called a 1
μ
-smooth approximation of h with parameters (α, β).

Example 10.44 (smooth approximation of ‖x‖2). Consider the function h :
Rn → R given by h(x) = ‖x‖2. For any μ > 0, define hμ(x) ≡

√
‖x‖22 + μ2 − μ.

Then for any x ∈ R
n,

hμ(x) =
√

‖x‖22 + μ2 − μ ≤ ‖x‖2 + μ− μ = ‖x‖2 = h(x),

h(x) = ‖x‖2 ≤
√

‖x‖22 + μ2 = hμ(x) + μ,

showing that property (a) in the definition of smoothable functions holds with
β = 1. To show that property (b) holds with α = 1, note that by Example 5.14,
the function ϕ(x) ≡

√
‖x‖22 + 1 is 1-smooth, and hence hμ(x) = μϕ(x/μ) − μ is

1
μ -smooth. We conclude that hμ is a 1

μ -smooth approximation of h with parameters

(1, 1). In the terminology described in Definition 10.43, we showed that h is (1, 1)-
smoothable.

Example 10.45 (smooth approximation of maxi{xi}). Consider the function
h : Rn → R given by h(x) = max{x1, x2, . . . , xn}. For any μ > 0, define the function

hμ(x) = μ log
(∑n

i=1 e
xi/μ

)
− μ logn.

Then for any x ∈ Rn,

hμ(x) = μ log

(
n∑
i=1

exi/μ

)
− μ logn

≤ μ log
(
nemaxi{xi}/μ

)
− μ logn = h(x), (10.60)

h(x) = max
i

{xi} ≤ μ log

(
n∑
i=1

exi/μ

)
= hμ(x) + μ logn. (10.61)

By Example 5.15, the function ϕ(x) = log(
∑n

i=1 e
xi) is 1-smooth, and hence the

function hμ(x) = μϕ(x/μ) − μ logn is 1
μ -smooth. Combining this with (10.60)

and (10.61), it follows that hμ is a 1
μ -smooth approximation of h with parameters

(1, logn). We conclude in particular that h is (1, logn)-smoothable.

The following result describes two important calculus rules of smooth approx-
imations.
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Theorem 10.46 (calculus of smooth approximations).

(a) Let h1, h2 : E → R be convex functions, and let γ1, γ2 be nonnegative numbers.
Suppose that for a given μ > 0, hiμ is a 1

μ -smooth approximation of hi with pa-

rameters (αi, βi) for i = 1, 2. Then γ1h
1
μ+γ2h

2
μ is a 1

μ -smooth approximation

of γ1h
1 + γ2h

2 with parameters (γ1α1 + γ2α2, γ1β1 + γ2β2).

(b) Let A : E → V be a linear transformation between the Euclidean spaces E and
V. Let h : V → R be a convex function and define

q(x) ≡ h(A(x) + b),

where b ∈ V. Suppose that for a given μ > 0, hμ is a 1
μ -smooth approximation

of h with parameters (α, β). Then the function qμ(x) ≡ hμ(A(x) + b) is a
1
μ -smooth approximation of q with parameters(α‖A‖2, β).

Proof. (a) By its definition, hiμ (i = 1, 2) is convex, αi

μ -smooth and satisfies

hiμ(x) ≤ hi(x) ≤ hiμ(x)+βiμ for any x ∈ E. We can thus conclude that γ1h
1
μ+γ2h

2
μ

is convex and that for any x,y ∈ E,

γ1h
1
μ(x) + γ2h

2
μ(x) ≤ γ1h

1(x) + γ2h
2(x) ≤ γ1h

1
μ(x) + γ2h

2
μ(x) + (γ1β1 + γ2β2)μ,

as well as

‖∇(γ1h
1
μ + γ2h

2
μ)(x) − ∇(γ1h

1
μ + γ2h

2
μ)(y)‖ ≤ γ1‖∇h1μ(x)− ∇h1μ(y)‖

+γ2‖∇h2μ(x)− ∇h2μ(y)‖

≤ γ1
α1

μ
‖x− y‖+ γ2

α2

μ
‖x− y‖

=
γ1α1 + γ2α2

μ
‖x− y‖,

establishing the fact that γ1h
1
μ+ γ2h

2
μ is a 1

μ -smooth approximation of γ1h
1 + γ2h

2

with parameters (γ1α1 + γ2α2, γ1β1 + γ2β2).
(b) Since hμ is a 1

μ -smooth approximation of h with parameters (α, β), it
follows that hμ is convex, αμ -smooth and for any y ∈ V,

hμ(y) ≤ h(y) ≤ hμ(y) + βμ. (10.62)

Let x ∈ E. Plugging y = A(x) + b into (10.62), we obtain that

qμ(x) ≤ q(x) ≤ qμ(x) + βμ. (10.63)

In addition, by the α
μ -smoothness of hμ, we have for any x,y ∈ E,

‖∇qμ(x)− ∇qμ(y)‖ = ‖AT∇hμ(A(x) + b)− AT∇hμ(A(y) + b)‖
≤ ‖AT ‖ · ‖∇hμ(A(x) + b)− ∇hμ(A(y) + b)‖

≤ α

μ
‖AT ‖ · ‖A(x) + b− A(y) − b‖

≤ α

μ
‖AT ‖ · ‖A‖ · ‖x− y‖

=
α‖A‖2
μ

‖x− y‖,
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where the last equality follows by the fact that ‖A‖ = ‖AT ‖ (see Section 1.14). We

have thus shown that the convex function hμ is α‖A‖2
μ -smooth and satisfies (10.63)

for any x ∈ E, establishing the desired result.

A direct result of Theorem 10.46 is the following corollary stating the preser-
vation of smoothability under nonnegative linear combinations and affine transfor-
mations of variables.

Corollary 10.47 (operations preserving smoothability).

(a) Let h1, h2 : E → R be convex functions which are (α1, β1)- and (α2, β2)-
smoothable, respectively, and let γ1, γ2 be nonnegative numbers. Then γ1h

1 +
γ2h

2 is a (γ1α1 + γ2α2, γ1β1 + γ2β2)-smoothable function.

(b) Let A : E → V be a linear transformation between the Euclidean spaces E and
V. Let h : V → R be a convex (α, β)-smoothable function and define

q(x) ≡ h(A(x) + b),

where b ∈ V. Then q is (α‖A‖2, β)-smoothable.

Example 10.48 (smooth approximation of ‖Ax + b‖2). Let q : Rn → R be
given by q(x) = ‖Ax+b‖2, where A ∈ R

m×n and b ∈ R
m. Then q(x) = g(Ax+b),

where g : Rm → R is given by g(y) = ‖y‖2. Let μ > 0. By Example 10.44,
gμ(y) =

√
‖y‖22 + μ2 − μ is a 1

μ -smooth approximation of g with parameters (1, 1),

and hence, by Theorem 10.46(b),

qμ(x) ≡ gμ(Ax + b) =
√

‖Ax+ b‖22 + μ2 − μ

is a 1
μ -smooth approximation of q with parameters (‖A‖22,2, 1).

Example 10.49 (smooth approximation of piecewise affine functions). Let
q : Rn → R be given by q(x) = maxi=1,...,m{aTi x + bi}, where ai ∈ R

n and bi ∈ R

for any i = 1, 2, . . . ,m. Then q(x) = g(Ax+b), where g(y) = max{y1, y2, . . . , ym},
A is the matrix whose rows are aT1 , a

T
2 , . . . , a

T
m, and b = (b1, b2, . . . , bm)T . Let

μ > 0. By Example 10.45, gμ(y) = μ log
(∑m

i=1 e
yi/μ

)
− μ logm is a 1

μ -smooth

approximation of g with parameters (1, logm). Therefore, by Theorem 10.46(b),
the function

qμ(x) ≡ gμ(Ax+ b) = μ log

(
m∑
i=1

e(a
T
i x+bi)/μ

)
− μ logm

is a 1
μ -smooth approximation of q with parameters (‖A‖22,2, logm).

Example 10.50 (tightness of the smoothing parameters). Consider the
absolute value function q : R → R given by q(x) = |x|. By Example 10.44, for any

μ > 0 the function
√
x2 + μ2−μ is a 1

μ -smooth approximation of q with parameters

(1, 1). Let us consider an alternative way to construct a smooth approximation of
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q using Theorem 10.46. Note that q(x) = max{x,−x}. Thus, by Example 10.49
the function qμ(x) = μ log(ex/μ + e−x/μ) − μ log 2 is a 1

μ -smooth approximation

of q with parameters (‖A‖22,2, log 2), where A =
(

1

−1

)
. Since ‖A‖22,2 = 2, we

conclude that qμ is a 1
μ -smooth approximation of q with parameters (2, log 2). The

question that arises is whether these parameters are tight, meaning whether they are
the smallest ones possible. The β-parameter is indeed tight (since limx→∞ q(x) −
qμ(x) = μ log(2)); however, the α-parameter is not tight. To see this, note that for
any x ∈ R,

q′′1 (x) =
4

(ex + e−x)2
.

Therefore, for any x ∈ R, it holds that |q′′1 (x)| ≤ 1, and hence, by Theorem 5.12, q1
is 1-smooth. Consequently, qμ, which can also be written as qμ(x) = μq1(x/μ), is
1
μ -smooth. We conclude that qμ, is a

1
μ -smooth approximation of q with parameters

(1, log 2).

10.8.3 The Moreau Envelope Revisited

A natural 1
μ -smooth approximation of a given real-valued convex function h : E → R

is its Moreau envelopeMμ
h , which was discussed in detail in Section 6.7. Recall that

the Moreau envelope of h is given by

Mμ
h (x) = min

u∈E

{
h(u) +

1

2μ
‖x− u‖2

}
.

We will now show that whenever h is in addition Lipschitz, the Moreau envelope is
indeed a 1

μ -smooth approximation.

Theorem 10.51 (smoothability of real-valued Lipschitz convex functions).
Let h : E → R be a convex function satisfying

|h(x) − h(y)| ≤ 
h‖x− y‖ for all x,y ∈ E.

Then for any μ > 0, Mμ
h is a 1

μ -smooth approximation of h with parameters (1,
2h
2 ).

Proof. By Theorem 6.60, Mμ
h is 1

μ -smooth. For any x ∈ E,

Mμ
h (x) = min

u∈E

{
h(u) +

1

2μ
‖u− x‖2

}
≤ h(x) +

1

2μ
‖x− x‖2 = h(x).

Let gx ∈ ∂h(x). Since h is Lipschitz with constant 
h, it follows by Theorem 3.61
that ‖gx‖ ≤ 
h, and hence

Mμ
h (x)− h(x) = min

u∈E

{
h(u)− h(x) +

1

2μ
‖u− x‖2

}
≥ min

u∈E

{
〈gx,u− x〉+ 1

2μ
‖u− x‖2

}
= −μ

2
‖gx‖2

≥ − 

2
h

2
μ,
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where the subgradient inequality was used in the first inequality. To summarize, we
obtained that the convex function Mμ

h is 1
μ -smooth and satisfies

Mμ
h (x) ≤ h(x) ≤ Mμ

h (x) +

2h
2
μ,

showing that Mμ
h is a 1

μ -smooth approximation of h with parameters (1,
2h
2 ).

Corollary 10.52. Let h : E → R be convex and Lipschitz with constant 
h. Then

h is (1,
2h
2 )-smoothable.

Example 10.53 (smooth approximation of the l2-norm). Consider the func-
tion h : Rn → R given by h(x) = ‖x‖2. Then h is convex and Lipschitz with
constant 
h = 1. Hence, by Theorem 10.51, for any μ > 0, the function (see
Example 6.54)

Mμ
h (x) = Hμ(x) =

⎧⎪⎨⎪⎩
1
2μ‖x‖22, ‖x‖2 ≤ μ,

‖x‖2 − μ
2 , ‖x‖2 > μ,

is a 1
μ -smooth approximation of h with parameters (1, 12 ).

Example 10.54 (smooth approximation of the l1-norm). Consider the func-
tion h : Rn → R given by h(x) = ‖x‖1. Then h is convex and Lipschitz with
constant 
h =

√
n. Hence, by Theorem 10.51, for any μ > 0, the Moreau envelope

of h given by

Mμ
h (x) =

n∑
i=1

Hμ(xi)

is a 1
μ -smooth approximation of h with parameters (1, n2 ).

Example 10.55 (smooth approximations of the absolute value function).
Let us consider again the absolute value function h(x) = |x|. In our discussions we
actually considered three possible 1

μ -smooth approximations of h, which are detailed
below along with their parameters:

• (Example 10.44) h1μ(x) =
√
x2 + μ2 − μ, (α, β) = (1, 1).

• (Example 10.50) h2μ(x) = μ log(ex/μ + e−x/μ)− μ log 2, (α, β) = (1, log 2).

• (Example 10.53) h3μ(x) = Hμ(x), (α, β) = (1, 12 ).

Obviously, the Huber function is the best 1
μ -smooth approximation out of the three

functions since all the functions have the same α-parameter, but h3μ has the small-
est β-parameter. This phenomenon is illustrated in Figure 10.3, where the three
functions are plotted (for the case μ = 0.2).
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Figure 10.3. The absolute value function along with its three 5-smooth
approximations (μ = 0.2). “squared-based” is the function h1μ(x) =

√
x2 + μ2 − μ,

“log-exp” is h2μ(x) = μ log(ex/μ + e−x/μ)− μ log 2, and “Huber” is h3μ(x) = Hμ(x).

10.8.4 The S-FISTA Method

The optimization model that we consider is

min
x∈E

{H(x) ≡ f(x) + h(x) + g(x)}, (10.64)

where the following assumptions are made.

Assumption 10.56.

(A) f : E → R is Lf -smooth (Lf ≥ 0).

(B) h : E → R is (α, β)-smoothable (α, β > 0). For any μ > 0, hμ denotes a
1
μ -smooth approximation of h with parameters (α, β).

(C) g : E → (−∞,∞] is proper closed and convex.

(D) H has bounded level sets. Specifically, for any δ > 0, there exists Rδ > 0 such
that

‖x‖ ≤ Rδ for any x satisfying H(x) ≤ δ.

(E) The optimal set of problem (10.64) is nonempty and denoted by X∗. The
optimal value of the problem is denoted by Hopt.
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Assumption (E) is actually a consequence of assumptions (A)–(D). The idea
is to consider the smoothed version of (10.64),

min
x∈E

{Hμ(x) ≡ f(x) + hμ(x)︸ ︷︷ ︸
Fμ(x)

+g(x)}, (10.65)

for some smoothing parameter μ > 0, and solve it using an accelerated method with
convergence rate of O(1/k2) in function values. Actually, any accelerated method
can be employed, but we will describe the version in which FISTA with constant
stepsize is employed on (10.65) with the smooth and nonsmooth parts taken as Fμ
and g, respectively. The method is described in detail below. Note that a Lipschitz
constant of the gradient of Fμ is Lf +

α
μ , and thus the stepsize is taken as 1

Lf+
α
μ
.

S-FISTA

Input: x0 ∈ dom(g), μ > 0.
Initialization: set y0 = x0, t0 = 1; construct hμ—a 1

μ -smooth approximation of

h with parameters (α, β); set Fμ = f + hμ, L̃ = Lf +
α
μ .

General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) set xk+1 = prox 1
L̃
g

(
yk − 1

L̃
∇Fμ(yk)

)
;

(b) set tk+1 =
1+

√
1+4t2k
2 ;

(c) compute yk+1 = xk+1 +
(
tk−1
tk+1

)
(xk+1 − xk).

The next result shows how, given an accuracy level ε > 0, the parameter μ
can be chosen to ensure that an ε-optimal solution of the original problem (10.64)
is reached in O(1/ε) iterations.

Theorem 10.57 (O(1/ε) complexity of S-FISTA). Suppose that Assumption
10.56 holds. Let ε ∈ (0, ε̄) for some fixed ε̄ > 0. Let {xk}k≥0 be the sequence
generated by S-FISTA with smoothing parameter

μ =

√
α

β

ε√
αβ +

√
αβ + Lfε

.

Then for any k satisfying

k ≥ 2
√
2αβΓ

1

ε
+
√
2LfΓ

1√
ε
,

where Γ = (RH(x0)+ ε̄
2
+ ‖x0‖)2, it holds that H(xk)−Hopt ≤ ε.

Proof. By definition of S-FISTA, {xk}k≥0 is the sequence generated by FISTA
employed on problem (10.65) with input (Fμ, g,x

0). Note that

argminx∈EHμ(x) = argminx∈E
{
Hμ(x) : Hμ(x) ≤ Hμ(x

0)
}
. (10.66)
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Since Hμ is closed, the feasible set C ≡ {x ∈ E : Hμ(x) ≤ Hμ(x
0)} of the right-hand

side problem in (10.66) is closed. We will show that it is also bounded. Indeed, since
hμ is a 1

μ -smooth approximation of h with parameters (α, β), it follows in particular

that h(x) ≤ hμ(x) + βμ for all x ∈ E, and consequently H(x) ≤ Hμ(x) + βμ for all
x ∈ E. Thus,

C ⊆ {x ∈ E : H(x) ≤ Hμ(x
0) + βμ},

which by Assumption 10.56(D) implies that C is bounded and hence, by its closed-
ness, also compact. We can therefore conclude by Weierstrass theorem for closed
functions (Theorem 2.12) that an optimal solution of problem (10.65) is attained
at some point x∗μ with an optimal value Hμ,opt. By Theorem 10.34, since Fμ is
(Lf +

α
μ )-smooth,

Hμ(x
k)−Hμ,opt ≤ 2

(
Lf +

α

μ

) ‖x0 − x∗μ‖2

(k + 1)2
= 2

(
Lf +

α

μ

)
Λ

(k + 1)2
, (10.67)

where Λ = ‖x0 −x∗μ‖2. We use again the fact that hμ is a 1
μ -smooth approximation

of h with parameters (α, β), from which it follows that for any x ∈ E,

Hμ(x) ≤ H(x) ≤ Hμ(x) + βμ. (10.68)

In particular, the following two inequalities hold:

Hopt ≥ Hμ,opt and H(xk) ≤ Hμ(x
k) + βμ, k = 0, 1, . . . , (10.69)

which, combined with (10.67), yields

H(xk)−Hopt ≤ Hμ(x
k) + βμ−Hμ,opt ≤ 2Lf

Λ

(k + 1)2
+

(
2αΛ

(k + 1)2

)
1

μ
+ βμ

≤ 2Lf
Λ

k2
+

(
2αΛ

k2

)
1

μ
+ βμ.

Therefore, for a given K > 0, it holds that for any k ≥ K,

H(xk)−Hopt ≤ 2Lf
Λ

K2
+

(
2αΛ

K2

)
1

μ
+ βμ. (10.70)

Minimizing the right-hand side w.r.t. μ, we obtain

μ =

√
2αΛ

β

1

K
. (10.71)

Plugging the above expression into (10.70), we conclude that for any k ≥ K,

H(xk)−Hopt ≤ 2Lf
Λ

K2
+ 2

√
2αβΛ

1

K
.

Thus, to guarantee that xk is an ε-optimal solution for any k ≥ K, it is enough
that K will satisfy

2Lf
Λ

K2
+ 2

√
2αβΛ

1

K
≤ ε.
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Denoting t =
√
2Λ
K , the above inequality reduces to

Lf t
2 + 2

√
αβt− ε ≤ 0,

which, by the fact that t > 0, is equivalent to
√
2Λ

K
= t ≤

−
√
αβ +

√
αβ + Lfε

Lf
=

ε√
αβ +

√
αβ + Lfε

.

We conclude that K should satisfy

K ≥
√
2Λαβ +

√
2Λαβ + 2ΛLfε

ε
.

In particular, if we choose

K = K1 ≡
√
2Λαβ +

√
2Λαβ + 2ΛLfε

ε

and μ according to (10.71), meaning that

μ =

√
2αΛ

β

1

K1
=

√
α

β

ε√
αβ +

√
αβ + Lfε

,

then for any k ≥ K1 it holds that H(xk)−Hopt ≤ ε. By (10.68) and (10.69),

H(x∗μ)− βμ ≤ Hμ(x
∗
μ) = Hμ,opt ≤ Hopt ≤ H(x0),

which along with the inequality

μ =

√
α

β

ε√
αβ +

√
αβ + Lfε

≤
√
α

β

ε√
αβ +

√
αβ

≤ ε̄

2β

implies thatH(x∗μ) ≤ H(x0)+ ε̄
2 , and hence, by Assumption 10.56(D), it follows that

‖x∗μ‖ ≤ Rδ, where δ = H(x0) + ε̄
2 . Therefore, Λ = ‖x∗μ − x0‖2 ≤ (Rδ + ‖x0‖)2 = Γ.

Consequently,

K1 =

√
2Λαβ +

√
2Λαβ + 2ΛLfε

ε
√
γ+δ≤√γ+

√
δ ∀γ,δ≥0

≤
2
√
2Λαβ +

√
2ΛLfε

ε

≤
2
√
2Γαβ +

√
2ΓLfε

ε
≡ K2,

and hence for any k ≥ K2, we have that H(xk)−Hopt ≤ ε, establishing the desired
result.

Remark 10.58. Note that the smoothing parameter chosen in Theorem 10.57 does
not depend on Γ, although the number of iterations required to obtain an ε-optimal
solution does depend on Γ.
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Example 10.59. Consider the problem

min
x∈E

{h(x) : x ∈ C}, (10.72)

where C is a nonempty closed and convex set and h : E → R is convex function,
which is Lipschitz with constant 
h. Problem (10.72) fits model (10.64) with f ≡ 0
and g = δC . By Theorem 10.51, for any μ > 0 the Moreau envelope Mμ

h is a
1
μ -smooth approximation of h with parameters (α, β) = (1,

2h
2 ). In addition, by

Theorem 6.60, ∇Mμ
h (x) =

1
μ (x− proxμh(x)). We will pick hμ =Mμ

h , and therefore

Fμ = f +Mμ
h = Mμ

h . By Theorem 10.57, after employing O(1/ε) iterations of the
S-FISTA method with (recalling that Lf = 0)

μ =

√
α

β

ε√
αβ +

√
αβ + Lfε

=

√
α

β

ε√
αβ +

√
αβ

=
ε

2β
=

ε


2h
,

an ε-optimal solution will be achieved. The stepsize is 1
L̃
, where L̃ = α

μ = 1
μ . The

main update step of S-FISTA has the following form:

xk+1 = prox 1
L̃
g

(
yk − 1

L̃
∇Fμ(yk)

)
= PC

(
yk − 1

L̃μ
(yk − proxμh(y

k))

)
= PC(proxμh(y

k)).

The S-FISTA method for solving (10.72) is described below.

S-FISTA for solving (10.72)

Initialization: set y0 = x0 ∈ C, t0 = 1, μ = ε
2h
, and L̃ =

2h
ε .

General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) xk+1 = PC(proxμh(y
k));

(b) tk+1 =
1+

√
1+4t2k
2 ;

(c) yk+1 = xk+1 +
(
tk−1
tk+1

)
(xk+1 − xk).

Example 10.60. Consider the problem

(P) min
x∈Rn

{
1

2
‖Ax− b‖22 + ‖Dx‖1 + λ‖x‖1

}
,

where A ∈ R
m×n,b ∈ Rm,D ∈ Rp×n, and λ > 0. Problem (P) fits model (10.64)

with f(x) = 1
2‖Ax − b‖22, h(x) = ‖Dx‖1, and g(x) = λ‖x‖1. Assumption 10.56

holds: f is convex and Lf -smooth with Lf = ‖ATA‖2,2 = ‖A‖22,2, g is proper closed
and convex, h is real-valued and convex, and the level sets of the objective function
are bounded. To show that h is smoothable, and to find its parameters, note that
h(x) = q(Dx), where q : Rp → R is given by q(y) = ‖y‖1. By Example 10.54, for
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any μ > 0, qμ(y) = Mμ
q (y) =

∑p
i=1Hμ(yi) is a

1
μ -smooth approximation of q with

parameters (1, p2 ). By Theorem 10.46(b), qμ(Dx) is a 1
μ -smooth approximation of

h with parameters (α, β) = (‖D‖22,2, p2 ), and we will set hμ(x) = Mμ
q (Dx) and

Fμ(x) = f(x) + hμ(x). Therefore, invoking Theorem 10.57, to obtain an ε-optimal
solution of problem (P), we need to employ the S-FISTA method with

μ =

√
α

β

ε√
αβ +

√
αβ + Lfε

=
2‖D‖2,2√

p
· ε√

‖D‖22,2p+
√

‖D‖22,2p+ 2‖ATA‖2,2ε
. (10.73)

Since Fμ(x) = f(x) +Mμ
q (Dx), it follows that

∇Fμ(x) = ∇f(x) +DT∇Mμ
q (Dx)

= ∇f(x) + 1
μD

T (Dx− proxμq(Dx)) [Theorem 6.60]

= ∇f(x) + 1
μD

T (Dx− Tμ(Dx)). [Example 6.8]

Below we write the S-FISTA method for solving problem (P) for a given tolerance
parameter ε > 0.

S-FISTA for solving (P)

Initialization: set y0 = x0 ∈ R
n, t0 = 1; set μ as in (10.73) and L̃ =

‖A‖22,2 +
‖D‖22,2
μ .

General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) xk+1 = Tλ/L̃
(
yk − 1

L̃
(AT (Ayk − b) + 1

μD
T (Dyk − Tμ(Dyk)))

)
;

(b) tk+1 =
1+

√
1+4t2k
2 ;

(c) yk+1 = xk+1 +
(
tk−1
tk+1

)
(xk+1 − xk).

It is interesting to note that in the case of problem (P) we can actually compute
the constant Γ that appears in Theorem 10.57. Indeed, if H(x) ≤ α, then

λ‖x‖1 ≤ 1

2
‖Ax− b‖22 + ‖Dx‖1 + λ‖x‖1 ≤ α,

and since ‖x‖2 ≤ ‖x‖1, it follows that Rα can be chosen as α
λ , from which Γ can be

computed.

10.9 Non-Euclidean Proximal Gradient Methods
In this section, and in this section only, the underlying space will not be assumed to
be Euclidean. We will consider two different approaches for handling this situation.
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The first tackles unconstrained smooth problems through a variation of the gradient
method, and the second, which is aimed at solving the composite model, is based
on replacing the Euclidean prox operator by a mapping based on the Bregman
distance.

10.9.1 The Non-Euclidean Gradient Method

Consider the unconstrained problem

min{f(x) : x ∈ E}, (10.74)

where we assume that f is Lf -smooth w.r.t. the underlying norm. Recall that the
gradient method (see Section 10.2) has the form

xk+1 = xk − tk∇f(xk). (10.75)

As was already discussed in Section 9.1 (in the context of the mirror descent
method), this scheme has a “philosophical” flaw since xk ∈ E while ∇f(xk) ∈ E∗.
Obviously, as the only difference between E and E∗ in this book is their underlying
norm, there is no practical problem to invoke the scheme (10.75). Nonetheless, we
will change the scheme (10.75) and replace ∇f(xk) ∈ E∗ with a “primal counter-
part” in E. For any vector a ∈ E

∗, we define the set of primal counterparts of a
as

Λa = argmaxv∈E{〈a,v〉 : ‖v‖ ≤ 1}. (10.76)

The lemma below presents some elementary properties of Λa that follow immedi-
ately by its definition and the definition of the dual norm.

Lemma 10.61 (basic properties of the set of primal counterparts). Let
a ∈ E∗.

(a) If a 
= 0, then ‖a†‖ = 1 for any a† ∈ Λa.

(b) If a = 0, then Λa = B‖·‖[0, 1].

(c) 〈a, a†〉 = ‖a‖∗ for any a† ∈ Λa.

We also note that by the conjugate subgradient theorem (Corollary 4.21),

Λa = ∂h(a), where h(·) = ‖ · ‖∗.

Example 10.62. Suppose that E = Rn endowed with the Euclidean l2-norm. In
this case, for any a 
= 0,

Λa =

{
a

‖a‖2

}
.

Example 10.63. Suppose that E = Rn endowed with the l1-norm. In this case,
for any a 
= 0, by Example 3.52,

Λa = ∂‖ · ‖∞(a) =

⎧⎨⎩ ∑
i∈I(a)

λisgn(ai)ei :
∑
i∈I(a)

λi = 1, λj ≥ 0, j ∈ I(a)

⎫⎬⎭ ,

where I(a) = argmaxi=1,2,...,n|ai|.
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Example 10.64. Suppose that E = R
n endowed with the l∞-norm. For any a 
= 0,

Λa = ∂h(a), where h(·) = ‖ · ‖1. Then, by Example 3.41,

Λa = {z ∈ R
n : zi = sgn(ai), i ∈ I=(a), |zj | ≤ 1, j ∈ I0(a)} ,

where

I=(a) = {i ∈ {1, 2, . . . , n} : ai 
= 0}, I0(a) = {i ∈ {1, 2, . . . , n} : ai = 0}.

We are now ready to present the non-Euclidean gradient method in which the
gradient ∇f(xk) is replaced by a primal counterpart ∇f(xk)† ∈ Λ∇f(xk).

The Non-Euclidean Gradient Method

Initialization: pick x0 ∈ E arbitrarily.
General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) pick ∇f(xk)† ∈ Λ∇f(xk) and Lk > 0;

(b) set xk+1 = xk − ‖∇f(xk)‖∗
Lk

∇f(xk)†.

We begin by establishing a sufficient decrease property. The proof is almost
identical to the proof of Lemma 10.4.

Lemma 10.65 (sufficient decrease for the non-Euclidean gradient method).
Let f : E → R be an Lf -smooth function, and let {xk}k≥0 be the sequence generated
by the non-Euclidean gradient method. Then for any k ≥ 0,

f(xk)− f(xk+1) ≥
Lk − Lf

2

L2
k

‖∇f(xk)‖2∗. (10.77)

Proof. By the descent lemma (Lemma 5.7) we have

f(xk+1) ≤ f(xk) + 〈∇f(xk),xk+1 − xk〉+ Lf
2

‖xk+1 − xk‖2

= f(xk)− ‖∇f(xk)‖∗
Lk

〈∇f(xk),∇f(xk)†〉+ Lf‖∇f(xk)‖2∗
2L2

k

(∗)
= f(xk)− ‖∇f(xk)‖2∗

Lk
+
Lf‖∇f(xk)‖2∗

2L2
k

= f(xk)−
Lk − Lf

2

L2
k

‖∇f(xk)‖2∗,

where (∗) follows by Lemma 10.61(c).

Similarly to Section 10.3.3, we will consider both constant and backtracking
stepsize strategies. In addition, we will also consider an exact line search proce-
dure.
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• Constant. Lk = L̄ ∈
(
Lf

2 ,∞
)
for all k.

• Backtracking procedure B4. The procedure requires three parame-
ters (s, γ, η), where s > 0, γ ∈ (0, 1), and η > 1. The choice of Lk is done
as follows: First, Lk is set to be equal to the initial guess s. Then, while

f(xk)− f

(
xk − ‖∇f(xk)‖∗

Lk
∇f(xk)†

)
<

γ

Lk
‖∇f(xk)‖2∗,

we set Lk := ηLk. In other words, Lk is chosen as Lk = sηik , where ik
is the smallest nonnegative integer for which the condition

f(xk)− f

(
xk − ‖∇f(xk)‖∗

sηik
∇f(xk)†

)
≥ γ

sηik
‖∇f(xk)‖2∗

is satisfied.

• Exact line search. Lk is chosen as

Lk ∈ argminL>0f

(
xk − ‖∇f(xk)‖∗

L
∇f(xk)†

)
.

By the same arguments given in Remark 10.13, it follows that if the back-
tracking procedure B4 is used, then

Lk ≤ max

{
s,

ηLf
2(1− γ)

}
. (10.78)

Convergence Analysis in the Nonconvex Case

The statements and proofs of the next two results (Lemma 10.66 and Theorem
10.67) are similar those of Lemma 10.14 and Theorem 10.15.

Lemma 10.66 (sufficient decrease of the non-Euclidean gradient method).
Let f be an Lf -smooth function. Let {xk}k≥0 be the sequence generated by the
non-Euclidean gradient method for solving problem (10.74) with either a constant

stepsize corresponding to Lk = L̄ ∈
(Lf

2 ,∞
)
; a stepsize chosen by the backtracking

procedure B4 with parameters (s, γ, η) satisfying s > 0, γ ∈ (0, 1), η > 1; or an exact
line search for computing the stepsize. Then for any k ≥ 0,

f(xk)− f(xk+1) ≥M‖∇f(xk)‖2∗, (10.79)

where

M =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

L̄−
Lf
2

(L̄)
2 , constant stepsize,

γ

max
{
s,

ηLf
2(1−γ)

} , backtracking,

1
2Lf

, exact line search.

(10.80)
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Proof. The result for the constant stepsize setting follows by plugging Lk = L̄
in (10.77). If Lk is chosen by the exact line search procedure, then, in particular,

f(xk+1) ≤ f(x̃k), where x̃k = xk − ‖∇f(xk)‖∗
Lf

∇f(xk)†, and hence

f(xk)− f(xk+1) ≥ f(xk)− f(x̃k) ≥ 1

2Lf
‖∇f(xk)‖2∗,

where we used the result already established for the constant stepsize in the second
inequality. As for the backtracking procedure, by its definition and the upper bound
(10.78) on Lk we have

f(xk)− f(xk+1) ≥ γ

Lk
‖∇f(xk)‖2∗ ≥

γ

max
{
s,

ηLf

2(1−γ)

}‖∇f(xk)‖2∗.

Theorem 10.67 (convergence of the non-Euclidean gradient method—
nonconvex case). Suppose that f is an Lf -smooth function. Let {xk}k≥0 be the
sequence generated by the non-Euclidean gradient method for solving the problem

min
x∈E

f(x) (10.81)

with either a constant stepsize corresponding to Lk = L̄ ∈
(Lf

2 ,∞
)
; a stepsize

chosen by the backtracking procedure B4 with parameters (s, γ, η) satisfying s >
0, γ ∈ (0, 1), η > 1; or an exact line search for computing the stepsize. Then

(a) the sequence {f(xk)}k≥0 is nonincreasing; in addition, f(xk+1) < f(xk) if
and only if ∇f(xk) 
= 0;

(b) if the sequence {f(xk)}k≥0 is bounded below, then ∇f(xk) → 0 as k → ∞;

(c) if the optimal value of (10.81) is finite and equal to fopt, then

min
n=0,1,...,k

‖∇f(xk)‖∗ ≤
√
f(x0)− fopt√
M(k + 1)

, (10.82)

where M is given in (10.80);

(d) all limit points of the sequence {xk}k≥0 are stationary points of problem
(10.81).

Proof. (a) By Lemma 10.66,

f(xk)− f(xk+1) ≥M‖∇f(xk)‖2∗, (10.83)

whereM > 0 is given in (10.80). The inequality (10.83) readily implies that f(xk) ≥
f(xk+1) and that if ∇f(xk) 
= 0, then f(xk+1) < f(xk). Finally, if ∇f(xk) = 0,
then xk = xk+1, and hence f(xk) = f(xk+1).

(b) Since the sequence {f(xk)}k≥0 is nonincreasing and bounded below, it
converges. Thus, in particular f(xk) − f(xk+1) → 0 as k → ∞, which, combined
with (10.83), implies that ∇f(xk) → 0 as k → ∞.

Copyright © 2017 Society for Industrial and Applied Mathematics



320 Chapter 10. The Proximal Gradient Method

(c) By Lemma 10.66, for any n ≥ 0,

f(xn)− f(xn+1) ≥M‖∇f(xn)‖2∗.

Summing the above over n = 0, 1, . . . , k, we obtain

f(x0)− f(xk+1) ≥ M

k∑
n=0

‖∇f(xn)‖2∗ ≥ (k + 1)M min
n=0,1,...,k

‖∇f(xn)‖2∗.

Using the fact that f(xk+1) ≥ fopt, the inequality (10.82) follows.
(d) Let x̄ be a limit point of {xk}k≥0. Then there exists a subsequence

{xkj}j≥0 converging to x̄. For any j ≥ 0,

‖∇f(x̄)‖∗ ≤ ‖∇f(xkj )− ∇f(x̄)‖∗ + ‖∇f(xkj )‖∗ ≤ Lf‖xkj − x̄‖+ ‖∇f(xkj )‖∗.
(10.84)

Since the right-hand side of (10.84) goes to 0 as j → ∞, it follows that ∇f(x̄)
= 0.

Convergence Analysis in the Convex Case

To establish a rate of convergence in the case where f is convex, we will require an
additional boundedness-type assumption. We gather all the required assumptions
in the following.

Assumption 10.68.

(A) f : E → R is Lf -smooth and convex.

(B) The optimal set of the problem

min
x∈E

f(x)

is nonempty and denoted by X∗. The optimal value is denoted by fopt.

(C) For any α > 0, there exists Rα > 0 such that

max
x,x∗ {‖x

∗ − x‖ : f(x) ≤ α,x∗ ∈ X∗} ≤ Rα.

The proof of the convergence rate is based on the following very simple lemma.

Lemma 10.69. Suppose that Assumption 10.68 holds. Let {xk}k≥0 be the sequence
generated by the non-Euclidean gradient method for solving the problem of minimiz-
ing f over E with either a constant stepsize corresponding to Lk = L̄ ∈

(Lf

2 ,∞
)
; a

stepsize chosen by the backtracking procedure B4 with parameters (s, γ, η) satisfying
s > 0, γ ∈ (0, 1), η > 1; or an exact line search for computing the stepsize. Then

f(xk)− f(xk+1) ≥ 1

C
(f(xk)− fopt)

2, (10.85)
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where

C =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
R2

αL̄
2

L̄−
Lf
2

, constant stepsize,

R2
α

γ max
{
s,

ηLf

2(1−γ)

}
, backtracking,

2R2
αLf , exact line search,

(10.86)

with α = f(x0).

Proof. Note that, by Theorem 10.67(a), {f(xk)}k≥0 is nonincreasing, and in par-
ticular for any k ≥ 0 it holds that f(xk) ≤ f(x0). Therefore, for any x∗ ∈ X∗ and
k ≥ 0,

‖xk − x∗‖ ≤ Rα,

where α = f(x0). To prove (10.85), we note that on the one hand, by Lemma 10.66,

f(xk)− f(xk+1) ≥M‖∇f(xk)‖2∗, (10.87)

where M is given in (10.80). On the other hand, by the gradient inequality along
with the generalized Cauchy–Schwarz inequality (Lemma 1.4), for any x∗ ∈ X∗,

f(xk)− fopt = f(xk)− f(x∗)

≤ 〈∇f(xk),xk − x∗〉
≤ ‖∇f(xk)‖∗‖xk − x∗‖
≤ Rα‖∇f(xk)‖∗. (10.88)

Combining (10.87) and (10.88), we obtain that

f(xk)− f(xk+1) ≥M‖∇f(xk)‖2∗ ≥
M

R2
α

(f(xk)− fopt)
2.

Plugging the expression for M given in (10.80) into the above inequality, the result
(10.85) is established.

To derive the rate of convergence in function values, we will use the following
lemma on convergence of nonnegative scalar sequences.

Lemma 10.70. Let {ak}k≥0 be a sequence of nonnegative real numbers satisfying
for any k ≥ 0

ak − ak+1 ≥ 1

γ
a2k

for some γ > 0. Then for any k ≥ 1,

ak ≤ γ

k
. (10.89)

Proof. Let k be a positive integer. If ak = 0, then obviously (10.89) holds. Suppose
that ak > 0. Then by the monotonicity of {an}n≥0, we have that a0, a1, . . . , ak > 0.
For any n = 1, 2, . . . , k,

1

an
− 1

an−1
=
an−1 − an
an−1an

≥ 1

γ

a2n−1
an−1an

=
1

γ

an−1
an

≥ 1

γ
, (10.90)

Copyright © 2017 Society for Industrial and Applied Mathematics



322 Chapter 10. The Proximal Gradient Method

where the last inequality follows from the monotonicity of the sequence. Summing
(10.90) over n = 1, 2, . . . , k, we obtain

1

ak
≥ 1

a0
+
k

γ
≥ k

γ
,

proving (10.89).

Combining Lemmas 10.69 and 10.70, we can establish an O(1/k) rate of con-
vergence in function values of the sequence generated by the non-Euclidean gradient
method.

Theorem 10.71 (O(1/k) rate of convergence of the non-Euclidean gradi-
ent method). Under the setting of Lemma 10.69, for any k ≥ 1,

f(xk)− fopt ≤
C

k
, (10.91)

where C is given in (10.86).

Proof. By Lemma 10.69,

ak − ak+1 ≥ 1

C
a2k,

where ak = f(xk)−fopt. Invoking Lemma 10.70 with γ = C, the inequality ak ≤ C
k ,

which is the same as (10.91), follows.

Remark 10.72. When a constant stepsize 1
Lf

is used (meaning that Lk ≡ L̄ ≡ Lf ),

(10.91) has the form

f(xk)− fopt ≤
2R2

αLf
k

,

which is similar in form to the result in the Euclidean setting in which the following
bound was derived (see Theorem 10.21):

f(xk)− fopt ≤
Lf‖x0 − x∗‖2

2k
.

The Non-Euclidean Gradient Method in Rn Endowed with the l1-Norm

Example 10.73. Suppose that the underlying space is R
n endowed with the l1-

norm, and let f be an Lf -smooth function w.r.t. the l1-norm. Recall (see Example
10.63) that the set of primal counterparts in this case is given for any a 
= 0 by

Λa =

⎧⎨⎩ ∑
i∈I(a)

λisgn(ai)ei :
∑
i∈I(a)

λi = 1, λj ≥ 0, j ∈ I(a)

⎫⎬⎭ ,

where I(a) = argmaxi=1,2,...,n|ai|. When employing the method, we can always

choose a† = sgn(ai)ei for some arbitrary i ∈ I(a). The method thus takes the
following form:
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Non-Euclidean Gradient under the l1-Norm

• Initialization: pick x0 ∈ Rn.

• General step: for any k = 0, 1, 2, . . . execute the following steps:

– pick ik ∈ argmaxi

∣∣∣∂f(xk)
∂xi

∣∣∣;
– set xk+1 = xk − ‖∇f(xk)‖∞

Lk
sgn

(
∂f(xk)
∂xik

)
eik .

The constants Lk can be chosen by either one of the three options: a constant
stepsize rule Lk ≡ L̄ ∈

(Lf

2 ,∞
)
, the backtracking procedure B4, or an exact line

search. Note that at each iteration only one coordinate is altered. This is a variant of
a coordinate descent method that actually has an interpretation as a non-Euclidean
gradient method.

Example 10.74. Consider the problem

min
x∈Rn

{
1

2
xTAx+ bTx

}
,

where A ∈ Sn++ and b ∈ Rn. The underlying space is E = Rn endowed with the

lp-norm (p ∈ [1,∞]). By Example 5.2, f is L
(p)
f -smooth with

L
(p)
f = ‖A‖p,q = max

x
{‖Ax‖q : ‖x‖p ≤ 1}

with q ∈ [1,∞] satisfying 1
p + 1

q = 1. Two examples of smoothness parameters are
the following:

• p = 2. In this case, since A is positive definite, L
(2)
f = ‖A‖2,2 = λmax(A).

• p = 1. Here L
(1)
f = ‖A‖1,∞ = maxi,j |Ai,j |.

The non-Euclidean gradient method for p = 2 is actually the Euclidean gradient

method; taking a constant stepsize corresponding to Lk = L
(2)
f = λmax(A), the

method takes the following form:

Algorithm G2

• Initialization: pick x0 ∈ Rn.

• General step (k ≥ 0): xk+1 = xk − 1

L
(2)
f

(Axk + b).

In the case p = 1 the method is a coordinate descent-type method, and with a

constant stepsize corresponding to Lk = L
(1)
f = maxi,j |Ai,j | it takes the following

form:
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Algorithm G1

• Initialization: pick x0 ∈ Rn.

• General step (k ≥ 0):

– pick ik ∈ argmaxi=1,2,...,n|Aix
k + bi|, where Ai denotes the ith row

of A.

– update xk+1
j =

⎧⎪⎨⎪⎩
xkj , j 
= ik,

xkik − 1

L
(1)
f

(Aikx
k + bik), j = ik.

By Theorem 10.71,62

f(xk)− fopt ≤
2L

(p)
f R2

f(x0)

k
.

Therefore, the ratio
L

(2)
f

L
(1)
f

might indicate which of the methods should have an ad-

vantage over the other.

Remark 10.75. Note that Algorithm G2 (from Example 10.74) requires O(n2)
operations at each iteration since the matrix/vector multiplication Axk is computed.
On the other hand, a careful implementation of Algorithm G1 will only require
O(n) operations at each iteration; this can be accomplished by updating the gradient

gk ≡ Axk+b using the relation gk+1 = gk− Aik
xk+bik
L

(1)
f

Aeik (Aeik is obviously the

ikth column of A). Therefore, a fair comparison between Algorithms G1 and G2
will count each n iterations of algorithm G1 as “one iteration.” We will call such
an iteration a “meta-iteration.”

Example 10.76. Continuing Example 10.74, consider, for example, the matrix
A = A(d) ≡ J+dI, where the matrix J is the matrix of all ones. Then for any d > 0,

A(d) is positive definite and λmax(A
(d)) = d+n, maxi,j |A(d)

i,j | = d+1. Therefore, as

the ratio ρf ≡ L
(2)
f

L
(1)
f

= d+n
d+1 gets larger, the Euclidean gradient method (Algorithm

G2) should become more inferior to the non-Euclidean version (Algorithm G1).
We ran the two algorithms for the choice A = A(2) and b = 10e1 with initial

point x0 = en. The values f(xk) − fopt as a function of the iteration index k are
plotted in Figures 10.4 and 10.5 for n = 10 and n = 100, respectively. As can
be seen in the left images of both figures, when meta-iterations of algorithm G1
are compared with iterations of algorithm G2, the superiority of algorithm G1 is
significant. We also made the comparison when each iteration of algorithmG1 is just
an update of one coordinate, meaning that we do not consider meta-iterations. For
n = 10, the methods behave similarly, and there does not seem to be any preference
to G1 or G2. However, when n = 100, there is still a substantial advantage of
algorithm G1 compared to G2, despite the fact that it is a much cheaper method
w.r.t. the number of operations performed per iteration. A possible reason for this

62Note that also Rf(x0) might depend on the choice of norm.
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Figure 10.4. Comparison of the Euclidean gradient method (G2) with the
non-Euclidean gradient method (G1) applied on the problem from Example 10.76
with n = 10. The left image considers “meta-iterations” of G1, meaning that 10
iterations of G1 are counted as one iteration, while the right image counts each
coordinate update as one iteration.
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Figure 10.5. Comparison of the Euclidean gradient method (G2) with the
non-Euclidean gradient method (G1) applied on the problem from Example 10.76
with n = 100. The left image considers “meta-iterations” of G1, meaning that 100
iterations of G1 are counted as one iteration, while the right image counts each
coordinate update as one iteration.

is the fact that for n = 10, ρf = 2+10
2+1 = 4, while for n = 100, 2+100

2+1 = 34, and
hence it is expected that the advantage of algorithm G1 over algorithm G2 will be
more substantial when n = 100.
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10.9.2 The Non-Euclidean Proximal Gradient Method
63

In this section we return to the composite model

min
x∈E

{F (x) ≡ f(x) + g(x)}, (10.92)

where the endowed norm on E is not assume to be Euclidean. Our main objective
will be to develop a non-Euclidean version of the proximal gradient method. We
note that when g ≡ 0, the method will not coincide with the non-Euclidean gradient
method discussed in Section 10.9.1, meaning that the approach described here,
which is similar to the generalization of projected subgradient to mirror descent
(see Chapter 9), is fundamentally different than the approach considered in the
non-Euclidean gradient method. We will make the following assumption.

Assumption 10.77.

(A) g : E → (−∞,∞] is proper closed and convex.

(B) f : E → (−∞,∞] is proper closed and convex; dom(g) ⊆ int(dom(f)) and f
is Lf -smooth over int(dom(f)).

(C) The optimal solution of problem (10.1) is nonempty and denoted by X∗. The
optimal value of the problem is denoted by Fopt.

In the Euclidean setting, the general update rule of the proximal gradient
method (see the discussion in Section 10.2) can be written in the following form:

xk+1 = argminx∈E

{
f(xk) + 〈∇f(xk),x− xk〉+ g(x) +

Lk
2

‖x− xk‖2
}
.

We will use the same idea as in the mirror descent method and replace the half-
squared Euclidean distance with a Bregman distance, leading to the following up-
date rule:

xk+1 = argminx∈E
{
f(xk) + 〈∇f(xk),x− xk〉+ g(x) + LkBω(x,x

k)
}
,

where Bω is the Bregman distance associated with ω (see Definition 9.2). The
function ω will satisfy the following properties.

Assumption 10.78 (properties of ω).

• ω is proper closed and convex.

• ω is differentiable over dom(∂ω).

• dom(g) ⊆ dom(ω).

• ω + δdom(g) is 1-strongly convex.

63The non-Euclidean proximal gradient method presented in Section 10.9.2 was analyzed in the
work of Tseng [121].
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The proximal gradient method is defined below.

The Non-Euclidean Proximal Gradient Method

Initialization: pick x0 ∈ dom(g) ∩ dom(∂ω).
General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) pick Lk > 0;

(b) compute

xk+1 = argminx∈E

{〈
1

Lk
∇f(xk)− ∇ω(xk),x

〉
+

1

Lk
g(x) + ω(x)

}
.

(10.93)

Our first observation is that under Assumptions 10.77 and 10.78, the non-Euclidean
proximal gradient method is well defined, meaning that if xk ∈ dom(g)∩ dom(∂ω),
then the minimization problem in (10.93) has a unique optimal solution in dom(g)∩
dom(∂ω). This is a direct result of Lemma 9.7 invoked with ψ(x) =

〈
1
Lk

∇f(xk)−

∇ω(xk),x
〉
+ 1

Lk
g(x). The two stepsize rules that will be analyzed are detailed

below. We use the notation

VL(x̄) ≡ argminx∈E

{〈
1

L
∇f(x̄)− ∇ω(x̄),x

〉
+

1

L
g(x) + ω(x)

}
.

• Constant. Lk = L̄ = Lf for all k.

• Backtracking procedure B5. The procedure requires two parameters
(s, η), where s > 0 and η > 1. Define L−1 = s. At iteration k (k ≥ 0)
the choice of Lk is done as follows: First, Lk is set to be equal to Lk−1.
Then, while

f(VLk
(xk)) > f(xk) + 〈∇f(xk), VLk

(xk)− xk〉+ Lk
2

‖VLk
(xk)− xk‖2,

set Lk := ηLk. In other words, the stepsize is chosen as Lk = Lk−1η
ik ,

where ik is the smallest nonnegative integer for which the condition

f(VLk−1η
ik (x

k)) ≤ f(xk) + 〈∇f(xk), VLk−1η
ik (x

k)− xk〉

+
Lk
2

‖VLk−1ηik (x
k)− xk‖2

is satisfied.

Remark 10.79. In both stepsize rules the following inequality holds:

f(xk+1) ≤ f(xk) + 〈∇f(xk),xk+1 − xk〉+ Lk
2

‖xk+1 − xk‖2.
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Remark 10.80. By the same arguments as in Remark 10.19 we have that Lk ≤
αLf , where α = 1 for the constant stepsize case and α = max

{
η, s

Lf

}
in the setting

of the backtracking procedure B5.

The rate of convergence result will now be stated and proved.

Theorem 10.81 (O(1/k) rate of convergence of the non-Euclidean prox-
imal gradient method). Suppose that Assumptions 10.77 and 10.78 hold. Let
{xk}k≥0 be the sequence generated by the non-Euclidean proximal gradient method
for solving problem (10.92) with either a constant stepsize rule in which Lk ≡ Lf
for all k ≥ 0 or the backtracking procedure B5. Then

(a) the sequence {F (xk)}k≥0 is nonincreasing;

(b) for any k ≥ 1 and x∗ ∈ X∗,

F (xk)− Fopt ≤
αLfBω(x

∗,x0)

k
,

where α = 1 in the constant stepsize setting and α = max
{
η, s

Lf

}
if the

backtracking rule is employed.

Proof. (a) We will use the notation m(x,y) ≡ f(y) + 〈∇f(y),x − y〉. For both
stepsize rules we have, for any n ≥ 0 (see Remark 10.79),

f(xn+1) ≤ m(xn+1,xn) +
Ln
2

‖xn+1 − xn‖2.

Therefore,

F (xn+1) = f(xn+1) + g(xn+1)

≤ m(xn+1,xn) + g(xn+1) +
Ln
2

‖xn+1 − xn‖2

≤ m(xn+1,xn) + g(xn+1) + LnBω(x
n+1,xn), (10.94)

where the 1-strong convexity of ω + δdom(g) was used in the last inequality. Note
that

xn+1 = argminx∈E{m(x,xn) + g(x) + LnBω(x,x
n)}. (10.95)

Therefore, in particular,

m(xn+1,xn) + g(xn+1) + LnBω(x
n+1,xn) ≤ m(xn,xn) + g(xn) + LnBω(x

n,xn)

= f(xn) + g(xn)

= F (xn),

which, combined with (10.94), implies that F (xn+1) ≤ F (xn), meaning that the
sequence of function values {F (xn)}n≥0 is nonincreasing.

(b) Let k ≥ 1 and x∗ ∈ X∗. Using the relation (10.95) and invoking the non-

Euclidean second prox theorem (Theorem 9.12) with ψ(x) = m(x,xn)+g(x)
Ln

, b = xn,

and a = xn+1, it follows that for all x ∈ dom(g),

〈∇ω(xn)− ∇ω(xn+1),x− xn+1〉 ≤ m(x,xn)−m(xn+1,xn) + g(x)− g(xn+1)

Ln
,
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which, combined with the three-points lemma (Lemma 9.11) with a = xn+1,b = xn,
and c = x, yields the inequality

Bω(x,x
n+1)+Bω(x

n+1,xn)−Bω(x,xn) ≤
m(x,xn)−m(xn+1,xn) + g(x)− g(xn+1)

Ln
.

Rearranging terms, we obtain that

m(xn+1,xn) + g(xn+1) + LnBω(x
n+1,xn) ≤ m(x,xn) + g(x) + LnBω(x,x

n)

− LnBω(x,x
n+1),

which, combined with (10.94), yields the inequality

F (xn+1) ≤ m(x,xn) + g(x) + LnBω(x,x
n)− LnBω(x,x

n+1).

Since f is convex, m(x,xn) ≤ f(x), and hence

F (xn+1)− F (x) ≤ LnBω(x,x
n)− LnBω(x,x

n+1).

Plugging in x = x∗ and dividing by Ln, we obtain

F (xn+1)− F (x∗)

Ln
≤ Bω(x

∗,xn)−Bω(x
∗,xn+1).

Using the bound Ln ≤ αLf (see Remark 10.80),

F (xn+1)− F (x∗)

αLf
≤ Bω(x

∗,xn)−Bω(x
∗,xn+1),

and hence

F (xn+1)− Fopt ≤ αLfBω(x
∗,xn)− αLfBω(x

∗,xn+1).

Summing the above inequality for n = 0, 1, . . . , k − 1, we obtain that

k−1∑
n=0

(F (xn+1)− Fopt) ≤ αLfBω(x
∗,x0)− αLfBω(x

∗,xk) ≤ αLfBω(x
∗,x0).

Using the monotonicity of the sequence of function values, we conclude that

k(F (xk)− Fopt) ≤ αLfBω(x
∗,x0),

thus obtaining the result

F (xk)− Fopt ≤
αLfBω(x

∗,x0)

k
.
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