Annotation Query Language

06/03/2011
CS717-SRL

Outline™

* Motivation
» SystemText background
* AQL

* Most examples are borrowed from SystemT literature (references at the end)

Outline

* Motivation
» SystemText background
* AQL

Information Extraction task

Extracting informal reviews from blogs

\
went to the Switchfoot comncert at the Roxy| It was pretty fun,. .. The kad singerfguitarist

really good, and even though there was another guitarist (an Asian guy), he ended up
Fit&gdwﬂa__ﬂmmmlylmmm The bigaest aurprise thowgh s that
Ity |liked the opening | | esspeecial bf Tiked the first band P

Reviewlnstance

N

Concertlnstance

Annotator: High level organization

BandReview
‘“Lead singer/guitarist was neally Join
good, and even ... | actually liked -)
the opening bands, ... VWeall they |
wiere none of those, | especially :\\
likesd the first baird"
. Instan
RenviewEoup B:I'HEE In stalr &
Aggregator
A “went to the Switchfoot
conoert at the Rowy™

“lead singer/guitarist was swent to AJCO n Band
really good™ — conoert”
‘Liked the opening bands”
“Likesd thee first band” Reviewlnstance ‘performance by local
‘Kt Ralske played guitar Extractor funk band Saaraba®

‘put oh a gneat show”

An example rule

GenericReviewSnippet

Informal Band Review ConcertMention
,—'—"''_'_._'_'_'_F _,-'-"'_'-FF.;;;"

went to the ﬂlul'rl'?hiﬂﬂ'l concert at the Roxy. it was pretr;_f .. The lead singer/guitarist
was really goed, and even though there was ancther guitafist (an Asian guygf, he ended up
playing most of the guitar parts, which was really imprassive. Tha biggest sdrprisa though is

that | actually liked the cpening bangds. ...| especially liked the first band

M usicReviewSni ppet

Example Rule

Start with
Concerttention

= S

o =

Consecutive review ~'.m|: pets are within 25 tokens

.-'"JH — _M:H. B
Complete review s At least 4 occurrences of MusicReviewSnippet or GenencReviewSnippet
within 200 tokens At least 3 of them should be MusicReviewSnippets

Review ends with one of these.

Cascading Grammar

A rule for identifying ReviewlInstance
* |n words:
“BandMember followed within

30 characters by Instrument”

Reviewlnstance +— BandMember . {0,301} Instrument (FHy)
EandMember +— RegularExpression | [A-Z]\w+(\s+[A-Z]\w+)* | (Fa)
Instrument «— RegularExpression | e'31|ffg| L |-!'i'ﬂ_ | I;ﬁ'g:l

Shortcomings [1/2]

{follovwsed within 20 characters)
Flan A /]
BandMambear Instrurmmnt
kdenlify Instrument sta-ting Idantry Bandiember 2nding
within 30 characters withan 30 characiers
[T
Exdract text & the nght Extract tasg to the lef
BandNember Instrument
Plan B Fan G

* Overlapping annotations
* Multiple execution plans

Shortcomings [2/2]

 More drawbacks in expressivity
— Lossy sequencing
— Rigid matching priority
* Need for new |E paradigm
— Expressivity
— Scalability

Outline

* Motivation
* SystemText background
 AQL

SystemText

* Rule-based Information Extraction system

— Rules expressed in SQL-like declarative language —
Annotation Query Language (AQL)

— Annotation engine architecture is inspired from
database systems

* Overcomes the shortcomings of traditional IE
— Expressivity: declarative query language
— Scalability: query optimization from databases

Algebra and Data model

e Simple relational data model
— Span: <begin, end>
— Tuple: <s;,s,...5,> ; mis called the width of tuple
— Relation: same width tuples

* Operators
— Relational — select, project, join, minus
— Span Extraction — dictionary matcher, regex matcher

— Span Aggregation — containment and overlap
consolidation

SystemT Architecture

Development Environment

=L
sample
Documents

User Rules
Interface > (AQL)
Execution .
Engine Optimizer
Plan

(Algebra)

Annotated
Document
Stream

Runtime
Environment

Input
Document
Stream

Optimizations in SystemT [1/2]

* Conditions that govern the design of optimization
strategies

— Processing one document at a time

— Spans are at the centre of the system and obey the
conditions of interval algebra

— Span extraction operators (regex and dict match) are
most CPU intensive operations and have to be
optimized

e Optimization strategies try to exploit the first two
conditions to reduce / avoid span extraction
operations

Optimizations in SystemT [2/2]

* Rule rewriting strategies

— Regex strength reduction

— Shared Dictionary Matching
* Cost-based optimization

— Conditional Evaluation

— Restricted Span Evaluation

Outline

* Motivation
» SystemText background
* AQL

AQL: high level overview

* View

* Basic AQL constructs
— Extract statement (dictionary , regex matcher)
— Select statement (select, project, join)

* Built-in functions

— Scalar functions
— Predicate functions

Views

e Basic building block of AQL queries
* Types

— Output view

— Non-output view

* Create view statement

— Single select / extract statement

— Multiple select / extract statements: combined
* union all
°* minus

Extract statement [1/3]

e Specific to Information extraction
e Basic character level extraction primitives
* Types

— Regular expression extraction

— Dictionary extraction
— Block extraction

Extract statement [2/3]

 Examples

.-"'"_

extract
E.sender as emailsender,
regex \d{3}-\d{3}-\d{4}/ on E.body as hum
from Email E
having MatchesRegex(/.*@enron.com/, emailsender);

P

extract
dictionaries 'first.dict' and 'last.dict'
with flags 'Exact’ on D.text as hame
from Document D;

Extract Statement [3/3]

* Block extract specification

.-"'"_

blocks
with count [between <min> and] <max>

and separation [between <min> and] <max> (tokens| characters)
on <column> as <output name>

* Block extract example

“create view TwoToThreeCapitalizedWords as
extract blocks
with count between 2 and 3

and separation between 0 and 100 characters

on CW.word as capswords
from CapitalizedWord CW;

Select statement [1/3]

e Similarto SQL select statement

* Provides mechanism for constructing complex
patterns out of simpler building blocks

* Syntax

select <select list>

from <from list>

[where <where clause>]

[consolidate on <column> [using '<policy>']]

[group by <group by list>]
[order by <order by list>]
[limit <maximum number of output tuples for each document>];

Select statement [2/3]

e Select list

— Comma-separated list of output columns
— Select * = similar to SQL
— Can involve scalar functions

e From list

— List of input views or nested AQL statements

select *
from

(extract dictionary 'first.dict' on D.text as name from Document D) as FN,
LastName as "Last Name"

Select statement [3/3]

* Where clause
— Defined over the cross-product of input relations
— Conjunction of predicate functions

* Consolidateclause
— For handling spans that overlap
— consolidate on <target> [using <policy>]
— consolidate on P.name using ContainedWithin

Built-in Functions

* Types
— Predicate functions
— Scalar functions
— Aggregate functions
— Table functions

* Many functions are specific to information
extraction

Predicate Functions

Predicates — used in the where clause
Contains, ContainsDict, ContainsRegex
MatchesDict, MatchesRegex

Follows, FollowsTok

Overlaps

Or, Not, And, Equals

Scalar functions

Scalar—used in select list or input to
predicates

CombineSpans
SpanBetween
Getlext
Spanintersection

LeftContext, LeftContextTok, RightContext,
RightContextTok

omplicated rules

Detects all false overlaps Unintended
to eliminate match

create vie astCommaFirstToDelete as

select LCF.name as name
from FirstlLast FL, LastCommaFirst LCF
where Overlaps(LCF.name, FL.name);

create view LastCommaFirstValid as
(select R.name as name from LastCommaFirst R)

Filter operation

Reviewlnstance example
“BandMember followed within 30

characters by Instrument”

—— Define a dictionary of instrument names
create dictionary Instrument as (' flute', 'guitar’, ...);

—— Use a regular expression to find names of band memberg
create view BandMember as
extract regex [[A—Z]'\w+(\s+[A—Z]\w+)#/
on 1 to 3 tokens of D.text
as name
from Document D;

—— A single Reviewlnstance rule. Finds instances of
—— BandMember followed within 30 characters by an
—— Instrument name.
create view Reviewlnstance as
select CombineSpans(B.name, l.inst) as instance
from
BandMember B,
(extract dictionary 'Instrument’ on D.text as inst
from Document D) |
where
Follows (B.name, |.inst , 0, 30)
consolidate on CombineSpans(B.name, l.inst);

Gap of 0-30 chars

Gap

Starts w1th_a betweenl
ConcertMention

Fask : revisited

v
O in 0-30 characters by a block of 3 to 10

© © stance annotations must be within 100
© © stance annotation, create a new output

ncertinstance annotation and runs to the
end of the last Reviewlnstante annotation. |[Handle overlapping matches by removing any
Also con2Y€LQlL match that isxxgmpletely contained|within another match.”

overlapping matches Ends with ReviewInstance
of the entire block

ReviewInstances (3-10) . .
create view BandReview as

select
Cl.instance as concert,
CombineSpans(Cl.instance, Rl. instblock) as review
from
Concertlnstance Cl,

extract blocks
with count between 3 and 10
and separation between 0 and 100 characters
on |.instance as instblock
from ReviewlInstance |
) RI
where
Follows (Cl. instance, RI.instblock, 0, 30)
consolidate on CombineSpans(Cl.instance, RI. instblock)
using 'ContainedWithin’;

Summary

* Need for a new IE paradigm
— Expressivity
— Scalability
* SystemT
— Architecture
— Optimizations
* AQL
— Main constructs
— Examples of non-trivial rules

References

. Laura Chiticariu, Rajasekar Krishnamurthy, Yunyao Li, Sriram
Raghavan, Frederick Reiss, and Shivakumar Vaithyanathan. Systemt:
An algebraic approach to declarative information extraction. In
ACL, July 2010.

. Frederick Reiss, Sriram Raghavan, Rajasekar Krishnamurthy, Huaiyu
Zhu, and Shivakumar Vaithyanathan. An algebraic approach to rule-
based information extraction. In ICDE, 2008.

. Rajasekar Krishnamurthy, Yunyao Li, Sriram Raghavan,Frederick
Reiss, Shivakumar Vaithyanathan, and Huaiyu Zhu .SystemT: A
System for Declarative Information Extraction. In SIGMOD, 2008.

. Laura Chiticariu Rajasekar Krishnamurthy Yunyao Li Frederick Reiss
Shivakumar Vaithyanathan, Domain Adaptation of Rule-Based
Annotators for Named-Entity Recognition Tasks, in EMNLP 2010.

. SystemT. 2010, AQL manual.
http://www.alphaworks.ibm.com/tech/systemt

