
Annotation Query Language

06/03/2011

CS717 - SRL

Outline*

• Motivation

• SystemText background

• AQL

* Most examples are borrowed from SystemT literature (references at the end)

Outline

• Motivation

• SystemText background

• AQL

Information Extraction task

Extracting informal reviews from blogs

ConcertInstance

ReviewInstance

Annotator: High level organization

An example rule

Cascading Grammar
• A rule for identifying ReviewInstance

• In words:

“BandMember followed within

30 characters by Instrument”

Shortcomings [1/2]

• Overlapping annotations

• Multiple execution plans

Shortcomings [2/2]

• More drawbacks in expressivity

– Lossy sequencing

– Rigid matching priority

• Need for new IE paradigm

– Expressivity

– Scalability

Outline

• Motivation

• SystemText background

• AQL

SystemText

• Rule-based Information Extraction system

– Rules expressed in SQL-like declarative language –
Annotation Query Language (AQL)

– Annotation engine architecture is inspired from
database systems

• Overcomes the shortcomings of traditional IE

– Expressivity: declarative query language

– Scalability: query optimization from databases

Algebra and Data model

• Simple relational data model

– Span: <begin, end>

– Tuple: <s1,s2…sm> ; m is called the width of tuple

– Relation: same width tuples

• Operators

– Relational – select, project, join, minus

– Span Extraction – dictionary matcher, regex matcher

– Span Aggregation – containment and overlap
consolidation

SystemT Architecture

Optimizations in SystemT [1/2]

• Conditions that govern the design of optimization
strategies
– Processing one document at a time
– Spans are at the centre of the system and obey the

conditions of interval algebra
– Span extraction operators (regex and dict match) are

most CPU intensive operations and have to be
optimized

• Optimization strategies try to exploit the first two
conditions to reduce / avoid span extraction
operations

Optimizations in SystemT [2/2]

• Rule rewriting strategies

– Regex strength reduction

– Shared Dictionary Matching

• Cost-based optimization

– Conditional Evaluation

– Restricted Span Evaluation

Outline

• Motivation

• SystemText background

• AQL

AQL: high level overview

• View

• Basic AQL constructs

– Extract statement (dictionary , regex matcher)

– Select statement (select, project, join)

• Built-in functions

– Scalar functions

– Predicate functions

– ….

Views

• Basic building block of AQL queries

• Types
– Output view

– Non-output view

• Create view statement
– Single select / extract statement

– Multiple select / extract statements: combined
• union all

• minus

Extract statement [1/3]

• Specific to Information extraction

• Basic character level extraction primitives

• Types

– Regular expression extraction

– Dictionary extraction

– Block extraction

– …..

Extract statement [2/3]

• Examples

extract

E.sender as emailsender,

regex /\d{3}-\d{3}-\d{4}/ on E.body as num

from Email E

having MatchesRegex(/.*@enron.com/, emailsender);

extract

dictionaries 'first.dict' and 'last.dict'

with flags 'Exact‘ on D.text as name

from Document D;

Extract Statement [3/3]

• Block extract specification

• Block extract example

blocks

with count [between <min> and] <max>

and separation [between <min> and] <max> (tokens| characters)

on <column> as <output name>

create view TwoToThreeCapitalizedWords as

extract blocks
with count between 2 and 3
and separation between 0 and 100 characters
on CW.word as capswords

from CapitalizedWord CW;

Select statement [1/3]

• Similar to SQL select statement

• Provides mechanism for constructing complex
patterns out of simpler building blocks

• Syntax

select <select list>

from <from list>

[where <where clause>]

[consolidate on <column> [using '<policy>']]

[group by <group by list>]
[order by <order by list>]

[limit <maximum number of output tuples for each document>];

Select statement [2/3]

• Select list

– Comma-separated list of output columns

– Select *  similar to SQL

– Can involve scalar functions

• From list

– List of input views or nested AQL statements

select *

from

(extract dictionary 'first.dict' on D.text as name from Document D) as FN,

LastName as "Last Name"

Select statement [3/3]

• Where clause

– Defined over the cross-product of input relations

– Conjunction of predicate functions

• Consolidate clause

– For handling spans that overlap

– consolidate on <target> [using <policy>]

– consolidate on P.name using ContainedWithin

Built-in Functions

• Types

– Predicate functions

– Scalar functions

– Aggregate functions

– Table functions

• Many functions are specific to information
extraction

Predicate Functions

• Predicates – used in the where clause

• Contains, ContainsDict, ContainsRegex

• MatchesDict, MatchesRegex

• Follows, FollowsTok

• Overlaps

• Or, Not, And, Equals

Scalar functions

• Scalar – used in select list or input to
predicates

• CombineSpans

• SpanBetween

• GetText

• SpanIntersection

• LeftContext, LeftContextTok, RightContext,
RightContextTok

Complicated rules

• Filtering

– E.g: “ …., Sachin Tendulkar, Vijay Hazare, …. “

Unintended
match

Detects all false overlaps
to eliminate

Filter operation

ReviewInstance example

“BandMember followed within 30
characters by Instrument”

IE task : revisited

“Find all instances of ConcertInstance, followed within 0-30 characters by a block of 3 to 10
ReviewInstance annotations. Successive ReviewInstance annotations must be within 100
characters of each other. For each such ConcertInstance annotation, create a new output
annotation that starts at the beginning of the ConcertInstance annotation and runs to the
end of the last ReviewInstance annotation. Handle overlapping matches by removing any
overall match that is completely contained within another match.”

Summary

• Need for a new IE paradigm
– Expressivity

– Scalability

• SystemT
– Architecture

– Optimizations

• AQL
– Main constructs

– Examples of non-trivial rules

References

1. Laura Chiticariu, Rajasekar Krishnamurthy, Yunyao Li, Sriram
Raghavan, Frederick Reiss, and Shivakumar Vaithyanathan. Systemt:
An algebraic approach to declarative information extraction. In
ACL , July 2010.

2. Frederick Reiss, Sriram Raghavan, Rajasekar Krishnamurthy, Huaiyu
Zhu, and Shivakumar Vaithyanathan. An algebraic approach to rule-
based information extraction. In ICDE, 2008.

3. Rajasekar Krishnamurthy, Yunyao Li, Sriram Raghavan,Frederick
Reiss, Shivakumar Vaithyanathan, and Huaiyu Zhu .SystemT: A
System for Declarative Information Extraction. In SIGMOD, 2008.

4. Laura Chiticariu Rajasekar Krishnamurthy Yunyao Li Frederick Reiss
Shivakumar Vaithyanathan, Domain Adaptation of Rule-Based
Annotators for Named-Entity Recognition Tasks, in EMNLP 2010.

5. SystemT. 2010, AQL manual.
http://www.alphaworks.ibm.com/tech/systemt

