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m Highly interpretable hypothesis

m Small set of rules i.e., low ¢
m Simple rules e.g., short conjunctive propositions



Rule Ensembles — Key Features

m Highly interpretable hypothesis

m Small set of rules i.e., low ¢
m Simple rules e.g., short conjunctive propositions

m Better generalization than conventional rule learners



Rule Ensemble Learning — Formal Definition

Input:

m Training Set: D={(x,4"),...,(x"y™)}, x'€R* and y'e{-1,1}
m Basic propositions regarding input features (say, p in number)

Nominal e.g., z; = a and z; # a
Numeric e.g., z; > band z; <b



Rule Ensemble Learning — Formal Definition

Input:

m Training Set: D={(x,4"),...,(x"y™)}, x'€R* and y'e{-1,1}

m Basic propositions regarding input features (say, p in number)
Nominal e.g., z; = a and z; # a
Numeric e.g., z; > band z; <b

m Construct conjunctive rules from basic propositions

m Few in number
m Short conjunctions

m Compute corresponding weights (w, b)



Rule Ensemble Learning — Challenging task

Extremely large, atleast O(2"), rule space!

X, =a&x,#b&x 2¢ x,=a&x,#b&x <d) (x, =a&x 2c&x,<d) (x,#b&x 2c&x,<d

R,s(x)

X, =a&x,#b&x,2c&x <d




Rule Ensembles — Existing Methods

SLIPPER(cohenasinger, 99): AdaBoost + RIPPER — greedy
RuleFit(FriedmangPopescu, 08): ISLE + decision tree — greedy

ELCS(Gao etar, 07): Genetic Alg. + post-pruning — sub-optimal
ENDER (pembezynski eral., 10 Minimization of empirical risk — greedy
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Proposed Methodology — Overview

Optimal search for rules over all conjunctions
m Regularized loss minimization
m Convex formulation

m Discovers compact ruleset (small set with short rules)

Technical Contribution:
Efficient mirror-descent based active set method

m Complexity: polynomial in active set size (< 2P)

Sub-lattices with long rules are discouraged.
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m [; regularize to force many w, to zero

1Y is index set for conjunctive lattice



A Primitive Formulation

m Decision function!: sign (3=, wy Ry(x) — b)

m [; regularize to force many w, to zero

[ regularized formulation:

2

1 ™ , .

min — E |lwy| | +C g Ly, E wyRy(x') — b

w,b 2 :
veV 1=1 veY

1Y is index set for conjunctive lattice
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A Primitive Formulation

x,=a&x 2c&x sd)(x,#b&x 2c&x, <d

m long rules may be selected

m Computationally difficult problem
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An Improved Formulation

2
Block 1 regularizer discourages long rules: (Zvev HWD(v)Hg)




An Improved Formulation

2
Block 1 regularizer discourages long rules: (Evev HWD(v)Hg)

Computationally
Feasible ?
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m Kernels arranged on DAG (lattice) are given
m Optimal combination of kernels (Multiple Kernel Learning)
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Hierarchical Kernel Learning (HKL)@se. o5

m Kernels arranged on DAG (lattice) are given
m Optimal combination of kernels (Multiple Kernel Learning)




m Complexity: Polynomial in number of selected kernels

m Condition: kernels are summable in linear time over a
sub-lattice



HKL — Key Result

Active Set Algorithm:

m Complexity: Polynomial in number of selected kernels

m Condition: kernels are summable in linear time over a
sub-lattice

m Kernels indeed easily summable

m R, is nothing but product of few base proposition evaluations
m Sum of exponential no. terms = Product of linear no. terms
| Eg, 1+ Rl ar Rz ar Rle = (1 aF Rl)(l aF Rz)

m Our problem can be solved in reasonable time




Performance Comparison

Dataset RuleFit SLI ENDER HKL

TIC-TAC-TOE 0.652 4 0.068 0.747 4+ 0.026 0.633 +0.011 0.889 + 0.029

BALANCE 0.835 4 0.034 0.856 4 0.027 0.827 +0.013 0.893 + 0.027
HABERMAN 0.512 +0.072 0.565 4 0.066 0.424 + 0.000 0.594 + 0.056
CAR 0.913 +0.033 0.895 4 0.024 0.755 + 0.028 0.943 + 0.024

BLOOD TRANS. 0.549 £ 0.092 0.559 4= 0.100 0.489 + 0.054 0.594 + 0.009

cMC 0.632 +0.013 0.601 £ 0.041 0.644 + 0.026 0.656 +0.014




Performance Comparison

Dataset RuleFit SLI ENDER HKL
TIC-TAC-TOE 0.652 + 0.068 0.747 + 0.026 0.633 +0.011 0.889 + 0.029
( 251) ( 2.35) ( 2.46) (  1.85)
BALANCE 0.835 + 0.034 0.856 + 0.027 0.827 +0.013 0.893 + 0.027
( 218) ( 1.88) ( 1.99) ( 1.65)
HABERMAN 0.512 +0.072 0.565 + 0.066 0.424 4 0.000 0.594 + 0.056
( 1.68) ( 1.14) ( 1.87) ( 127)
CAR 0.913 + 0.033 0.895 + 0.024 0.755 + 0.028 0.943 + 0.024
( 312 ( 227) ( 185) ( 1.78)
BLOOD TRANS. 0.549 + 0.092 0.559 + 0.100 0.489 + 0.054 0.594 + 0.009
( 1.99) ( 1.07) ( 15) ( 1.64)
CMC 0.632 + 0.013 0.601 4 0.041 0.644 + 0.026 0.656 + 0.014

( 241) ( 213) ( 265) ( 1.96)




Performance Comparison

Dataset RuleFit SLI ENDER HKL
TIC-TAC-TOE 0.652 + 0.068 0.747 + 0.026 0.633 +0.011 0.889 + 0.029
(40, 2.51) (59, 2.35) (111, 2.46) (129, 1.85)
BALANCE 0.835 + 0.034 0.856 + 0.027 0.827 +0.013 0.893 + 0.027
(17, 2.18) (25, 1.88) (64, 1.99) (65, 1.65)
HABERMAN 0.512 +0.072 0.565 + 0.066 0.424 4 0.000 0.594 + 0.056
(6, 1.68) (8, 1.14) (18, 1.87) (32,1.27)
CAR 0.913 + 0.033 0.895 + 0.024 0.755 + 0.028 0.943 + 0.024
(34, 3.12) (141, 2.27) (80, 1.85) (87, 1.78)
BLOOD TRANS. 0.549 + 0.092 0.559 + 0.100 0.489 + 0.054 0.594 + 0.009
(18, 1.99) (6, 1.07) (58, 1.5) (242, 1.64)
CMC 0.632 + 0.013 0.601 4 0.041 0.644 + 0.026 0.656 + 0.014

(39, 2.41) (13, 2.13) (74, 2.65) (127, 1.96)




Performance Comparison

Dataset RuleFit SLI ENDER HKL
TIC-TAC-TOE 0.652 + 0.068 0.747 + 0.026 0.633 +0.011 0.889 + 0.029
(40, 2.51) (59, 2.35) (111, 2.46) (129, 1.85)
BALANCE 0.835 + 0.034 0.856 + 0.027 0.827 +0.013 0.893 + 0.027
(17, 2.18) (25, 1.88) (64, 1.99) (65, 1.65)
HABERMAN 0.512 +0.072 0.565 + 0.066 0.424 4 0.000 0.594 + 0.056
(6, 1.68) (8, 1.14) (18, 1.87) (32, 1.27)
CAR 0.913 + 0.033 0.895 + 0.024 0.755 + 0.028 0.943 + 0.024
(34, 3.12) (141, 2.27) (80, 1.85) (87, 1.78)
BLOOD TRANS. 0.549 + 0.092 0.559 + 0.100 0.489 + 0.054 0.594 + 0.009
(18, 1.99) (6, 1.07) (58, 1.5) (242, 1.64)
CMC 0.632 + 0.013 0.601 4 0.041 0.644 + 0.026 0.656 + 0.014

(39, 2.41) (13, 2.13) (74, 2.65) (217, 1.96)




HKL — Introspection




HKL — Introspection

X, =a&x,#b&x 2c&x <d
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m [y promotes non-sparsity. Employ sparsity inducing norm!



Proposed Formulation

mln—(ZdHWD(v ||p) +CZL(y > wyRy( —b)

vEVY vEV

where 1 < p < 2.
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Active Set Method

Initialize active set with root node (W = {0}).

X, =a&x,zb&x 2¢c X, =a&x,zb&x,<d) (x, =a&x,2c&x,<d) (x,#b&x 2c&x,=d

X, =a&x,#b&x 2c&x, <d




Active Set Method

Solve small problem




Active Set Method
Solve small problem

Efficient small
Problem solver
=

=

X, =a&x,#b&x 2c&x <d



Active Set Method

Identify potential active set entries (i.e., sources(W¢))

X, =a&x,zb&x 2¢c X, =ad&x,zb&x,=d)(x =a&x,2c&x,<d) (x,#b&x 2c&x,=d

X, =a&Xx,#b&x 2c&x,<d
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Among them, optimality condition violators
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Active Set Method

Among them, optimality condition violators

Easy to check suff. cond. e

X, =a&x,#b&x 2c&x <d



Active Set Method

Append them to active set (W = {0, 1, 3,4}).

X, =a&x,zb&x 2¢ X, =a&x,zb&x,<d) (x =a&x,2c&x,<d) (x,#b&x,2c&x, =d

X, =a&x,zb&x 2c&x,<d




Active Set Method

Append them to active set (W = {0, 1, 3, 4:}) (repeat until suff. cond. satisfied)

X, =a&x,zb&x 2¢ X, =a&x,zb&x,<d) (x =a&x,2c&x,<d) (x,#b&x,2c&x, =d

X, =a&x,zb&x 2c&x,<d
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X, =a&Xx,#b&x 2c&x,<d



Active Set Method

Among them, optimality condition violators

X, =a&x,zb&x 2c&x,<d



Active Set Method

Append them to active set (W = {0, 1, 3,4,6,7,10})

X, =a&x,zb&x 2¢c X, =a&x,zb&x,<d) (x, =a&x,2c&x,<d) (x,#b&x 2c&x,=d

X, =a&x,#b&x 2c&x,<d




Active Set Method

Final active set: W ={0, 1, 3,4,6,7,10}

X, =a&x,zb&x 2¢ X, =a&x,zb&x,<d) (x =a&x,2c&x,<d) (x,zb&x,2c&x, <d

X, =a&x,zb&x 2c&x, <d




Active Set Method

Final active set: W = {O, 1, 3, 4:, 6, 7, 10} (Complexity: Polynomial in active set size)

X, =a&x,zb&x 2¢ X, =a&x,zb&x,<d) (x =a&x,2c&x,<d) (x,zb&x,2c&x, <d

X, =a&x,zb&x 2c&x, <d




Active Set Method

Solution with HKL

2 4=
lx'—a&xﬁb&x‘SdIX‘—a&XSEC&X‘SdIXﬁb&XSEC&X‘Sd

X, =a&x,zb&x 2c&x,<d



Active Set Method

Key difference from HKL: Node selected without its ancestor!

Ix|=a&x2=&b&x4sd x‘=a&xazc&x4sdIxzaeb&xszc&x“sd
X, =a&x,zb&x 2c&x,<d
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Theorem
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Key Technical Result

Theorem

A highly specialized partial dual of generalized HKL is:

min g(n)
7]67?_“”

st. n2>0, Zvev Ny =1

where g(n) is the optimal objective value of the following convex
problem:

il

maxXqeRrm Z:nzl ai—% (ZUGV {v(‘r])(aTKva)ﬁ) s.t. 0<a; <C, Zznzl a;y=0.

1-p\ 15 =
where Cv('fl) = (ZuEA(v) dﬁnu p) P P = (p 1) and K is
matrix with entries: y*y? k,(x*,x7).



Solving small problem

m Dual is min. of convex, Lipschitz conts., sub-differential
objective over a simplex.

m Mirror-descent — highly scalable alg. for such problems.
m Sub-gradient — solve 1,-MKL (vishwanathan et.., 10).



Key Technical Result

Theorem

Suppose the active set W is such that W = A(W). Let the
reduced solution with this W be (ww, byy) and the corresponding
dual variables be (mw, aw). Then the reduced solution is a
solution to the full problem with a duality gap less than € if:

i

B
a;vaaW

2
(ZueA(v)ﬂD(t) d“)

where e is a duality gap term associated with the computation of
the reduced solution.

maxte sources(WE) ZvED(t) S(Q(WW))2+2(€76W)



Complexity: Polynomial in size of W?

oI
oil=

Ik
R, <(Q(ww))?+2(e—ew)
(ZuEA(u)ﬁD(t) d“)

maxX¢e sources(WE) ZvGD(t)
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a;I,—VKvaW 9
<(Q(ww))"+2(e—ew)

]
oil=

maxX¢e sources(WE) ZvGD(t) p]
(ZuEA(u)ﬁD(t) d“)

), suff. cond. tight

mp—>1(p— o0
= 1), suff. cond. loose; computationally feasible

mp=2(p
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m How much ground lost by replacing lo with [j ?
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m How much ground lost by replacing lo with [j ?
m Not much: As kernels near bottom are extremely sparse!



Complexity: Polynomial in size of W?

rxT Kya
max¢esources(WE) EvGD(t) A e 2 S(Q(WW))2+2(E_€W)
(EuGA(u)ﬂD(t) d")

mp—1(p— 00), suff. cond. tight

m p=2(p=1), suff. cond. loose; computationally feasible
m How much ground lost by replacing l, with I 7
m Not much: As kernels near bottom are extremely sparse!



Performance Comparison

Dataset RuleFit SLI ENDER AKL AKL =11
TIC-TAC-TOE  0.652 +0.068  0.747 +0.026  0.633 £ 0.011  0.889 £ 0.029  0.935 + 0.043
(40, 2.51) (59, 2.35) (111, 2.46) (129, 1.85) (79, 1.77)
BLOOD TRANS.  0.549 +0.092  0.559 +0.100 0.489 +0.054 0.59440.009  0.593 + 0.011
(18, 1.99) (6, 1.07) (58, 1.5) (242, 1.64) (7,1.40)
BALANCE 0.835+0.034  0.856 4+ 0.027  0.827+0.013  0.893 +0.027  0.899 + 0.023
(17, 2.18) (25, 1.88) (64, 1.99) (65, 1.65) (28,1.23)
HABERMAN 0.51240.072  0.565 4+ 0.066  0.424 +0.000 0.594 +0.056  0.594 + 0.056
(6, 1.68) (8, 1.18) (18, 1.87) (32, 1.27) (12,1.20)
CAR 0.91340.033  0.89540.024  0.755+0.028  0.943+0.024  0.935 4 0.036
(34, 3.12) (141, 2.27) (80, 1.85) (87, 1.78) (50,1.68)
cme 0.63240.013  0.601 4+0.041  0.644+0.026  0.656 £0.014  0.659 + 0.008
(39, 2.41) (13, 2.13) (74, 2.65) (127, 1.96) (43,1.70)
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m Generalizes well while learning compact ruleset

m Sometimes 25% improvement in generalization

m Applicable elsewhere



Summary

m Applied HKL to rule ensemble learning

m Improved generalization

m Bridged gap between kernel and rule learning communities
m Generalized HKL

m Generalizes well while learning compact ruleset

m Sometimes 25% improvement in generalization

m Applicable elsewhere
m Efficient mirror-descent based active set method

m Complexity: polynomial in active set size (< O(2")
m Searched rule space size ~ 2°0 in ~ 10 min.



Rule Ensemble Learning using Hierarchical Kernels
framework for Structured Output Spaces.



REL-HKL on structured output spaces

m Output is a structure.

m SVM maximizes the margin of true output with all possible outputs in output
space.

m HMM is a structured output problem (which we explore in this work).



SVM for structured output spaces

Notations
m X input sequence space, Y: output sequence space.

m X; € X: an instance of input sequence.

m Y; € Y: an instance of output sequence?.

[ ] xf: joint state of feature values at p™ position of the i* example.

] yf: output at pt* position of the i example.
m 1): feature vector.

m f: feature weights vector.

2Subscript 1 is used to denote " example sequence and should not be confused
with the % element of a vector.



SVM for structured output spaces *

m Generalize multiclass support vector machine learning.
m Features constructed from input and output variables.

m In case of HMM, features constructed from emission and transition distribution.

Define discriminant function F' : X X ¥ — R, such that, P(X, Y;f) = (f,¢(X,Y))
3

and prediction is given by

V = F(X;f) = argmax F(X, V;f)
Yey
Loss function for HMM

m Predicted sequences that deviate more from the actual should be penalized
more.

m Loss function, A : Y x Y - R. A(Y, ?) is the loss value when the true output
is Y and the prediction is Y.

3F(X, Y;f) represents a score which is a scalar value based on the features 1
involving input sequence X and output sequence Y values and parameterised by a
parameter vector f.

4[Tsochantaridis et. al.,2004,2006]



SVM for structured output spaces

SVM formulation for structured output spaces (HMM)
SVMyp:

m
1 C .
g{lgngufl\%ﬁ &, st Vi:&>0
=1

&i

o - 8 — —

m C is the regularization parameter.

m ¢ s are the slack variables introduced to allow errors in the training set in a soft
margin SVM.

L] <f! '(/)f(Y» = <f7'¢'(Xi! Yl)) - <fx "/)(Xh Y))
When the sequence length is large, the number of constraints in SV Mg can be
extremely large. A cutting plane method can be used to find a polynomially sized
subset of constraints that ensures a solution very near to the optimum [Tsochantarids

et. al.].



SVM for structured output spaces: Remarks

To learn optimum structure and parameters of HMM (structSVM)

]

[~ oo}

Modify StructSVM to include features that can be ordered in the form of a
lattice.

Include the p-norm regularizer (as ‘in RELHKL) for emission features and
2-norm for transition features.

Derive a dual for the new formulation that can be computed efficiently.

Derive a sufficiency condition to stop the active set algorithm.



REL-HKL on structured output spaces for learning
optimum HMM model

Notations

m 1): feature vector containing emission and transition features.
PE: part of @ corresponding to emission features.
g part of 1 corresponding to transition features.®
f: feature weights vector.

fg: feature weights vector corresponding to emission.

fr: feature weights vector corresponding to transition.

V: indices of the elements of .
m VE: indices corresponding to emission elements.

m Vt: indices corresponding to transition elements.

5 . . .
For convenience we assume g and 1 as two vectors of dimension same as 1),
but with non zero elements to features only on their context.



REL-HKL on structured output spaces for learning
optimum HMM model

m Regularizer used in RELHKL is for the features obeying lattice structure.
m Also that We are not interested in learning sparse transition features.
m Therefore, We separate the regularizer into two, viz, emission and transition.

SVM formulation after separating the regularizer.

SVM;y:

1 1 C —
in=Qg(fg)? + =Qr(fr)? 75
nt},lgn2 e(fe)® + 5 r(fr)® + = £
=1
. &
Vi,VY Yi: £,0%(Y)y>1- —2
LVY €Y\ Vi (£,47(Y)) > A(Y,,Y)

Vi: & >0

m Qp(fe)= ). dv || fED@) llos £ € (1,2]
vEVE

= QT fT (Zsz)
u <f7'¢'f(y)> = <fyw(Xl7 Yl)> - <f1¢(Xl7 Y))



REL-HKL on structured output spaces for learning
optimum HMM model

m At optimality, most of the emission feature weights are expected to be zero
[Ganesh et. al.,2011].

m Therefore an active set algorithm can be employed to solve efficiently.

m In each iteration, a subset of featues (W) is considered to be active.




REL-HKL on structured output spaces for learning
optimum HMM model

SVM formulation considering only the featues in W (reduced problem),

SVM»

2 m
1 1 , C
mn S < g dy || fED(v)ﬂw |p> t 3 Il fr Iz + poy g 1 &,
1=

vEW
ViVY €Y\ Y
&i
- <Z<fEU7¢6Em'(Y)> + Z (Fro, Y5 (V) + AL Y) 1) <o
vEW vEVT

Vi: —§ <0



REL-HKL on structured output spaces for learning
optimum HMM model

Applying variational characterization® on Qg (fg)?

Partial dual (wrt. f,&) of SVM;

min min max G(y,A,a)
YEAVE|,1 MEA|D(v)],sVVEVE a€S(Y,C)

where
1
ctn)= 32 o= 1o (2 asre. - ST
U wEVE

S, C)={a€R™|aiy 20, n 3 xFHy <C, Vi, Y}
YZ£Y, U

1

d
_ a2 N
Dy = {n ERYn >0, nf = 1}, Sulr,\)7h= ) s and f= g
= vEA(w)

6 Micchelli&Pontil,2005,Bach,2009,Jawanpuria et.al.,2011
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Sufficiency condition for the reduced solution to have a duality gap less than €

Pk (x] )Yk (x])
uGsources(WC Z Z anyZZ (H = 2Ek )

L, Y£Y, j,Y'#£Y; p=1 g=1 kEu
Yo (x} ) e (x])
(H (1 + W))Ofw;'y' < Qp(few)? + Qr(frw)? + 2(c — ew)

kZu

where eyy = Qp(fEw)? + Qr(frw)? + £ ¢ + Lo, kraw — > awir.
i LYRY,
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optimum HMM model

Final dual

— (1)
N€AY|1
where g(7n) is defined as,

1 B
A D e H O o

1, YZAY; weY

=

&)
and Cu(m) = (Y0 dfm” P)
vEA(w)

m Equation (1) is solved using mirror descent algorithm.
m For a given 7, equation (2) is solved using a cutting plane algorithm.

For mirror descent algorithm, the i* subgradient is computed using,

(o=~ (S cutmi@mmear) (3D cetmr(@Tmmaa))



REL-HKL on structured output spaces for learning
optimum HMM model

Active set algorithm

Input: Training data D, Oracle for computing kernels, Maximum tolerance ¢
1. Initialize W = Top nodes in the lattice as the active set

2. Compute 7, & by solving (1) using mirror descent

3. while sufficiency condiiton is not satisfied, do

4. Add sufficiency condition violating nodes to active set W

5 Recompute 7, a by solving (1)

6. end while

7. Qutput: active-set W, 7, o

Step 2 and 5 are solved as

m For a fixed 7, an optimum « is computed by solving (2) using cutting plane
algorithm.

m Update 7 using the gradient computed using the obtained a.

m Repeat above two steps until convergence.



Cutting plane algorithm

Input: kernels, C, €margin (allowed violation of margin)
1S —¢ Vi=1,.,m

2. repeat
3. forr =1,...,m do
4, VY : H(Y) is computed using (3).
5. compute ¥ = argmax H(Y).
Y
6. compute ¢; = max{0, maz H(Y)}.
YES,
7. if H(Y) > & + €margin, then
8. Si— S ULy
9. compute o using § = Ul Si in (2).
10. end if
11. end for

12.until no S; has changed during the iteration.

where cost for boundary violation,

H(Y) = [1- (6w A Y) )



RELHKL on Structured Output Spaces Results

Dataset7 Std HMM Greedy feature induction RELHKL on StructSVM 8
Timeslice class Timeslice class Timeslice class’

Raw 25.4 21.75 26.88 21.33 63.96 32.01

Change 23.64 25.99 44.39 31.42 56.74 33.85

Last 51.83 38.56 49.74 27.76 92.57 53.91

Change + Last 37.86 30.12 37.29 27.67 94.47 55.82

7 - .
Activity recognition dataset, Kasteren et. al.
Greedy feature induction and RELHKL on StructSVM consider positive conjunctions

Timeslice accuracy is percentage of time the prediction is correct. Class accuracy is the average percentage
of time a class is predicted correctly



Hierarchical Kernel learning For Propositional Features



Applications of Hierarchical Kernel learning For
Propositional Features

Learning rule ensembles

m Conjunctive propositional features v [6]

m Disjunctive propositional features



Disjunctive propositional features

m Since HKL follows a top-down approach — descendant norm
is more suitable

m Top node in lattice is the most general, i.e. disjunction of all

N
basic features \/ bn

n=1
m descendant of node is a more specialized node; got by
removing one of the features of its parent.

m Only sufficiency condition changes; everything else remains
same.



Disjunctive propositional features

m feature map ¢(z) as (1 — ¢(z)) (¢(z) is boolean complement
of ¢(z)).

ma disjunctive feature corresponding to
\/ $n(zi) = (1 — n_14n(2:))

[ kernel corresponding to the disjunctive feature is

(1= Ty @n (@) (1 — 1 fn(2)))



Hierarchical Kernel learning For Disjunctive Features

m sum of exponential kernels of the entire lattice:

> Ko(zi, zj) =
veV

L+2V +IIL (1 (2:) 6 (2)) ~TL(1 46y, (1)) ~ (14 6 (25))



Hierarchical Kernel learning For Disjunctive Features

m sufficiency condition:

maz  SowiQ(t)saw; < Q(f)2 +e
tesources(WC)y 5

where Q(1)4 =
(1+11;)2It|'((1 + (332~

b
Ek( )$( )
# L1+ )

T T

¢k(®z) _ gk(“”])
krelt(l + (b+1)2) kl_elt(l + (b%l)z)




Hierarchical Kernel learning For Learning Taxonomies

Inherent hierarchical structure exploited
Vocabulary consisiting of important sense tagged words

Every sense of every word becomes a basic feature of HKL

Syntagmatic Information (context-co-occurrence): conjunctive
lattice

Paradigmatic Information (synonymous words): disjunctive
lattice



Conclusion

m Hierarchical Kernel Learning: Large features are discarded.

m Rule Ensemble Learning using Hierarchical Kernels: Large
features are discarded and sparcity among small features
selected.

m REL-HKL framework in structured output spaces

m Hierarchical Kernel Learning for disjunctive features.



Bibliography

@ Shiaokai Wang, William Pentney, Ana-Maria Popescu, Tanzeem Choudhury,
Matthai Philipose: Common sense based joint training of human activity
recognizers. In: 20th International Joint Conference on Artifical Intelligence
(2007)

John Lafferty, Andrew McCallum, Fernando Pereira: Conditional Random Fields:
Probabilistic Models for Segmenting and Labeling Sequence Data. In:
International Conference on Machine Learning (2001)

Niels Landwehr, Andrea Passerini, Luc De Raedt, Paolo Frasconi: KFOIL:
Learning Simple Relational Kernels. In: 21st National Conference on Artificial
Intelligence (2006)

Bernd Gutmann, Kristian Kersting: TildeCRF: Conditional Random Fields for
Logical Sequences. In: 15th European Conference on Machine Learning (2006)

N. Di Mauro, T.M.A. Basile, S. Ferilli, F. Esposito: Feature Construction for
Relational Sequence Learning. In: Technical Report, arXiv:1006.5188 (2010)

) & & & =

Ashwin Srinivasan: The Aleph Manual. Technical Report, University of Oxford
(2007)



Bibliography

) & & W & &

Niels Landwehr, Bernd Gutmann, Ingo Thon, Luc De Raedt, Matthai Philipose:
Relational Transformation-based Tagging for Activity Recognition. Progress on
Multi-Relational Data Mining 89(1):111-129 (2009)

Henri Binsztok, Thierry Artieres, Patrick Gallinari: A model-based approach to
sequence clustering. In: European Conference on Artificial Intelligence (2004)

Andrew McCallum: Efficiently Inducing Features of Conditional Random Fields.
In: Nineteenth Conference on Uncertainty in Artificial Intelligence (2003)

S. Siegel: Nonparametric statistics for the behavioural sciences. New York:
McGraw-Hill (1956)

Naveen Nair, Ganesh Ramakrishnan and Shonali Krishnaswamy, Enhancing
Activity Recognition in Smart Homes Using Feature Induction, International
Conference on Data Warehousing and Knowledge Discovery, 2011.

Pratik Jawanpuria, Saketha Nath Jagarlapudi and Ganesh Ramakrishnan,
Efficient Rule Ensemble Learning using Hierarchical Kernels, International
Conference on Machine Learning, 2011.

loannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims and Yasemin
Altun, Support Vector Machine Learning for Interdependent and Structured
Output Spaces, International Conference on Machine Learning, 2004.



Bibliography

W E & B & W

Tsochantaridis loannis, Support vector machine learning for interdependent and
structured output spaces,2006.

Charles Micchelli and Massimiliano Pontil, Learning the Kernel Function via
Regularization, Journal of Machine Learning Research,2005.

Daniel H. wilson, Assistive Intelligent Environments for Automatic Health
Monitoring, PhD Thesis, Carnegie Mellon University, 2005.

Tim van Kasteren, Athanasios Noulas, Gwenn Englebienne and Ben krose,
Accurate activity recognition in a home setting, 10th International conference on
Ubiquitous computing, 2008.

C.H.S. Gibson, T.L.M. van Kasteren and Ben Krose, Monitoring Homes with
Wireless Sensor Networks, Proceedings of the International Med-e-Tel
Conference, 2008.

R. Rabiner, A tutorial on hidden Markov models and selected applications in
speech recognition, Proceedings of the IEEE, 77(2):257-286, 1989.

Lise Getoor and Ben Taskar, Statistical Relational Learning, MIT Press, 2006.

Forney GD, The viterbi algorithm, Proceedings of IEEE, 61(3):268-278, 1973



Bibliography

) ) ) = &Y

Bach F., High-Dimensional Non-Linear Variable Selection through Hierarchical
Kernel Learning, Technical report, INRIA, France, 2009.

Rakotomamonjy A., Bach F., Canu S., and Grandvalet Y., SimpleMKL, JMLR,
9:2491-2521, 2008.

Szafranski M., Grandvalet Y., and Rakotomanmonjy A., Composite Kernel
Learning, ICML, 2008.

Kloft M., Brefeld U., Sonnenburg S., Laskov P., Muller K. R., and Zien A.,
Efficient and Accurate p-Norm Multiple Kernel Learning, NIPS, 2009.

Sion M., On General Minimax Theorem, Pacific Journal of Mathematics, 1958.



Thanks



	REL-HKL on structured output spaces
	SVM for structured output spaces
	REL-HKL on structured output spaces for learning optimum HMM model

	Hierarchical Kernel Learning for Propositional Features
	Conclusion and Future work

