
CS 717 Statistical Relational Learning

January 27, 2010

A depth-first search inspired algorithm for listing all hypotheses

satisfying a quality criterion

Assumptions

 The hypotheses form a finite lattice

 The quality criterion is polynomially computable [Sanity check : No point

developing a polynomial algorithm if the check takes exponential time]

In the example discussed in class, the quality criterion was anti-monotonic. We

develop the algorithm for the anti-monotonic case [the only place this is used is in

the optimizations, not the essence of the search algorithm].

We shall assume the Downward Refinement operator as defined in class :

 : S 2S

such that for all h’ in h), h’ ≤ h

Note : S is the set of all hypotheses

We define (h) to be the “unvisited” elements of the complete set of downward

closures of h

[If this does not make sense, we can explicitly enforce this by maintaining

“visited” information with each node in the lattice, and verifying that a particular

node is not “visited” before visiting it.]

The Algorithm

Initialize

stack S = Empty Stack

set Answer = 

S.push() // Not to be confused with the Answer set. This is the T of the Hypothesis Lattice

While (S is not empty) :

 h’ = S.pop()

 if (h’ qualifies) :

 Answer = Answer U {h’}

 set Children = h’

  for each element {h’’} of Children :

 S.push(h’’)

 else :

 // Trying to optimize here. Very very hand-wavy

 set All_Descendents = (h’)

 for each element {h’’} of All_Descendents :

 [Set node h’’ as visited]

 All_Descendents = All_Descendents U (h’’)

return Answer

A hill-climbing search inspired algorithm for listing at most one

hypothesis satisfying a quality criterion

Assumptions as in DFS algorithm

We shall assume the Upward Refinement operator as defined in class :

 : S 2S

such that for all h’ in h), h ≤ h’

We define (h) to be the complete set of upward closures of h

We also define a heuristic function “utility”, that takes a hypothesis and outputs a

real number (score).

S R

We shall “climb a hill” assuming the utility  gives the slope. We shall be greedy

about it.

The Algorithm

Initialize

 h =∑ // h is the current hypothesis being examined

 // ∑ is the _|_ of the hypothesis lattice

While (not h qualifies AND not h == ) :

 set Parents = h

 h = argmax h” in Parents (h”)

return h // What if T of hypothesis lattice does not qualify? We shall interpret  as unable

// to find any qualifying hypothesis.  is a degenerate case anyway

