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A depth-first search inspired algorithm for listing all hypotheses 

satisfying a quality criterion 

 

Assumptions 

 The hypotheses form a finite lattice 

 The quality criterion is polynomially computable [Sanity check : No point 

developing a polynomial algorithm if the check takes exponential time]  

In the example discussed in class, the quality criterion was anti-monotonic. We 

develop the algorithm for the anti-monotonic case [the only place this is used is in 

the optimizations, not the essence of the search algorithm]. 

We shall assume the Downward Refinement operator as defined in class :  

 : S       2S 

such that for all h’ in h), h’ ≤ h 

Note : S is the set of all hypotheses 

We define (h) to be the “unvisited” elements of the complete set of downward 

closures of h  

[If this does not make sense, we can explicitly enforce this by maintaining 

“visited” information with each node in the lattice, and verifying that a particular 

node is not “visited” before visiting it.] 

 

 



The Algorithm 

Initialize  

stack S = Empty Stack 

set Answer = 

S.push() // Not to be confused with the Answer set. This is the T of the Hypothesis Lattice 

While ( S is not empty) : 

 h’ = S.pop() 

 if ( h’ qualifies) : 

  Answer = Answer U {h’} 

  set Children = h’

  for each element {h’’} of Children : 

   S.push( h’’) 

 else : 

  // Trying to optimize here. Very very hand-wavy 

  set All_Descendents = (h’) 

  for each element {h’’} of All_Descendents : 

   [Set node h’’ as visited] 

   All_Descendents = All_Descendents U (h’’) 

return Answer 

 

 

 

 

 



A hill-climbing search inspired algorithm for listing at most one 

hypothesis satisfying a quality criterion 

Assumptions as in DFS algorithm  

We shall assume the Upward Refinement operator as defined in class :  

 : S       2S 

such that for all h’ in h), h ≤ h’ 

We define (h) to be the complete set of upward closures of h  

We also define a heuristic function “utility”, that takes a hypothesis and outputs a 

real number (score). 

S        R 

We shall “climb a hill” assuming the utility  gives the slope. We shall be greedy 

about it. 

The Algorithm 

Initialize  

 h =∑  // h is the current hypothesis being examined 

  // ∑ is the _|_  of the hypothesis lattice 

While (not h qualifies AND not h ==   ) : 

 set Parents = h

 h = argmax h” in Parents (h”) 

 

return h  // What if T of hypothesis lattice does not qualify? We shall interpret   as unable 

// to find any qualifying hypothesis.   is a degenerate case anyway 

 


