CS 717 Statistical Relational Learning

January 27, 2010

A depth-first search inspired algorithm for listing all hypotheses satisfying a quality criterion

Assumptions

The hypotheses form a finite lattice

The quality criterion is polynomially computable [Sanity check : No point developing a polynomial algorithm if the check takes exponential time]

In the example discussed in class, the quality criterion was anti-monotonic. We develop the algorithm for the anti-monotonic case [the only place this is used is in the optimizations, not the essence of the search algorithm].

We shall assume the Downward Refinement operator as defined in class :

 $\rho: S \longrightarrow 2^{S}$

such that for all $\mathbf{h'}$ in $\rho(\mathbf{h})$, $\mathbf{h'} \leq \mathbf{h}$

Note : S is the set of all hypotheses

We define $\rho(\textbf{h})$ to be the "unvisited" elements of the complete set of downward closures of h

[If this does not make sense, we can explicitly enforce this by maintaining "visited" information with each node in the lattice, and verifying that a particular node is not "visited" before visiting it.]

The Algorithm

Initialize

```
stack S = Empty Stack
```

set Answer = ϕ

```
S. push(\phi) // Not to be confused with the Answer set. This is the T of the Hypothesis Lattice
```

While (S is not empty):

h' = S.pop()

if (**h'** qualifies) :

Answer = Answer U {**h'**}

```
set Children = \rho(h')
```

for each element {**h''**} of Children :

S.push(**h''**)

else :

// Trying to optimize here. Very very hand-wavy set All_Descendents = $\rho(h')$ for each element {h''} of All_Descendents : [Set node h'' as visited] All_Descendents = All_Descendents U $\rho(h'')$

return Answer

A hill-climbing search inspired algorithm for listing at most one hypothesis satisfying a quality criterion

Assumptions as in DFS algorithm

We shall assume the Upward Refinement operator as defined in class :

 $\rho: S \longrightarrow 2^{S}$

such that for all $\mathbf{h'}$ in $\rho(\mathbf{h})$, $\mathbf{h} \leq \mathbf{h'}$

We define $\rho(\mathbf{h})$ to be the complete set of upward closures of \mathbf{h}

We also define a heuristic function "utility", that takes a hypothesis and outputs a real number (score).

 $\mu: S \longrightarrow R$

We shall "climb a hill" assuming the utility $\boldsymbol{\mu}$ gives the slope. We shall be greedy about it.

The Algorithm

Initialize

 $h = \Sigma$ // h is the current hypothesis being examined

// Σ is the _1_ of the hypothesis lattice

While (not **h** qualifies AND not $\mathbf{h} == \boldsymbol{\phi}$):

set Parents = $\rho(\mathbf{h})$

```
h = argmax_{h'' in Parents} \mu(h'')
```

return h

// What if **T** of hypothesis lattice does not qualify? We shall interpret ϕ as unable // to find any qualifying hypothesis. ϕ is a degenerate case anyway