
DONKEY algorithms

parakram majumdar

January 28, 2010

1 General BFS

In the previous class, we had seen how to Explore all the nodes in a BFS fashion
:

Let Q be an empty queue;
Ans = φ;
Q.push(φ);
while (Q is not empty) do

t = Q.pop();
if (qualifies(t)) then

Ans = Ans ∪ {t};
end if

for every u in ρ(t) do
//ρ is the complete downward closure
if (u.visited == False) then

Q.push(u);
u.visited = True;

end if
end for

end while

1

2 Truncated BFS algorithm

In the simple BFS, notice how u is pushed into the queue even if t does not
qualify. We now improve over the BFS algorihm using the fact that the qualifi-
cation function is anti-monotonic. Thus, if a hypothesis h is unqualified, there
is no point in adding its children into the queue.

Truncated BFS algorithm:

Let Q be an empty queue;
Ans = φ;
Q.push(φ);
while (Q is not empty) do

t = Q.pop();
if (not qualifies(t)) then

continue;
end if

Ans = Ans ∪ {t};

for every u in ρ(t) do
//ρ is the complete downward closure
if (u.visited == False) then

Q.push(u);
u.visited = True;

end if
end for

end while

Notice that for any hypothesis t, each element u ∈ ρ(t) can be generated as

for each σ ∈ Σ \ t do
u = t ∪ {σ};
...

end for

2

However, using the monotonicity property, we know that for any set to be
qualified, all its subsets should be qualified. Thus, for any u generated above,
it is worth checking whether the generating {σ} is qualified. This leads us to
the slightly better truncated BFS :

Let Q be an empty queue;
Ans = φ;
Q.push(φ);
while (Q is not empty) do

t = Q.pop();
if (not qualifies(t)) then

continue;
end if

Ans = Ans ∪ {t};

for each σ ∈ Σ′ \ t do
//Σ′ is the set of all σ′ ∈ Σ such that {σ′} is qualified
u = t ∪ {σ};
if (u.visited == False) then

Q.push(u);
u.visited = True;

end if
end for

end while

Note that this algorithm is hardly worth the complication if we need to
check the qualification of each σ′ again and again. Hence, instead, it is better
to generate the set Σ′ once and later simply pick the elements from Σ′ rather
than Σ.

3

3 Final Algorithm

Taking this idea of truncation a step further, we now want to push a hypotheses
h into the queue only if all subsets are qualified. A necessary and sufficient
condition for all subsets of h to be qualified is that all subsets h′ such that
|h′| = |h| − 1 are qualified. Thus, we modify the algorithm to :

Let Q be an empty queue;
Ans = φ;
Q.push(φ);
while (Q is not empty) do

t = Q.pop();
if (not qualifies(t)) then

continue;
end if
Ans = Ans ∪ {t};
for each σ ∈ Σ \ t do

u = t ∪ {σ};
if (u.visited == True) then

continue;
end if
Let test be a boolean variable set to False;
for all s ∈ u do

if (not qualifies(u \ s)) then
test = True;
break;

end if
end for
if (test == False) then

Q.push(u);
u.visited = True;

end if
end for

end while

The problem with this algorithm, just like the earlier one, is that checking
for qualification is expensive. Instead, it makes more sense to store the results
of the qualification checks so that we do not compute it twice for the same
hypothesis.

An elegant way to do this is to notice that every qualifying hypothesis of
size n can be obtained by the union of two qualifying sets of size n− 1 (where
n > 1). Writing this idea down as an algorithm leads to the final algorithm that
we discussed in class.

4

S = φ;
Ans = φ;
for each element σ in Σ do

if (qualifies({σ})) then
S = S ∪ {σ};

end if
end forAns = Ans ∪ S;
for i = 1 to (|Σ| − 1) do

S2 = S;
S = φ;
for all u, v ∈ S differing by exactly one element do

w = u ∪ v;
if (qualifies(w)) then

S = S ∪ {w};
end if

end for
Ans = Ans ∪ S;

end for

Here an interesting thing to notice is how u and v must necessarily differ in
exactly one element, because otherwise |w| will become greater than |u|+ 1.

5

