
S.V.N. “Vishy” Vishwanathan: String and Tree Kernels, Page 1

String and Tree Kernels
Algorithms and Applications

S.V.N. “Vishy” Vishwanathan
vishy@axiom.anu.edu.au

National ICT of Australia
and

Indian Insitutute of Science
Bangalore, India

Joint work with Alex Smola



Overview - I

S.V.N. “Vishy” Vishwanathan: String and Tree Kernels, Page 2

Motivation

Exact Kernels on Strings

Definition and Examples

Suffix Trees

Definition
Matching Statistics
Counting Substrings

Weights and Kernels

Annotation
Weighting Functions
Linear Time Prediction



Overview - II

S.V.N. “Vishy” Vishwanathan: String and Tree Kernels, Page 3

Sliding Windows

Position Dependent Weights

Kernels on Trees

Definition
Sorting Trees
Tree to String Conversion
Coarsening Levels

Inexact Kernels on Strings

Definition
Mismatch Kernel
Space Time Tradeoffs

Extensions and Future Work



Motivation

S.V.N. “Vishy” Vishwanathan: String and Tree Kernels, Page 4

Kernel Methods

Exciting theoretical bounds
Numerous applications
Limited to vectorial data

Strings

Bio-informatics
Spam filtering
Internet search engines

String Kernels

Must respect structure
Fast and easy to compute
Semantically meaningful



Notation

S.V.N. “Vishy” Vishwanathan: String and Tree Kernels, Page 5

Alphabet

Set of characters denoted by A

String

Any x ∈ Ak for some k

Sentinel

Some $ /∈ A used to terminate a string

Prefix/Suffix/Substring

Let x = uvw for some possibly empty u, v and w
u is called the prefix and w the suffix of x
v is called a substring of x
We write v v x



String Kernels - I

S.V.N. “Vishy” Vishwanathan: String and Tree Kernels, Page 6

Exact Matching Kernels

k(x, x′) :=
∑

svx,s′vx′
wsδs,s′ =

∑
s∈A∗

nums(x) nums(x
′)ws.

Count all matching substrings

Flexible weighting scheme

Different applications =⇒ different weights

Noise in training data =⇒ does not work :-(

Successful applications in bio-informatics (Vishwanathan
and Smola, 2002) (Leslie et. al., 2002)

Linear time algorithms using suffix trees



Exact String Kernels

S.V.N. “Vishy” Vishwanathan: String and Tree Kernels, Page 7

Bag of Characters
Counts single characters (Joachims, 1999). Set ws = 0 for
all |s| > 1

Bag of Words
s is bounded by whitespace (Joachims, 1999)

Limited Range Correlations
Set ws = 0 for all |s| > n given a fixed n

K-spectrum kernel
Account for matching substrings of length k (Leslie et al.,
2002). Set ws = 0 for all |s| 6= k

General Case
Quadratic time kernel computation (Haussler, 1998,
Watkins, 1998), cubic time prediction



Suffix Trees

S.V.N. “Vishy” Vishwanathan: String and Tree Kernels, Page 8

Definition
Compact tree built from all the suffixes of a word. Suffix
tree of ababc denoted by S(ababc).

/.-,()*+
ab

wwoooooooooooooo

b ��?
??

??
??

?
c$

**TTTTTTTTTTTTTTTTTTTTT

/.-,()*+ 22Z [ ] _ a c d
abc$

����
��

��
�� c$

��?
??

??
??

? /.-,()*+
abc$

����
��

��
�� c$

��?
??

??
??

? /.-,()*+

/.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+

Node label := unique path from the root
Suffix links are used to speed up parsing of strings
Suppose we are at a node ax then suffix links help us to
jump to node x
Each internal node has a unique suffix link (McCreight,
76)



Suffix Trees Contd. . .

S.V.N. “Vishy” Vishwanathan: String and Tree Kernels, Page 9

Properties

Represents all the substrings of the given string
Can be constructed in linear time
Offline algorithms - (Weiner 73) and (McCreight 76)
Online algorithm - (Ukkonen 93)
Can be stored using linear space
Edges are encoded by indices of the substring
Each leaf corresponds to a unique suffix
Leaves on subtree give number of occurrences
Each internal node has at least 2 distinct children
Annotation by performing DFS is easy
LCA queries in constant time (linear pre-processing)



Matching Statistics

S.V.N. “Vishy” Vishwanathan: String and Tree Kernels, Page 10

Definition
Given strings x, y with |x| = n and |y| = m, the matching
statistics of x with respect to y are defined by v, c ∈ Nn,
where

vi is the length of the longest substring of y matching a
prefix of x[i : n]

vi := i + vi − 1

ci is a pointer to ceil(x[i : vi]) in S(y).
ceil(s) is the last node on the path from the root to s

This can be computed in linear time (Chang and Lawler,
1994).



Example

S.V.N. “Vishy” Vishwanathan: String and Tree Kernels, Page 11

Matching statistic of abba with respect to S(ababc).

String a b b a
vi 2 1 2 1

ceil(ci) ab b b root

/.-,()*+
ab

wwoooooooooooooo

b ��?
??

??
??

?
c$

**TTTTTTTTTTTTTTTTTTTTT

/.-,()*+ 22Z [ ] _ a c d
abc$

����
��

��
�� c$

��?
??

??
??

? /.-,()*+
abc$

����
��

��
�� c$

��?
??

??
??

? /.-,()*+

/.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+



Matching Substrings

S.V.N. “Vishy” Vishwanathan: String and Tree Kernels, Page 12

Prefixes
w is a substring of x iff there is an i such that w is a prefix
of x[i : n]. The number of occurrences of w in x can be
calculated by finding all such i.

Substrings
The set of matching substrings of x and y is the set of all
prefixes of x[i : vi].

Next Step
If we have a substring w of x, prefixes of w may occur in
x with higher frequency. We need an efficient computation
scheme.



Key Trick - I

S.V.N. “Vishy” Vishwanathan: String and Tree Kernels, Page 13

Theorem
Let x and y be strings and c and v be the matching statis-
tics of x with respect to y. Assume that

W (y, t) =
∑

s∈prefix(v)

wus − wu where u = ceil(t) and t = uv.

can be computed in constant time for any t. Then k(x, y)
can be computed in O(|x| + |y|) time as

k(x, y) =

|x|∑
i=1

val(x[i : vi])

where val(s) indicates the contribution to the kernel due to
string s and all its prefixes.



Key Trick - II

S.V.N. “Vishy” Vishwanathan: String and Tree Kernels, Page 14

Observation
All substrings ending on the same edge of s(y) occur the
same number of times in string y

For any matching substring t we can write

val(t) := lvs(floor(t)) ·W (y, t) + val(ceil(t))

For each node v we can pre-compute val(v) by a simple
DFS on the suffix tree

We can compute in constant time

val(x[i : vi]) = lvs(floor(x[i : vi])) ·W (y, x[i : vi]) + val(ci)



Computing W (y, t)

S.V.N. “Vishy” Vishwanathan: String and Tree Kernels, Page 15

Length-Dependent Weights
Assume that ws = w|s|, then

W (y, t) =

|t|∑
j=| ceil(t)|

wj − w| ceil(t)| = ω|t| − ω| ceil(t)|

where ωj :=
∑j

i=1wj, which can be pre-computed and
stored for j = 1, 2, . . .max(|x|, |y|).

K-spectrum Kernel
It is easy to see that

W (y, t) =

{
1 if | ceil(t)| < k and |t| ≥ k
0 if otherwise



Generic Weights

S.V.N. “Vishy” Vishwanathan: String and Tree Kernels, Page 16

TFIDF Weights

Assume ws = ψ(freq(s))φ(|s|)
Strings on the same edge =⇒ same frequency

W (y, t) = ψ(freq(t))

|t|∑
i=| ceil(t)|+1

φ(i)

To take into account frequency in entire training set build
a master suffix tree of all strings in the training set
In case weights are completely arbitrary it suffices to
annotate all the nodes of this master suffix tree (Vish-
wanathan and Smola, 2002).



The Estimation Problem

S.V.N. “Vishy” Vishwanathan: String and Tree Kernels, Page 17

Problem
For prediction we need to compute f (x) =

∑
i αik(xi, x).

This depends on the number of SVs
Web search engines and spam filtering

Large number of SVs
Real time prediction is critical

Key Observation

We are repeatedly parsing the SV strings
Pre-processing the SV set can speed up prediction

Idea
We can merge matching weights from all the SVs. All we
need is a master suffix tree!



Master Suffix Tree

S.V.N. “Vishy” Vishwanathan: String and Tree Kernels, Page 18

A collection of strings X = {x1, x2 . . . xm}
We define S(X) as a natural union of S(xi)

Define X := x1$1x2$2 . . . xm$m

Construct S(X)

Prune away the extra labels on the leaves

The $i’s induce a extra log penalty in construction time

Aamir et. al. algorithm avoids this penalty

It uses a clever modification of the McCreight algorithm

We can construct the master suffix tree S(X) in O(
∑

i |xi|)
time



Estimation Algorithm

S.V.N. “Vishy” Vishwanathan: String and Tree Kernels, Page 19

A substring s in a Support Vector xi is counted (i.e. con-
tributes a weight value) αi times to the kernel

We merge the suffix trees of all the Support Vectors into a
master suffix tree

In the master suffix tree we associate weight αi with each
leaf derived from Support Vector xi
For a node v, we define lvs(v) as the sum of weights asso-
ciated with the subtree rooted at v

The key theorem can now be applied unchanged to com-
pute f (x)

Our algorithm runs in time linear in the size of x and is
independent of the size of the Support Vector set!



Sliding Windows

S.V.N. “Vishy” Vishwanathan: String and Tree Kernels, Page 20

Motivation

Bioinformatics: Estimate on windows of a long string

Problem

Long sequence x and a window width N are given
Estimate the function value for windows of length N

Observation

Interesting matches =⇒ cross a window boundary

Algorithm

Compute the matching statistics for x
Account for cross boundary matches (at most N )
In practice very few matches cross the boundary
Expected sub-linear time for sliding a window!



A Picture Helps

S.V.N. “Vishy” Vishwanathan: String and Tree Kernels, Page 21



Positional Weights

S.V.N. “Vishy” Vishwanathan: String and Tree Kernels, Page 22

Motivation

Bioinformatics: weigh exons and introns differently

Definition
k(x, x′) :=

∑
svx,s′vx′

w(s,x)ρ(s′,x′)δs,s′

where w(s,x) and ρ(s′,x′) are position dependent.

Observation

Each leaf of S(x) corresponds to a unique suffix of x

Algorithm

Assign a different weight to each leaf
As before sum the weights on each subtree
The original algorithm runs unchanged!



Tree Kernels

S.V.N. “Vishy” Vishwanathan: String and Tree Kernels, Page 23

Subset Trees
Set of connected nodes of a tree T

Definition (Colins and Duffy, 2001)
Denote by T, T ′ trees and by t |= T a subset tree of T , then

k(T, T ′) =
∑

t|=T,t′|=T ′

wtδt,t′.

Our Definition (Vishwanathan and Smola, 2002)
In case we count matching subtrees then t |= T denotes
that t is a subtree of T and we get

k(T, T ′) =
∑

t|=T,t′|=T ′

wtδt,t′.



Permutation Invariance

S.V.N. “Vishy” Vishwanathan: String and Tree Kernels, Page 24

Problem
We want permutation invariance of unordered trees.

Example:
The following two unordered trees are mirror images

/.-,()*+

����
��

��
��

��?
??

??
??

? /.-,()*+

����
��

��
��

��?
??

??
??

?

/.-,()*+ /.-,()*+

����
��

��
��

��?
??

??
??

? /.-,()*+

����
��

��
��

��?
??

??
??

? /.-,()*+

/.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+

Solution

Sort trees before computing kernel
Maps equivalent trees to a single representative



Sorting Trees - I

S.V.N. “Vishy” Vishwanathan: String and Tree Kernels, Page 25

Sorting Rules

Assume existence of lexicographic order on labels
Introduce symbols ‘[′, ‘]′ satisfy ‘[′< ‘]′, and that ‘]′, ‘[′<
label(n) for all labels.

Algorithm

For node n with children n1, . . . , nc sort the tags of the
children in lexicographical order such that tag(ni) ≤
tag(nj) if i < j and define

tag(n) = [ label(n) tag(n1) tag(n2) . . . tag(nc)].

Example
The trees /.-,()*+

����
�

��?
??

/.-,()*+
����

�
��?

??/.-,()*+ /.-,()*+
����

�
��?

??
/.-,()*+

����
�

��?
??

/.-,()*+
/.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+

have label [[][[][]]].



Sorting Trees - II

S.V.N. “Vishy” Vishwanathan: String and Tree Kernels, Page 26

Theorem
Let l be the number of nodes and λ the length of a label

1. tag(root) can be computed in (λ + 2)(l log2 l) time and
linear storage in l.

2. Substrings s of tag(root) starting with ‘[′ and ending with
a balanced ‘]′ correspond to subtrees t of T where s is
the tag on t.

3. tag(root) is invariant under permutations of the leaves
and allows the reconstruction of an unique element of
the equivalence class (under permutation).

Proof

Proof of 1. by induction. Rest follows from definition.
Extension to k-ary trees straightforward



Tree to String Conversion

S.V.N. “Vishy” Vishwanathan: String and Tree Kernels, Page 27

Consequence
We can compute tree kernel by

1. Converting trees to strings
2. Computing string kernels

Advantages

More general subtree operations possible: we may in-
clude non-balanced subtrees (cutting a slice from a
tree).
Simple storage and simple implementation (dynamic ar-
ray suffices)
All speedups for strings work for tree kernels, too (XML
documents, etc.)



Coarsening Levels

S.V.N. “Vishy” Vishwanathan: String and Tree Kernels, Page 28

Motivation

Two trees are very similar if we ignore a few nodes
Applications: image processing, document analysis

Definition

Td =⇒ chop off nodes at height d in T
If tree is labeled, need to propagate labels also
We can then define

kcoarse(T, T
′) =

∑
i

Wik(Ti, T
′
i )

Wi is a down-weighting factor (typically 0 < λi < 1)

Algorithm

Coarsen string representations to compute kcoarse



String Kernel Basics - II

S.V.N. “Vishy” Vishwanathan: String and Tree Kernels, Page 29

Inexact Matching Kernels

k(x, x′) :=
∑

svx,s′vx′
ws,s′ =

∑
s∈A∗

nums(x) nums(x
′)ws,s′.

Count all approximately matching substrings

Search space is large

Not all weighting schemes yield a proper kernel

More expensive to compute

Can compute special cases efficiently

Space and time trade-offs

Open Question: Can we do better?



Mismatch Kernels

S.V.N. “Vishy” Vishwanathan: String and Tree Kernels, Page 30

Motivation

Sequencing methods are error prone
Sequences differ slightly due to biological reasons

Definition

K(x, x′) =
∑
s,s′∈A∗

nums(x) nums′(x
′)δms,s′ws,s′

δms,s′ is non-zero only
if |s| = |s′|
No. of mismatches between s and s′ is less than m

Special Case

The (k,m)-mismatch kernel is obtained if we set ws,s′ =
1 for all |s| = |s′| = k and 0 otherwise



Algorithm - I

S.V.N. “Vishy” Vishwanathan: String and Tree Kernels, Page 31

Key Idea

Given two strings x and x′

Align x′ with all possible positions on x
For each alignment locate the mismatch locations
This is known as convolution of strings
Use a suffix tree to jump over matching pieces

Example

GATTACATA x
TAGATACAGTAC x′

111000011 Mismatches between x and x′

123333345 Mismatch count
0123321012 Mismatch count in windows of size 4



Algorithm - I Contd . . .

S.V.N. “Vishy” Vishwanathan: String and Tree Kernels, Page 32

Analysis

Computing mismatches per alignment - O(|x|) time
Finding all good windows takes O(|x|) time
There are O(|x′|) possible alignments
Total algorithm takes O(|x||x′|) time

Advantages

Faster than the previously known methods
Can be sped up by using a suffix tree
Can jump over matching regions in constant time

Disadvantages

The algorithm is Θ(|x||x′|)
Scales badly when the strings are long



Algorithm - II

S.V.N. “Vishy” Vishwanathan: String and Tree Kernels, Page 33

Key Idea

We can rewrite the (k,m) mismatch kernel as

K(x, x′) =

|x′|−k∑
i=1

K(x, x′[i : i + k − 1])

If we pre-compute the value of K(x, ·) for all possible
k-mers the kernel evaluation is easy
For each k-mer we need to generate itsm neighborhood
A suffix tree encodes all exact matching k-mers
To generate the m neighborhood we make multiple
copies of the suffix tree allowing for at most m mis-
matches



Algorithm - II Contd . . .

S.V.N. “Vishy” Vishwanathan: String and Tree Kernels, Page 34

Original Tree
/.-,()*+

}}{{
{{

{{
�� !!B

BB
BB

B

?>=<89:;A
��

GFED@ABCG
��

?>=<89:;T
?>=<89:;T ?>=<89:;A

��?>=<89:;T

One Neighborhood
/.-,()*+

}}{{
{{

{{
�� !!B

BB
BB

B

GFED@ABCC
��

GFED@ABCG
��

?>=<89:;T
��?>=<89:;T ?>=<89:;T ?>=<89:;T

/.-,()*+
}}||

||
||

�� !!B
BB

BB
B

?>=<89:;A
��

GFED@ABCC
��

?>=<89:;T
��?>=<89:;A

��

?>=<89:;A
��

?>=<89:;A
��?>=<89:;T ?>=<89:;T ?>=<89:;T

/.-,()*+
}}||

||
||

�� !!CC
CC

CC

?>=<89:;A GFED@ABCC GFED@ABCG

/.-,()*+
}}zz

zz
zz

?>=<89:;A
����

��
��

�� ��?
??

??
?

?>=<89:;A GFED@ABCC GFED@ABCG

/.-,()*+
!!CC

CC
CC

GFED@ABCG
����

��
��

�� ��>
>>

>>
>

GFED@ABCC
��

GFED@ABCG
��

?>=<89:;T
��?>=<89:;T ?>=<89:;T ?>=<89:;T

/.-,()*+
��GFED@ABCG
��?>=<89:;A

����
��

��
�� ��@

@@
@@

@

?>=<89:;A GFED@ABCC GFED@ABCG



Algorithm - II Contd . . .

S.V.N. “Vishy” Vishwanathan: String and Tree Kernels, Page 35

Algorithm

For each pattern x build suffix tree S(x)

Truncate the suffix tree to depth k (i.e. k-mers)
Expand the m neighborhood and build suffix links
As before use matching statistics to compute K(x, x′)

Advantages

Kernel computation linear after pre-processing
Linear time estimation ideas can be applied
Most of the ideas from exact matching can be used

Disadvantages

Large amounts of pre-processing
Not memory efficient



Applications

S.V.N. “Vishy” Vishwanathan: String and Tree Kernels, Page 36

Problem

Detect protein homologies (i.e. similarities)
Used to predict

Functional properties
Structural properties

of new protiens from known protiens

Kernel Used

Exact Kernel
Length weighted with ws = λ|s|

Matching substrings of minimum length 3



Results

S.V.N. “Vishy” Vishwanathan: String and Tree Kernels, Page 37



Summary and Extensions

S.V.N. “Vishy” Vishwanathan: String and Tree Kernels, Page 38

Reduction from quadratic or cubic to linear prediction and
kernel computation time

Kernels on heaps, stacks, bags, etc. trivial

Compact storage of SVs if redundancies abound in SV
set. E.g. for anagram and analphabet we need only
analphabet and gram

Ideas can also be extended to suffix arrays

Approximate matching and wildcards

Can we do better in case of approximate matches?

Automata and dynamical systems

Do “expensive” things with string kernel classifiers

More information at http://www.kernel-machines.org

http://www.kernel-machines.org

