Lattice of atoms 1) Subsumption 1s a quasi-order Di. Equivalence classes of atoms are related by partial order. 3) A = A z --- iff real symbol
One-to-one correspondence between var names in A parcnt(x, y) = parcnt(A,B) parent (x, y) & parent (sister (A), B) A1 . -- - 5 {x/s+k+(0)} A2

AITAZ & BX

Lattice structure over atoms conta.

- $\top \succeq l$ for all $l \in \mathcal{A}^+$
- $1 \succeq \perp$ for all $1 \in \mathcal{A}^+$
- $\mathbf{l} \succeq m$ iff there is a substitution θ such that $\mathbf{l}\theta = m$, for $\mathbf{l}, \mathbf{m} \in \mathcal{A}$

Lattice structure over atoms conta.

B:If LAM are iltorns' then

1s 1>m 11f l=m)

for douses (1 + C2

if oid not hold because of self-recursive clouses

-> Logical implication over atoms is also a quasi-order orce atoms

Jatice structure over atoms conta.

Embolies relations

- lacksquare $[\bot] \sqcap [\mathbf{l}] = [\bot]$, and $[\top] \sqcap [\mathbf{l}] = [\mathbf{l}]$
- If $l_1, l_2 \in \mathcal{A}$ have a most general unifier (see page 78) θ then $[l_1] \sqcap [l_2] = [l_1\theta] = [l_2\theta]$.

This can be proved as follows. Let $[\mathbf{u}] \in \mathcal{A}_E^+$ such that $[\mathbf{l}_1] \succeq [\mathbf{u}]$ and $[\mathbf{l}_2] \succeq [\mathbf{u}]$, then we need to show that $[\mathbf{l}_1\theta] \succeq [\mathbf{u}]$. If $[\mathbf{u}] = [\bot]$, this is obvious. If $[\mathbf{u}]$ is conventional, then there are substitutions σ_1 and σ_2 such that $[\mathbf{l}_1\sigma_1] = [\mathbf{u}] = [\mathbf{l}_2\sigma_2]$. Here we can assume σ_1 only acts on variables in \mathbf{l}_1 , and σ_2 only acts on variables in \mathbf{l}_2 . Let $\sigma \equiv \sigma_1 \cup \sigma_2$. Notice that σ is a unifier for $\{[\mathbf{l}_1], [\mathbf{l}_2]\}$. Since θ is an mgu for $\{[\mathbf{l}_1\sigma_1], [\mathbf{l}_2\sigma_2]\}$, there is a γ such that $\theta\gamma = \sigma$. Now $[\mathbf{l}_1\theta\gamma] = [\mathbf{l}_1\sigma] = [\mathbf{l}_1\sigma_1] = [\mathbf{u}]$, so $[\mathbf{l}_1\theta] \succeq [\mathbf{u}]$.

If $\mathbf{l}_1, \mathbf{l}_2 \in \mathcal{A}$ do not have a most general unifier θ then $[\mathbf{l}_1] \sqcap [\mathbf{l}_2] = [\bot]$. Since \mathbf{l}_1 and \mathbf{l}_2 are not unifiable, there is no conventional atom \mathbf{u} such that $[\mathbf{l}_1] \succeq [\mathbf{u}]$ and $[\mathbf{l}_2] \succeq [\mathbf{u}]$. Hence $[\mathbf{l}_1] \sqcap [\mathbf{l}_2] = [\bot]$.

 $\P igl(\bot] \sqcup [1] = [1], \text{ and } [\top] \sqcup [1] = [\top]$

If \mathbf{l}_1 and \mathbf{l}_2 have an "anti-unifier" \mathbf{m} then $[\mathbf{l}_1] \sqcup [\mathbf{l}_2] = [\mathbf{m}]$; otherwise $[\mathbf{l}_1] \sqcup [\mathbf{l}_2] = [\top]$: Proof on [%]

Assume litte standardy ...d apart

subsit

Anti-unification = Reverse of unification

Idea: Move from Constants to Variables.

Mem [1, [1,2]]

$$\begin{cases}
(1, \langle 1 \rangle), (1, \langle 2, 1 \rangle), (2, \langle 2, 2 \rangle) \\
(1, \langle 1 \rangle), (1, \langle 2, 1 \rangle), (2, \langle 2, 2 \rangle)
\end{cases}$$

$$\begin{cases}
(1, \langle 1 \rangle), (1, \langle 2, 1 \rangle), (2, \langle 2, 2 \rangle) \\
(1, \langle 1 \rangle), (1, \langle 2, 1 \rangle), (2, \langle 2, 2 \rangle)
\end{cases}$$

$$\begin{cases}
(1, \langle 1 \rangle), (1, \langle 2, 1 \rangle), (2, \langle 2, 2 \rangle) \\
(1, \langle 1 \rangle), (2, \langle 2, 2 \rangle)
\end{cases}$$

Input: A pair of atoms l_1 and l_2 with the same predicate symbol

Output: $l_1 \sqcup l_2$

- 1. Let $\mathbf{l} = \mathbf{l}_1$ and $\mathbf{m} = \mathbf{l}_2$, $\theta = \emptyset$, $\sigma = \emptyset$
- 2. If $\mathbf{l} = \mathbf{m}$ return \mathbf{l} and stop.
- 3. Try to find terms t_1 and t_2 that have the same (leftmost) place in \mathbf{l} farch (any many) and \mathbf{m} respectively, such that $t_1 \neq t_2$ and either t_1 and t_2 begin with different function symbols, or at least one of them is a variable.
- 4. If there is no such t_1, t_2 , return 1 and stop.
- 5. Choose a variable x that does not occur in either \mathbf{l} or \mathbf{m} and wherever t_1 and t_2 occur in the same place in \mathbf{l} and \mathbf{m} , replace each of them by x
- 6. Set θ to $\theta \cup \{x/t_1\}$ and σ to $\sigma \cup \{x/t_2\}$
- 7. Go to Step 3

ANTY-UNIFICATION ALGO

Parent (ann, x)

P(a,a)—q(b,c)
P(b,b) 11.

8(4,3)

Beware: You need to take minimal Step

Q: Mem [1,[1,2]) [] Mem (2,[2,4]) = ?

Theorem 21 After each iteration of the Anti-Unification Algorithm, there are terms s_1, \ldots, s_i and t_1, \ldots, t_i such that:

- 1. $\theta = \{z_1/s_1, \dots, z_i/s_i\}$ and $\sigma = \{z_1/t_1, \dots, z_i/t_i\}$.
- 2. $\mathbf{l}\theta = \mathbf{l}_1$ and $\mathbf{m}\sigma = \mathbf{l}_2$.
- 3. For every $1 \leq j \leq i$, s_j and t_j differ in their first symbol.
- 4. There are no $1 \le j, k \le i$ such that $j \ne k$, $s_j = s_k$ and $t_j = t_k$.

By while of step 5.

by Lonstructu-

Theorem 22 Let l_1 and l_2 be two atoms with the same predicate symbol. Then the Anti- Unification Algorithm with l_1 and l_2 as inputs returns $l_1 \sqcup l_2$.

- 1) Algorithm will terminate after a finite # of Steps (since finite terms)
- Let u be finally returned atom.

 Of be final substitutions

 By Thm 21, UP= li 4 U== 127 uz, li

 By composition
- [2] To show! $U = L_1 U |_2$ Lets say $V > L_1 V > L_2 : Show <math>V > U$ Let $W = U \sqcap V (crists)$ by prev lemma

 Let $U > U \sqcap V (crists)$ by prev lemma $U > U \cap V = U \cap U =$

Claim: We [u] ie Vis simply &

renaming subst [1-1 corp] By contractiction: Say maps var "z" / vamples
to non-var "t" "z" 4 "y

Then

If z is not any 2; then

I dow' or M = 20 = z - - contraction to

not act

on z

Suppose x and y are distinct variables in \mathbf{u} such that γ unifies x and y. Then,

- 1. If neither x nor y is one of the z_j 's, then $x\gamma\mu = x\theta = x \neq y = y\theta = y\gamma\mu$, contradicting $x\gamma = y\gamma$
- 2. If x equals some z_j and y does not, then $x\gamma\mu = x\theta = s_j$ and $x\gamma\nu = x\sigma = t_j$, so $x\gamma\mu \neq x\gamma\nu$ by theorem 21, part 3. But $y\gamma\mu = y\theta = y = y\sigma = y\gamma\nu$, contradicting $x\gamma = y\gamma$.
- 3. Similarly for the case where y equals some z_i and x does not.
- 4. If $x = z_j$ and $y = z_k$, then $j \neq k$, since $x \neq y$. Furthermore, $s_j = x\theta = x\gamma\mu = y\gamma\mu = y\theta = s_k$ and $t_j = x\sigma = x\gamma\nu = y\gamma\nu = y\sigma = t_k$. But this contradicts theorem 21, part 4.

possible