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(L1} = [L], and [T} {1] = [1]

It 1,15 € A have a most_general unifier (see page 78) 6 then [L4] M [ly] =
[116] = [126].

This can be proved as follows. Let [u] € AJEF such that {1} = Ju ] and
1,] = [u], then we need to show that [1,6] > [u]. If [u] = [L], this is
obvious. If [u] is (:_pr\rg_nj;ileaJ, then there are substitutions o; and oo
such that [l;0y] = [u] = [l,62]. Here we can assume o; only acts on
variables in 1y, and o2 only acts on variables in lo. Let ¢ = 01 Ugy. Notice
that o is a unifier for {[L;], [l,]}. Since 6 is an mgu for {{1;04]. Lo |1, there

is a v such that_fy = 0. Now [116~] = [lio] = [lio1] = [u], so [116] = [u].

- - A‘*R“

If 11,15 € A do not have a most general unifier 6 then [I;] M [L] = [L].

Since 1; and I are not unifiable, there is no conventional atom u such that

[1;] = [u] and [I,] = [u]. Hence [1;] 1 [ly] = [L].
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If 1y and 12 have an “anti-unifier” m then [1;] U [lo] = [m]; otherwise
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Input: A pair of atoms 1; and 1, with the same predicate symbol

Output: 1, LI

. Choose a variable x that does not occur in either 1 or m and wherever

Letl=l,andm=1,0=0, 0 =

. If 1 = m return 1 and stop.

and m respectively, such that ¢; # t5 and either £{ and ¢5 begin with
different function symbols, or at least one of them is a variable.

. Try to find terms ¢; and ¢, that have the same (leftmost) place in 1 }? v (_nl@"" mey )

Paxc n"l. ann 4 m)

. If there is no such ¢;,%5, return 1 and stop.

o.rcn’(. (a M, X-)

t; and to5 occur in the same place in I and m, replace each of them
by = “Aaces

et 6t 8 U {a/t} and o to o U {/t) . 9(“ ) — q(0.©
. Go to Step 3 V(" IQ “l
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Theorem 21 After each iteration of the Anti- Unification Algorithm, there are
terms s1,...,8; and ty,...,t; such that:

el
1. 0 ={z1/s1,...,zi/si} and 0 = {z1/t1,...,zi/ti}. \;jw j

2. 10 =1, and mo = 15.
uchh-

<4
8. For every 1 < j <1, s; and t; differ in their first symbol. mj’(

4. There are no 1 < j, k <i such that j # k, s; = swtj = ty.
%\_l \[\THL ’Y
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Theorem 22 Letl; and ls be two atoms with the same predicate symbol. Then
the Anti- Unification Algorithm with 11 and 1o as inputs returns 1; L 1.
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Suppose « and y are distinct variables in u such that ~ unifies = and y.
Then, - -

1. If neither x nor y is one of the z;’s, then xypu = wt = @ # y = yt = yyp.
contradicting vy = y~y

-
i - - -

2. If = equals some z; and y does not, then xypu = 26 = s; and vyr = vo =
tj, 80 xyp # ayv by theorem 21, part 3. But yyu =yb =y = yo = yyv,
c_:_o_ptradlctmg Ty = Y. l_, _5-:] X £ ¢annat slavt ‘Wil Same

e Symbel
3. Similarly for the case where y equals some z; and = does not.

4. 1f v = z; and y = 2, then j # k, since x # y. Furthermore, s; = x6 =
ryp = yyp =yt = s and t; = vo = wyv = yyw = yo = t,. But this
contradicts theorem 21, part 4. -b
- = e . r - . o s = L‘-
l_a ¢ *J "flll!n Sl _'IJ 4 [I ) J r
Pajgl H <



