We present another example ilustrating Herbrand models. Gonsider the
following program P:

likea(john,X) « likes(X, apples)
likes(mary, applea) —
Suppose the language £ contained no symbols other than those in . Then,

B(P) is the set {likes(john, john), likes(john, apples), likes(apples. john), likes(john, mary),
likes(mary, john), likes(mary, apples), likes(apples, mary), likes(mary, mary).,
likes(apples, apples)}. Now, {likeclmpry, cpples), lileg(jobn maru)} is a sub-
set of B(F’), and is a Herbrand interpretafion. Moreover, it is also a Herbrand
model for P. Similarly, {Zikes(?naty,gpplesl, likes(john,mary), likes(mary, john)}
is also a model for P. The ground instanfiation G(P) for this program is: = =

likes(john, john) «— likes(john, apples)

likes(john,mary) « likes(mary, applea) G,C'P)

likes(john,apples) + likes(apple=, apples)
likez{mary, apples) —

It can be verified?® that the interpretation {likes(mary, apples), likes(john, mary)}
is a model for the G(F’) above.

e

R: s cvc"ﬁ woddd {ovr @) o w1 {"’T?

Theorem 16 A clausal formula ¥ has a model if and only if its ground instan-
tiation G(X) has a Herbrand model.

Proof: =: Suppose X has a model M. Then we define the following Herbrand
interpretation I as follows. Let P be an n-ary predicate symbol occurring in X.
Then we define the function Ip from U}' to {T. F'} as follows: Ip(t.....t,) =T
it P(ty,...,t,) is true under M, and Ip(t1,...,t,) = F otherwise. It can easily
beShown that T = U-;E-EE; is a Herbrand model of ¥.

«: This is obvious (a Herbrand model is a model). O

Lx,LL-- Ln € dL,
M¥ a [Tig Oas' atowS .(thanm\é).

ﬂsy/p_'. \

Gce): .2 MM (GCE))

"

2 ----My

smallest, and is the minimal model. T'here is an important result relating a
definite clausal formula X, its minimal model MM(X) and the ground atoms
that are logical consequences of X:

Theorem 17 If o is a ground atom then X |= o if and only if « € MAM(X).

Here MM (-) denotes the minimal model. Thus, the minimal model of a definite
clausal formula is identical to the set of all ground atoms logically implied by
that formula. Thus, the minimal model provides, in effect, denotes the meaning
(or semantics) of the formula. The proof of this theorem follows nearly from
theorem 12 that was proved earlier.

rmm I')'a‘.c 3
o F:; G AEMM(GS) = MUCE)

MLNJ tse atj ‘W\M’E' 'j: 5(9
8078 use MM(G))

The statement “Any animal that has hair is a mammal” can be written as a
clause using monadic predicates (7.e. predicates with arity 1):

VX is_mammal(X) — has_hair(X)

Usually clauses are written without explicit mention of the quantifiers:
is_.mammal(X) — has_hair(X)
is_mammal(X) — has_milk(X)

is_bird(X) <« has_feathers(X)

Datalog

Datalog is a subset of the language of first order language; it has all the compo-
nents of first order logic (variables, constants and recursion), except functions.
A Datalog “expert” system will encode these rules using monadic predicates as:

iscmammal(X) :- has_hair(X).

iscmammal(X) :- has_milk(X).

is_bird(X) :- has_feathers(X).

is_bird(X) :- can_fly(X), has_eggs(X).

is_carnivore(X) :- is_omammal(X), eats_meat(X).

is—carnivore(X) :- has_pointed_teeth(X), has—claws(X), has_pointy_-eyes(X).
cheetah(X) :- is_carnivore(X), has_tawny_colour(X), has_dark_spots(X).
tiger(X) :- is_carnivore, has_tawny_colour(X), has_black stripes(X).
penguin(X) :- is_bird(X), cannot_fly (X), can_swim(X).

Now here are some statements®® particular to animals:

has_hair(peter). fat(peter).
has_green_eyes(peter). has_tawny_colour(peter).
eats_meat(peter). has_black_stripes(peter).
has_milk(bob). eats_meat(bob)
has_tawny_colour(bob). has_dark_spots(bob).

can_fly(bob).

parent(tom, Jo) —
pa.-?'(e:rsf(pam 0) — S/
(
(

" parentaf

parent(tom, liz) «—
parent(pam, .-'37) — (=) ()

Consider the predecessor relation. namely, all ordered tuples < X.Y > s.t.
X is an ancestor of Y. This set will include Y’s parents, Y’s grandparents, Y's
grandparents’ parents, etc.

pred(X.Y) — parent(X,Y)
pred(X,Z) +— parent(X,Y),parent(Y, Z)
prediX, Z) — parent(X, Y1), parent(Y1,Y2), parent(Y2, Z)

As can be seen through this example, variables and constants are not enough:
we need recursion:

WX, Z X is a predecessor of Z if ! ¥
1. X is a parent of Z; or .
2. X i= a parent of some Y, and Y is a predecessor of Z

The predecessor relation is thus

pred(X,Y) «— parent(X.Y) . prdscsor o P\
pred(X. 7)) — parent(X,Y), pred(Y, 7)
e ——

W

N1 N4z (peed OF 3) & povend) pee d (7'7'\)

Sparent of T

Prolog = Predicates 4+ Variables + Constants + Functions

Consider Peano’s postulates for the set of natural numbers A,
1. The constant 0 is in A/

if X is in AV then s(X) is in N

There are no other elements in A/

There is no X in N s.t. s(X) =0

There are no X,V in N s.t. s(X)=s(Y) and X £V

We can write a definite clause definition using 1 constant symbol and 1 unary
function symbol for enumerating the elements of A

()
natural(0) — M’(l’x c)
natural(s(X)) — natural(X) (% J@

e e e e TS = N O R\
s N Lo gkt G\L

,The elements of A" can be now generated by asking:\ .
[
’
s natural(N)? JS
- - - = T -—-— ™ am o ,'

- o
4

5 L\}\ - ‘f\-k\ 4_;\0_&:40-\ (0)
wi 15 fE) ©
nefarh (‘l}b—/ nafurs] (ﬂ).\ ’ é‘

Prolog also supports lists. Lists are simply collections of objects. For e.g.
1.2.3... or 1.a.dog..... Lists are defined as follows:

1. The constant nil is a list
2. It X is a term, and Y is a list then .(X,Y) is a list

So the list 1, 2.3 1s represented as:

(1,.(2,.(3,nil)))

Usually logic programming systems use a “[” “]” notation, in which the constant
ntl is represented as [] and the list 1,2, 3 is [1, 2, 3]. In this notation, the symbol
| is used to separate a list into a “head” (the elements to the left of the |) and
a “tail” (the list to the right of the |). Thus:

List Represented as Values of variables
[1,2,3] [X1]Y] X=1Y =23
2.3 [X[Y] X =[1,2,Y = [3

1] X[Y] X=1Y =]

[1]2] [XY] X=1LY=2

] X, V]

[1,2,3] [X,Y|Z] X=1Y=22=[3

Consider the following set of clauses S:

® likes(john, flowers) — h kw Cﬁ: {0 04)

likes(mary, food) —
likes(mary, wine) —
Blikes(john, wine) —
& likes(john, mary) —
likes(paul, mary) —

If you entered these clauses into a program capable of executing logic pro-
grams (some implementation of Prolog), and asked:

likes(john, X)?
S

~ e e

you will get a number of answers:

X = flowers
X = wine
X = mary

On the other hand, if the query were
likes(john, X), likes(mary, X)?7
the answer should be:

XN = wine

Byaac stast.- Ez!dlu:llan

L pol< fov "-'Mflemr.n-hl_-y | ke vals

Conditional Clausal Form z ﬁ’ .
Ya(Ape(x) — Human(z)) Vo (Ape(x) Vv —Human(z)) cd‘ "h'ﬁow -
Human(fred) — Human(fred) Vv —~Human(father(fred)) oA

Human(father(fred)) l/ fVLd

For resolution to apply, we require the clausal forms to contain a pair of com-
plementary literals. We nearly do have such a pair: —Huwman(x) in the first
clause and Human(fred) in the second. It is apparent that if variable x in the
first clause were to be restricted to the term fred, then we would indeed have
a complementary pair, and the resolvent is:

Resolvent Clausal Form
Ape(fred) — Ape(fred) Vv =Human(father(fred))
Human(father(fred))

Vv'\l

thatio
wtﬁe_y s O~ Pav'hc.u.laf klne‘ of subshihahion

A single resolution step in predicate logic thus involves ‘substituting’ terms for
variables so that a complementary pair of literals results. Here, such a pair would
result if we could somehow ‘match’ the literals Human(z) and Human(fred).
The resulting mapping of variables to terms is called the unifier of the two
literals. Thus, mapping = to fred is a unifier for the literals Human(z) and

Human(fred).

Substitution

. They should be functions. That is, each variable to the left of the / should
be distinct. Thus, {z/fred,z/hll} is not a legal substitution; and

. They should be idempotent. That is, each term to the right of the /
should not contain a variable that appears to the left of the /. Thus,
{z/father(z)} is not a legal substitution. This test is sometimes called
the “occurs-check”. The occur-check disallows self-referential bindings
such as X/f(X). However, the temptation to omit the occur-check in
unification algorithms is very strong, owing to the high processing cost
of including it; it is the only test in the comparison cycle which has to
scrutinize the inner contents of terms, whereas all other tests examine only
the terms’ principal (outermost) symbols.

B: {Ve/tr , Vafiu | - < o/t)

/
must b an
v

must lpe tevms

B={af fredy - Valhpelx) V™ Homon®))
Auen oLB= (Ape (fre d) U~ Human(Fed))

Subslifuthons con ke comFosc..;l,

A pair of substitutions can be composed (‘joined together’). For example, com-
posing {x/ father(y)} with {y/fred} results in {x/ father(fred)}. In general,
the result of composing substitutions

8]_ = {1{-1_/81, ey umixsm}

fy = {’L‘lf?‘.l, ceey ’L-‘nff.n}

1s (this may not be a legal substituition): l"'»‘j -)

B1 00y = {uy/s10s, ... 0y /spmba} U {v /v & {uy, ... upm)}

Ovder of opplica fron n (o((9-,4@;
Frest 9, £ then &2 on AT

Theorem 18 If a is a universally quantified expression that is not a term (i.e.,
a literal or a conjunction or disjunction of literals), and 0 is a substitution, then

e
the following holds: o |= of. For example, P(x)V—Q(y) | P(a)v-Q(y), where ‘lm tmb

we have used the substitution {x/a}. 'k ‘ F‘D¥ 'ULI
S\l-

Proof sketch: The proof for this example 1s easy: suppose [is a model, with
domain D, of P(x)V—()(y). Then for all dy € D, and for all dy € D, Iagﬁ.: T ‘®
‘ or Ig(dy) = ['. Suppose a is mapped to domain element d by I, then for all m
de€D i SDI1) = T or Ig(df = F. Hence I is a model of P(a) Vv ~Q(y). It is

clear that for different o or #, a similar proof can always be given. Hence always
ot ab. O ethey P2 ov gad, dead 4,
o ettt Pad ov B2dy fo atd by

UMFLERS 4 M&J

We are now in a position to state more formally the notion of unifiers. To

say that a substitution ¢ is a unifier for formulsee a7 and as means a6 =

asf. However, there can be many unifiers. For example, the formule ay :
VavzParent(father(xz),z) and oy : YyParent(y, fred) have as unifiers #; =
{z/fred,y/father(fred),z/ fred} and 03 = {y/ father(x).z/ fred}. In the first

case a1fy = ol = Parent(father(f?'ed fred); and in the second case a6y =

glbly = VxParent(father(x) . Notice that #5 is, in some sense, more ‘. Ofeneral

than 6y as it ugposes less severe ¢ constraints on EE[E Gaﬂables There is, in fact, P Ve-.(l fj
a most-genemﬁ umﬁer‘ Tor mgu) for a “pair r of formulze. The substitution 6 is a ,

most general unifier for oy and as if and only if:

- e e e

9, st
1. a10 = agf (that is, € is a unifier for a1 and a2); and

{
|

M ’
2. For any other unifier o for ay and s, there is a substitution p such that \ @ B

o = 6o (that is, a10 is a substitution instance of a16).

/

Ex‘l’cr\dlrlj Resolutmn Jwom
O oder o \St ovder
Iﬂf\d‘.' C, € Co

1. Rename all variables in clause (' so that they cannot be confused with
those in ¢y (for The variables in C' 5 are independent of those in C and
the renamed clause 1s equivalent to C). This is sometimes called “stan-
dardising the Clziuses a.part’f; - -

2. Identify (‘:omplementarv literals and see if an mgu emst3
c = i --rz.’-‘ - e
3. Apply mgu and form the resoivent C'. Pve yuou! SI'J e

O ovder Ivau:

:ﬁ' e

G ot 1f GO0
'ﬂ‘cl\ Cze)"'cl
C.,&z':c-t

pavert (Fy Y - . - -
R: Pc-rcﬂi’ ()ﬂ,')‘)

o i
t Formula Clausal Form
Oy Va(Ape(x) — Human(z)) Ya(Ape(z) vV ~Human(x))

Cy : Ve(Human(r) — Human(father(x))) Yae(Human(z) Vv ~Human(father(x

C - 7 x [ﬂfr(xjv"ﬂuman("&.))
@ C, :- VJ (Haman[‘j) V4 "’Human(ia"'*""e'((d))

—~Human(d) € Momen L4)
Mgu.z B'g{xlyﬁ B.rE

@ Bz ¥y (ApeCy) V 2#Human (y))
\./? (Human [Y) V- Human (fam«ra)))

C,8,:C>

KPSJ\,’:‘; :(/'Pe ly) V —Human (fathes))

As with propositional logic, the set-based notation used for clauses (page 60)
allows us to present resolution in a compact (algebraic) form:

R=(Cy—{L})AU(Cy— {M})p

~ [FActormer

P "J?Udj CHumon [w) VHem on Cj»
C, : Nu N (—Humon (W) V ﬂﬂummnCv))

—
N-ﬂh'. " quYAS 4 Ve-nfj +ha t (D UC,)
i5 unswhsgm_b]e‘ '
Pesolutior 05 AgsonbeaQ
droet et \ead +o D

- NF‘«I“L (Human(f))

V-t ummc

(Onforu naffl] ‘-
Euer ke

R?]o“\l!n

ﬁu.d to elwmnaie ,-(Ui..ma“r\ \'tc-(o.\s c(:'od""“j-
tectar (C) = ML (fuman (L)
factst (L0 =AY (aHwnom (D)

va ‘o Fao{ ﬂ‘fz"« F’l:% w\nu](d" likevals

Formally, if C' is a clause, L1,....Lp(n > 1) some"ﬁniﬁa_,l:)le literals from ',
and ¢ an mgu for the set {Lq,...,L,}, then the clause obtained by deleting
Laf.....L,0 from C# is called a factor of C'. For_example, Q(a) Vv P(f(a))
is a factor of the clause ~Q(a) vV P(f(a))V P(y) using {y/f(a)} as an mgu for
{P(f(a)), P(y)}. Also, Q(x)V P(x,a) is a factor of Q(z)VQ(y)VQ(z)V P(z,a).

@ L) s)
™A = B= \‘3\ %(0}
. w C' f. Vo C?:CI ?_ fl.__cpC,BZC'

SN
———

ke Schmll)Mlm
hot Sufficre nl o yesdn ¢

